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CHAPTER 1 INTRODUCTION 

Due to their superior hardness and lightness, laminated composite materials are 

widely utilized in fields like mechanical engineering, aerospace, and 

construction. However, their layered structure leads to stress concentrations and 

potential delamination at the interfaces. Thus, functionally graded materials 

(FGMs) have been developed to address this, offering a continuous variation in 

material properties along specific directions. Recent advancements have also 

enabled the production of functionally graded porous materials and porous metal 

foam materials, which enhance sound dampening and reduce structural weight, 

making them highly valuable for modern applications. However, the 

development of such materials accompanied efficiently computational methods 

and models in order to predict accurately their responses at different structural 

scales. Therefore, this dissertation carried out the “development of stochastic 

composite plate models subjected to mechanical and thermal loads”.  

CHAPTER 2 OVERVIEW OF THEORETICAL BASIS 

2.1 Advanced composite materials for analysis of plates  

2.1.1 Laminated composite materials 

Due to their many advantages in stiffness and lightness, laminated composite 

materials have been widely applied in many engineering fields, such as aviation 

and construction, mechanical engineering, etc. The LC structure is made of two 

or more layers of component composite materials that are bonded together at the 

interface between the layers.  

2.1.2 Functionally graded materials 

The material properties such as Young’s modulus E , mass density  , Poisson’s 

ratio   of FGP material  can be approximated by the following expressions . 

        3 3 0.5    c m c m c mP x P P V x P P P  (2.1) 

2.1.3 Functionally graded sandwich materials 

Sandwich structures offer numerous advantages, such as being lightweight and 

having high bending stiffness, making them ideal for use in aircraft, aerospace, 

flexible electronics, and biomedical applications. A typical sandwich structure 

consists of two FGMs face sheets with a homogeneous core in between. 

2.1.4 Porous metal foam materials 
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The effective material properties of porous metal foam materials: Distribution of 

uniform porosity; Distribution of asymmetric porosity; Distribution of symmetric 

porosity. 

2.2 Plates theories 

In the context of plates, the displacement field is expressed in terms of unknown 

functions  j

i  of the surface coordinates  1 2,x x  and time t . 

     1 2 3 3 1 2

0

, , , , ,



N

j j

i i

j

u x x x t x x x t  (2.12) 

The explicit form of Eq. (2.12) varies depending on the kinematics of the 

deformation being considered including CPT, FSDT, HSDT, Quasi-3D, and 

three-dimensional elasticity. 

2.3 Size dependent analysis of microplates 

The MST proposed by Lam modified the classical strain gradient theory of 

Mindlin, Mindlin and Eshel to establish a new set of high-order metrics, where 

the total number of MLSP was reduced from five to three.  

           σ ε p τ η m χUB

A

dA    (2.20) 

where , , ,ε χ ξ η  are strains, symmetric rotation gradients, dilatation gradient and 

deviation stretch gradient, respectively; σ  is Cauchy stress; , ,m p τ are high-order 

stresses corresponding with strain gradients , ,χ ξ η , respectively. 

2.4 Ritz solution 

The Ritz method was initially introduced by Walter Ritz to analyze the free 

vibrations of structures.  

           
1 2

0

1 1 2 1 1 2 1 ,1 1 2

1 1

( , , ), ( , , ) ,
 


N N

ji ji j i

j i

u x x t x x t u t x t F x P x   (2.24a) 

           
1 2

0

2 1 2 2 1 2 2 1 ,2 2

1 1

( , , ), ( , , ) ,
 


N N

ji ji j i

j i

u x x t x x t u t y t F x P x  (2.24b) 

      
1 2

0

3 1 2 3 1 2

1 1

( , , )
 


N N

ji j i

j i

u x x t u t F x P x  (2.24c) 

where 1 2 3, , , ,ji ji ji ji jiu u u x y  are variables that need to be calculated; the shape 

functions in the 1 x  and 2 x  directions are represented by    1 2,j iF x P x .   

2.5 Stochastic method 

Monte Carlo Simulation (MCS) method is the simplest and most popular 

approach to solve this complicated problem. Another approach is to use 

polynomial chaos expansion (PCE) which speeds up the computing process 
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while still maintains the accuracy. Stochastic collocation (SC) is known as one 

of stochastic expansion method similar to the popular PCE.  

2.6 Neural network systems 

Besides, the combination between the BCMO algorithm and ANN to determine 

optimal responses for FG microplates with uncertainties of material properties 

has not been developed yet, this interesting topic needs to be investigated. 

Moreover, a novel intelligent computation algorithm iBCMO-DNN for solving 

the stochastic thermal buckling problems of FGP microplates by using the MST, 

unified HSDT and Ritz method will propose. 

2.7 Meta-heuristic algorithms 

In contrast to optimization algorithms and iterative methods, meta-heuristics 

algorithms do not ensure the discovery of a globally optimal solution for certain 

problem classes. Three algorithms including differential evolution (DE), shrimp 

and goby association search algorithm (SGA) and balancing composite motion 

optimization (BCMO) are used to solve the above problem. 

2.8 Conclusion 

A literature review shows that it is necessary to develop stochastic composite 

plate models subjected to mechanical and thermal loads. For this aim, the 

dissertation will focus on the contents: 

• Develop the new hybrid shape functions for the Ritz method. 

• Develop stochastic models to investigate the behaviors of microplates 

with uncertain material properties. 

• Develop new computation algorithms using artificial intelligence to 

solve the stochastic problems of microplates.   

• Propose optimization methods to search the optimal fiber directions of 

laminated composite plates. 

CHAPTER 3: A RITZ-BASED COMPUTATIONAL METHOD FOR 

SIZE-DEPENDENT ANALYSIS OF ADVANCED COMPOSITE 

MICROPLATES UNDER THERMO-MECHANICAL LOADS 

3.1 Introduction 

This chapter proposes various new computational algorithms, which combined 

the Ritz method under novel shape functions with unified higher- order shear 

deformation theory and modified strain gradient for analysis of microplates. The 

characteristic equations are derived using Hamilton's principle and solved by 

using Ritz solutions. 

3.2 Theoretical formulation 

3.2.1 Advanced functionally graded materials 
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3.2.1.1 Porous metal foam material 

Consider a rectangular microplate made of porous metal foam (PMF) material. 

The microplate has a thickness h  and sides a b . Fig. 3.1 displays the material 

properties of three different types of porosity distributions throughout the 

thickness of the PMF microplates. The connection between mass density   and 

Young's modulus E  can be expressed as follows: 

 Distribution of uniform porosity  

     max 1   z ;    max 1  E z E  (3.1) 

 Distribution of asymmetric porosity  

   max 1 cos
2 4

 
  

  
    

  
m

z
z

h
;   max 1 cos

2 4

 


  
    

  

z
E z E

h
 (3.2) 

 Distribution of symmetric porosity  

    max 1 cos


  
  

   
  

m

z
z

h
 ;   max 1 cos




  
   

  

z
E z E

h
 (3.3) 

(a) Por (a) Porosity is uniformly distribution (b) Por (b)Porosity is symmetric distribution 

(c) Porosity is asymmetric distribution 

                        Figure 3.1: Three types of porous metal microplates 

where maxE  and max  are maximum values of Young's modulus and mass density, 

respectively;   and m  denotes the porosity parameters and mass density, which 

are given by:  

 min max1 / ,0 1    E E  ; min

max

1 ,0 1


 


   m m  (3.4) 

where minE  and min  are minimum Young's modulus and mass density.  

In which 

 1 1   m     (3.5) 
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The material characteristics in the case of a distribution of uniform porosity 

remain constant in the thickness direction and depend only on the porosity 

coefficient  . Thereafter, the coefficient   is written as follows: 

   
2

1/ 2 1 / 2 / 1 /              (3.6) 

3.2.1.2 FG sandwich microplates  

The following formulas can be used to evaluate the effective material properties 

of FG sandwich microplates: 

      3 3  c m c mP x P P V x P  (3.7) 

where the volume fraction of the ceramic material  3cV x  across the plate 

thickness is determined by Eq (4.3). 

with the power-law index p , cP  and mP  are the characteristics of ceramic and 

metal materials, respectively, such as the Young's moduli E , mass density  , 

and Poisson's ratio  . 

 

4 3

3 3 4

4 3

3 2 3 3

3 1

1 3 2

2 1

, FG top layer

1   ceramic core layer

FG bottom layer

 
   

 


  

 

    

p

c

p

z x
z x z

z z

V x z x z

x z
z x z

z z

 (3.8) 

3.2.1.3 Functionally graded porous materials 

The effective material properties of FGP microplates are given by:  

       3

3

2

2 2

p

c m m c m

x h
P x P P P P P

h

 
     

 
 (3.9) 

where cP  and mP  are the Poisson’s ratio  , Young’s moduli E  of ceramic and 

metal materials, respectively; p  is the power-law index; 0 ≤ β ≪ 1  is the porosity 

volume fraction;  3 / 2, / 2x h h  .  

3.2.1.4 Properties of materials and temperature distribution 

Moreover, in order to investigate the effect of temperature on the buckling 

responses, three types of temperature distribution are considered as below:  

 For uniform distribution (UTR):    oT z T T    where the bottom 

surface's reference temperature is oT . 

 For linear distribution (LTR):     / 0.5t b bT z T T z h T     where the 

temperatures at the top and bottom surfaces of FGP microplates are 

represented by tT  and bT , respectively. 
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 For the nonlinear temperature rise (NLTR): the expression of the current 

temperature is derived from the Fourier equation of steady-state heat 

conduction as follows:    
   /2 /2

/2

1

1/

z
t b

h h

h

T T
T z T b

k dk z dz  




  


 

where  k z  is the coefficient of thermal conductivity. 

3.2.2 Modified strain gradient theory based on a framework of unified high-

order shear deformation theory 

For simplicity purpose, the effects of transverse normal strain are neglected, i.e. 

   0

3 1 2 3 3 1 2, , ,u x x x u x x  where  0

3 1 2,u x x  is transverse displacement at the mid-

surface of the microplates. Moreover, it is supposed that the transverse shear 

stresses are expressed in terms of the transverse shear forces as follows:  

    13 ,3 3 1 1 2,f x Q x x  ;    23 ,3 3 2 1 2,f x Q x x   (3.10) 

where  3f x  is a higher-order term whose first derivative satisfies the free-stress 

boundary condition at the top and bottom surfaces of the microplates, i.e. 

 ,3 3 0.5 0f x h   ;    1 1 2 2 1 2, , ,Q x x Q x x  are the transverse shear forces. 

Additionally, transverse shear strains are linearly related to the membrane 

displacements    1 1 2 3 2 1 2 3, , , , ,u x x x u x x x  and transverse one  0

3 1 2,u x x  by: 

 ,3 10 13

13 1,3 3,1

f Q
u u




 
     ; ,3 20 23

23 2,3 3,2

f Q
u u




 
     (3.11) 

where       3 3 / 2 1x E x    is the shear modulus. Furthermore, integrating 

Eq. (3.11) in 3x  direction leads to a general displacement field of the 

microplates as follows: 

        0 0

1 1 2 3 1 1 2 3 3,1 3 1 1 2, , , ,u x x x u x x x u x Q x x    (3.12a) 

        0 0

2 1 2 3 2 1 2 3 3,2 3 2 1 2, , , ,u x x x u x x x u x Q x x    (3.12b) 

    0

3 1 2 3 3 1 2, , ,u x x x u x x  (3.12c) 

where  
 

3

,3

3 3

30

x
f

x dx
x

   . Moreover, it is known that the transverse shear forces 

can be expressed in terms of the rotation  1 2,   and gradients of the transverse 

displacement as follows: 

    0

1 1 2 1 3,1, sQ x x H u  ;    0

2 1 2 2 3,2, sQ x x H u   (3.13) 
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where  
/ 2

3 3

/2

h

s s

h

H k x dx


   is the transverse shear stiffness of the microplates; 

5 / 6sk   is shear coefficient factor. Substituting Eq. (3.13) into Eq. (3.12) leads 

to a general HSDT as follows: 

          0 0

1 1 2 3 1 1 2 1 3 3,1 2 3 1 1 2, , , ,u x x x u x x x u x x x    (3.14a) 

          0 0

2 1 2 3 2 1 2 1 3 3,2 2 3 2 1 2, , , ,u x x x u x x x u x x x    (3.14b) 

    0

3 1 2 3 3 1 2, , ,u x x x u x x  (3.14c) 

where        1 3 3 3 2 3 3,s sx H x x x H x       .  

The microplates' total potential energy is calculated by using Hamilton's principle 

as follows: 

  
2

1

0

t

UB VB FB KB

t

dt             (3.15) 

where ,VB UB   , FB  and KB  are the variations of work done by membrane 

compressive forces, strain energy, work done by external forces and kinetic 

energy, respectively.   The strain energy variation of the system UB  is obtained 

by the MST: 

  UB

A

dA         σ ε p τ η m χ    (3.16) 

where , , ,ε χ ξ η  are strains, symmetric rotation gradients, dilatation gradient and 

deviation stretch gradient, respectively; σ  is Cauchy stress; , ,m p τ  are high-

order stresses corresponding with strain gradients , ,χ ξ η , respectively. 

The components of strain ij  and strain gradients , ,i ijk ij    are defined as 

follows: 

  , , / 2ij i j j iu u   ; ,i mm i  ;  , , / 4ij n mj imn n mi jmnu e u e      

 
     

 

, , , , ,

,

/ 3 2 2

2 /15

ijk jk i ki j ij k i mi m jk k mk m ij

j mj m ki

         

  

      

 


 (3.17) 

where ij  is Knonecker delta; imne  is permutation symbol. The constitutive 

equations are used to determine the stress components as follows: 

 
2ij kk ij ij     ; 2

12ij ijm l  ; 2

22j jp l  ; 2

32ijk ijkl    (3.18a) 

 2

22j jp l  ; 2

32ijk ijkl    (3.18b) 

where ,   are Lamé constants; 1 2 3, ,l l l  are three material length scale parameters 

(MLSP) which should be practically determined by experimental works. 

3.2.3 Ritz-type series solution 

 



11 

 

According to the Ritz approach, the following series of approximation functions and 

associated series values can be used to describe the membrane and transverse 

displacements  0 0 0

1 2 3 1 2, , , ,u u u    of the microplates: 

    
1 2

0

1 1 2 1 ,1 1 2

1 1

( , )
n n

ij i j

i j

u x x u R x P x
 

 ;    
1 2

0

2 1 2 2 1 ,2 2

1 1

( , )
n n

ij i j

i j

u x x u R x P x
 

   

    
1 2

0

3 1 2 3 1 2

1 1

( , )
n n

ij i j

i j

u x x u R x P x
 

 ;    
1 2

2 1 2 1 ,2 2

1 1

( , )
n n

ij i j

i j

x x y R x P x
 

   

     
1 2

1 1 2 ,1 1 2

1 1

( , )
n n

ij i j

i j

x x x R x P x
 

   (3.36) 

where 1 2 3, , , ,ij ij ij ij iju u u x y  are represent unknown variables need to determined; the 

shape functions in 1x  , 2x   direction are    1 2,i jR x P x , respectively. As a 

consequence, only two shape functions affect the five unknowns of the microplates. 

As mentioned in the introduction section, the accuracy and efficiency of the Ritz 

method strongly depend on the construction of the approximation functions. In 

general, these shape functions should be complete, continuous and independently 

linear. In this study, the Hermite polynomial, Laguerre polynomial and orthogonal 

polynomials made from Gram Schmidt method which are defined by this recursion 

formula, are used to develop novel Ritz method's shape functions.  

Hermite polynomial: 
Hermite polynomial are characterized by the following recursion formula: 

 
0 1

1 2

1, 2 ,

2 2

( ) ( )

( ) ( ) ( ) (1 )n n n

He x He x x

He x xHe x n He x 





 

  
   (3.37) 

Hermite polynomials satisfy normalization as follows: 

 
22 2( !( )) x nHe x e dx n




     (3.38) 

Laguerre polynomial: 

Hypergeometric functions define the generalized Laguerre function: 

  1 1L ,( , ;) 1;
n a

n a x F n a x
a

 
   
 

 (3.39) 

The function returns orthogonal generalized Laguerre polynomials for nonnegative 

integer values of n : 

    1 2
0

1, 2 x af fe x x f x xf d


   (3.40) 

Furthermore, generalized Laguerre polynomials fulfill this normalization: 

  )L , , , L

0

( ) ( 1

!

, ,

if n

n
n a nx m

m

a
i

a x
f m

n




   




 (3.41) 

Gram-Schmidt-based orthogonal polynomials: 
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Next, the admissible functions known as orthogonal polynomials (OP) which are 

constructed using the Gram-Schmidt (GS) method. These functions exhibit a 

rapid convergence rate, although they encounter challenges in determining the 

initial function. Using the GS approach is defined as follows: 

              1 1 0 1 2, k k k k kx x A x x x A x D x            (3.42a) 

 

   

   

2

1

2

1

d

k

c

k d

k

c

xw x x dx

A

w x x dx














; 

     

   

1 2

2

2

d

k k

c

k d

k

c

xw x x x dx

D

w x x dx

 



 








   (3.42b) 

where  w x  being the weighting function. The orthogonality is satisfied by the 

polynomials  k x  as below: 

      
0d

k l

klc

if k l
w x x x

a if k l
 


 


   (3.43) 

 with   1w x  ;  0 2 1x x   , and    , 1,1c d   . 

The combination of clamped and simply-supported BCs on the edges of the 

microplates leads to the various ones as follows: SSSS, SCSC, CSCS, CCCC 

which will be taken into account in the numerical examples as follows in the 

Table 3.1: 

Table 3.1: Approximation functions of series solutions with different BCs 
Boundary 

conditions 

 Approximation functions 

  1jR x   2jP x  

SSSS Ritz-Hermite  1 1 jx a x He   2 2 jx b x He  

 Ritz-Laguerre  1 1 jx a x L   2 2 jx b x L  

 Ritz-OP  1 1 jx a x    2 2 jx b x   

SCSC Ritz-Hermite  
2

1 1 jx a x He   
2

2 2 jx b x He  

 Ritz-Laguerre  
2

1 1 jx a x L   
2

2 2 jx b x L  

 Ritz-OP  
2

1 1 jx a x    
2

2 2 jx b x   

CSCS Ritz-Hermite  2

1 1 jx a x He   2

2 2 jx b x He  

 Ritz-Laguerre  2

1 1 jx a x L   2

2 2 jx b x L  

 Ritz-OP  2

1 1 jx a x    2

2 2 jx b x   

CCCC Ritz-Hermite  
22

1 1 jx a x He   
22

2 2 jx b x He  

 Ritz-Laguerre  
22

1 1 jx a x L   
22

2 2 jx b x L  

 Ritz-OP  
22

1 1 jx a x    
22

2 2 jx b x   
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The microplate's characteristic equations of motion: 

    0 gN K K d Md F=  (3.44) 

3.3 Numerical results 

3.3.1 Study convergence of solution 

The PMF microplates are designed to be made of metal foam materials whose 

characteristics are followed: max 200E   GPa, max 7850  kg/m3, max 0.33v  . For 

simplicity purpose, the numerical examples utilize the following normalized 

response parameters max max100 /h E   . To evaluate the convergence and 

efficiency of the current computational method, this example will compare the 

convergence speed and stability of the proposed Hermite-Ritz and Laguerre-Ritz, 

Exponential-Ritz, OP-Ritz solutions with those of the Ritz solution obtained from 

other shape functions. The following approximation functions will be used in Eq. 

(3.36) for the computations: 

Static Beam Functions (SBF):   

    2 3

2 2 2 2 2sin /    j j j j jF x A B x C x D x jx b   (3.47) 

with       2 30; / ; 1 2 / ; 1 1 /           
j j

j j j jA B j b C j b D j b . 

Non-Orthogonal Polynomials (NOP): 

    
2 1

2 2 2

  j

jF x b x x   (3.48) 

Product of Trigonometric Functions (PTF): 

      2 2 2sin / sin / jF x x b j x b   (3.49) 

Characteristic Functions (CF): 

    2 2 2 2 2sin sinh cos cosh       j j j j j jF x x x x x   (3.50) 

with      sin sinh / cos cosh ; 0.5 /          j j j j j jb b b b j b . It is noted 

that the functions  1jT x   are defined in a similar way by replacing the variable 

2x  for 1x , the length b  for the width a  in the previous equations. For the purpose 

of investigating the convergence of approximation functions, the reference 

distance is defined as follows: 

 1  f i id    (3.51) 

where i  and 1 i  are  results  of  fundamental  frequency of porous metal foam 

at in  and 1in , respectively. 

In order to evaluate the convergence of the Ritz solution, Table 3.2 and Fig. 3.6 

show the convergence speed of fundamental frequencies of the PMF microplates 

under fully clamped boundary condition with / 10a h , 0.3   and /  h l .  

Table 3.2: Comparison with convergence speed of the series solution  1 2 n n n  

of porous metal foam PMF microplates with full clamped boundary condition for  
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( / 10a h , 0.3  , /  h l ) 

Solution 
Number of series 1 2n n n   

  

 2 3 5 6 8 9 10 15 

SBF 11.765 11.27 10.681 10.125 9.905 9.858 9.772 9.4444 

NOP 9.455 9.44 9.382 9.373 9.362 9.363 9.362 9.364 

PTF 9.784 9.486 9.401 9.400 9.362 9.364 9.362 9.364 

CF 9.560 9.545 9.503 9.467 9.402 9.388 9.388 9.388 

Hermite 9.649 9.382 9.382 9.382 9.381 9.383 9.384 9.381 

Laguerre 9.5341 9.364 9.364 9.364 9.364 9.364 9.364 9.364 

OP_GS 9.5571 9.381 9.373 9.373 9.373 9.373 9.373 9.373 

Exponential  9.5730 9.406 9.357 9.355 9.355 9.355 9.355 9.355 

IGA [174] 9.5202  

 Moreover, the line graph compared the convergence speed of seven kinds of 

shape functions in Fig. 3.6. It is clear that the convergence speeds of the shape 

functions used to compute the fundamental frequencies are different among 

shape functions.  

Figure 3.6: Comparison with both convergence speed of number of series of porous 

metal foam PMF microplates with full clamped boundary condition for normalized 

fundamental frequency ( / 10a h , 0.3  , /  h l ) 

The orthogonal polynomials sequence gave accurate results when computing 

natural frequencies.  

3.3.2 Analysis of PMF microplates 

In this example, free vibration max max/h E    and buckling loads (uniaxial 

compression and biaxial compression)  2 3

max/cr crN N a h E  behaviors of the 

square PMF microplates with simply supported (SSSS)  are analysed. The PMF 

microplates are designed to be made of metal foam materials whose 

characteristics are followed: max 200E   GPa, max 7850  kg/m3, max 0.33v  .   
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Table 3.3: Normalized fundamental frequencies of PMF rectangular microplates for 

simply supported boundary condition with / 10a h   

Type  

distribution 

  Theory /h l  

  10 5 2 1 

Uniform 0.1 Ritz-Hermite 0.0606 0.0715 0.1234 0.2264 

  Ritz-Laguerre 0.0606 0.0715 0.1233 0.2262 

 0.2 Ritz-Hermite 0.0592 0.0702 0.1218 0.2240 

  Ritz-Laguerre 0.0592 0.0702 0.1218 0.2239 

  IGA [20] 0.0601 0.0706 0.1203 0.2196 

 0.3 Ritz-Hermite 0.0578 0.0688 0.1201 0.2212 

  Ritz-Laguerre 0.0578 0.0688 0.1200 0.2211 

  IGA [20] 0.0590 0.0692 0.1179 0.2153 

Table 3.4: Normalized critical buckling load under uniaxial compression of PMF 

rectangular microplates for simply supported boundary condition with / 10a h   

Type  

distribution 

  Theory /h l  

  10 5 2 1 

Uniform 0.1 Ritz-Hermite 3.6690 5.0792 14.9412 50.0314 

  Ritz-Laguerre 3.6665 5.0754 14.9287 49.9844 

  IGA [20] 3.7311 5.1334 14.9043 49.7140 

 0.2 Ritz-Hermite 3.3772 4.7119 14.0463 47.2574 

  Ritz-Laguerre 3.3748 4.7084 14.0345 47.2129 

  IGA [20] 3.4694 4.7734 13.8590 46.2271 

3.4 Conclusions 

This chapter introduces novel approximation functions for the Ritz method to 

analyze the behaviors of FG, FG sandwich, FGP, and PMF microplates. A unified 

higher-order shear deformation theory (HSDT) is formulated to approximate the 

displacement field accurately. To capture size-dependent effects in microplates, 

the modified strain gradient theory (MST) is employed. The governing equations 

of motion are derived using Hamilton’s principle. Convergence and validation 

studies are performed to verify the accuracy and reliability of the proposed 

solutions. 

CHAPTER 4 INTELLIGENT COMPUTATIONAL ALGORITHMS FOR 

STOCHASTIC ANALYSIS OF FUNCTIONALLY GRADED 

MICROPLATES WITH UNCERTAINTIES OF MATERIAL 

PROPERTIES 

4.1 Introduction 
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The main objective of this chapter is to develop a stochastic model for behaviors 

analysis of the microplates using various advanced algorithms such as Monte 

Carlo simulation with 10,000 samples, polynomial chaos expansion, stochastic 

collocation, BCMO-ANN and iBCMO-DNN algorithms.  

4.2 Polynomial chaos expansion 

In this study, û  is fundamental frequency or critical buckling load of the FG 

microplates in terms of a truncated orthogonal series as follows : 

    
1

0

ˆ ˆ




  x q
P

PCE i i

i

u u c He r   (4.1) 

where ˆ
PCEu  is the response of interest obtained from the PCE; q  is a vector of 

independent random variables in PCE space mapped to physical random 

parameters x ; iHe  are multivariate orthogonal basis functions; ic  are 

coefficients to be determined so that the residual r  is minimized; P  is the 

permutation of the qualified order of the polynomial n  

4.3 Stochastic collocation 

For 1-D problem (i.e., one random input X ) and in  interpolation points, it 

approximates the stochastic response u  by forming the Lagrange functions and 

estimating the model response at interpolation points  iu q as follows: 

       
1

ˆ


 
in

i i

i

u X u X u q L q   (4.9) 

 where q  is a standard variable mapping to the physical variable X  and for 

maximizing performance of this approach iq  are defined as appropriate Gauss 

quadrature points corresponding to the distribution of q . The 1-D Lagrange 

interpolation  iL q  is defined as: 

       
1

/



  
in

i j i j
j
j i

L q q q q q   (4.10) 

4.4 Intelligent stochastic computational algorithms based on optimization 

and machine learning methods 

4.4.2 Artificial neural network (ANN) and BMCO algorithm: BCMO-ANN 

The Artificial Neural Network (ANN) system shown in Fig. 4.2 contains three 

kinds of layers, namely, input layer, hidden layer, output layer in which each 

layer consists of neurons that are connected to each other in the previous layer. 
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Figure 4.2: An artificial neural network structure 

The output data of the activation function for the sum is expressed as follows:  

  
1

1 1

1

 


 



 
    

 


n

n

lm
n n n n

i i ij j i

j

y x w y b                (4.24) 

where  n

iy and n

ix  are data pair output and input of activation function of node i

, respectively; 1n

ijw  is the weight between the output node i  and input node j ; n

ib  

is the bias of node j ;   is the activation function. 

4.4.3 Deep neural network (DNN) and improved BMCO algorithm: 

iBCMO-DNN 

Figure 4.3: Deep neural network 

Each node in the succeeding layers will get the total of the preceding nodes' 

output values multiplied by their respective weights, and the activation function's 

output data for the sum is supplied as follows: 

  
1

1 1

1

 


 



 
    

 


n

n

L
n n n n

i i ij j i

j

y x w y b                (4.26) 

4.5 Numerical examples 

4.5.1 Stochastic vibration analysis of FG microplates using polynomial chaos 

expansion 

In order to investigate of the stochastic responses of the FG microplates, the 

material properties ( cE , mE , and c , m ) are assumed to be randomly distributed 

via the lognormal distributions and the coefficient of variation (COV) for all 

random variables is set to equal 10%. The MCS with 10,000 samples is 
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considered as the exact solutions for comparison purpose. For convenience, the 

following non-dimensional parameters are used in the numerical examples:  

  2 / /c ca h E    (4.28) 

Table 4.2: Comparison study between MCS (10.000 samples) and PCE (256 

samples) for the mean, standard deviation (SD), Kurtosis and Skewness for the 

fundamental frequency of the FG microplates ( / 10a h , MAT 1) 
BCs p  Theory Mean SD Kurtosis 

 

Skewness 

 

COV 

(%) 
Time 

(s) 

Present 

 

/ 1h l   

SS 

SS 

1 PCE 11.010 0.5087 2.4628 -0.0532 4.6 17.02 11.010 

MCS 11.010 0.5087 2.4633 -0.0531 4.6 814.1 

5 PCE 8.7431 0.8313 2.6301 0.1966 9.5 18.1 8.720 

MCS 8.7456 0.8317 2.6308 0.1962 9.5 815.3 

10 PCE 8.0719 0.8990 2.6953 0.2624 11.1 18.4 8.044 

MCS 8.0747 0.8986 2.6949 0.2629 11.1 817.0 

 …         

It can be observed that all statistical moments obtained from MCS and PCE show 

good agreement in all cases. The required computational time of the present 

approach is about 1/47 compared with direct MCS method.  

Table 4.2 compares the standard deviation (SD), mean, kurtosis and skewness, 

which are the first four statistical moments of the natural frequencies as 

calculated by the SC and MCS models for a range of p  and /a h  values.  

  

Figure 4.6a: PDF and PoE of MCS and PCE methods for the fundamental 

frequency (Hz) of the FG microplates with SSSS BC ( 5p  , / 1h l  , / 10a h  ) 

Figs. 4.6a compare the probability density function (PDF) and probability of 

exceedance (PoE) of MCS and PCE for the vibration analysis of the microplates 

with various SSSS BC. It can be observed again that the results of MCS are in 
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good agreement with PCE. It is consistent with what is observed from the 

comparison of the COV of these stochastic responses shown in Fig. 4.8. 

Fundamental frequencies , / 1h l  Fundamental frequencies , / 5h l   

Figure 4.8: Coefficient of variation (COV) with respect the power-law index p  

of the FG microplates ( / 10a h ) with various BCs and  

   Fundamental frequency, / 1h l  Fundamental frequency, / 5h l   

Figure 4.11: Total Sobol index of the random input variables with respect to the 

fundamental frequencies and critical buckling loads of the CCCC FG microplates 

( / 10a h ) 

Fig 4.11 compares the sensitivity indices based on the total Sobol indices for the 

vibration analysis using MCS and PCE. 

4.5.2 Stochastic thermal buckling analysis of FG sandwich microplates using 

stochastic collocation 

For the SC model with the Gauss quadrature point, only 256 samples are needed. 

Table 4.3 list the results of the FG sandwich microplates with / 1h l   and 

/ 5h l   for two types of BCs, /a h  and p . The statistical moments derived from 

SC and MCS exhibit strong concordance.  It is noted that this case's computing 

time is around 1/10 of the time required by the direct MCS technique. Again, for 

both SC and MCS, the mean values of the critical buckling temperature are quite 

similar to the corresponding deterministic responses. 
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Table 4.1: The standard deviation (SD), mean, Skewness,  Kurtosis for the 

biaxial thermal buckling of FG sandwich microplates (MAT 3, / 10a h  )  under 

linear distribution of SC (256 samples) and MCS (10.000 samples), 25o

bT C  

BCs p  Theory Mean SD Kurtosis 

 

Skewness 

 

COV 

(%) 

Time 

(s) 

Present 

 

1-1-1        

/ 1h l    

SS 

SS 

0.5 SC 10.023 0.8972 3.7410 0.5955 8.9 30 9.9421 

MCS 10.017 0.8962 3.7306 0.5927 8.9 325 

2 SC 9.8862 0.8221 3.4865 0.5257 8.3 33 9.8221 

MCS 9.9028 0.8225 3.4923 0.5270 8.3 330 

CC

CC 

0.5 SC 37.498 3.3337 3.4160 0.5005 9.0 40 37.1999 

 MCS 37.498 3.3363 3.4145 0.4994 9.0 342  

2 SC 37.460 3.1073 3.4426 0.4919 8.3 41 37.2542 

 MCS 37.452 3.1061 3.4461 0.4912 8.3 340  

4.5.3 Stochastic vibration analysis of FGP microplates using BCMO-ANN 

algorithm 

In order to investigate stochastic behaviors of FGP microplates, four random 

variables of material properties ( , , , ,, , ,m i c i m i c iE E p p ) are employed with the 

population size 500NP . It is noted that the weight and bias values are 

automatically updated according to Levenberg - Marquardt optimization, the 

number of nodes in each hidden layer is 21.  

Table 4.4: Mean and standard deviation (SD) of normalized fundamental 

frequencies for FG microplates with / 10a h  and SSSS boundary condition 

  p  /h l  Theory Mean SD Time(s) Present 

0.1 1 10 Ritz-BCMO 4.4049 0.0496 615 4.4073 

   BCMO-ANN 4.4090 0.0491 10  

  5 Ritz-BCMO 4.7449 0.0517 620 4.7485 

   BCMO-ANN 4.7451 0.0513 9  

  1 Ritz-BCMO 11.0692 0.1051 617 11.0673 

   BCMO-ANN 11.0745 0.1059 11  

 10 10 Ritz-BCMO 3.3994 0.0953 625 3.4012 

   BCMO-ANN 3.4040 0.0961 10  

  5 Ritz-BCMO 3.5922 0.0997 623 3.6001 

   BCMO-ANN 3.6037 0.0993 12  

  1 Ritz-BCMO 7.5662 0.1991 627 7.5531 

   BCMO-ANN 7.5376 0.1983 10  

  ….      
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The dataset, which consists of input-output pairs and training samples are 

randomly generated through iterations in the ANN training process. In addition, 

in the prediction process, training samples in the dataset are divided into two 

groups, in which 80% pairs in data is used for the training set and 20% for the 

test set. Tables 4.4 presents the mean and standard deviation (SD) of normalized 

fundamental frequencies of Al/Al2O3 FGP microplates with different boundary 

conditions for both Ritz–BCMO and BCMO-ANN models. 

(a) SSSS, 0.1   (b) SSSS, 0.2   

Figure 4.19: Loss function of the normalized fundamental frequencies for FGP 

microplates with different boundary conditions, 10p , / 10a h  and / 5h l  

4.5.4 Stochastic thermal buckling analysis of FGP microplates using 

iBCMO-DNN algorithm 

In order to investigate stochastic critical buckling temperatures of FGP 

microplates, it is noted that five random variables of material properties 

 , , , ,, , , ,  m i c i t i m iE E are  designed to be randomly distributed with the same 

population size 2000NP . Additionally, the data training was generated from 

the earlier analysis of Ritz-iBCMO solution.  

For Al/Al2O3 FGP microplates with three boundary conditions, the mean and 

standard deviation of normalized critical buckling temperatures from the Ritz-

iBCMO and iBCMO-DNN models are shown in Tables 4.9. The critical buckling 

temperature responses are computed for the side-to-thickness ratio / 20a h , 

porous parameter 0.1  and 0.3, power-law index 0.5p and 2, length scale 

parameter / 1h l  and 10. Obviously, the statistical moments of the critical 

buckling temperatures derived from the Ritz-iBCMO and iBCMO-DNN show 

good agreements for all cases. 
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Table 4.9: Mean and standard deviation (SD) of normalized critical buckling 

temperature for FGP microplates with biaxial compression, / 20a h , SSSS 

under uniform temperature distribution 

  p  /h l  Theory Mean SD Time(s) Present 

0.1 0.5 10 Ritz-iBCMO 0.3291 0.0089 2123 0.3284 

   iBCMO-DNN 0.3307 0.0091 845  

  1 Ritz-iBCMO 5.1633 0.1343 2125 5.1596 

   iBCMO-DNN 5.1688 0.1347 844  

 2 10 Ritz-iBCMO 0.2239 0.0066 2124 0.2236 

   iBCMO-DNN 0.2259 0.0071 845  

  1 Ritz-iBCMO 3.8358 0.1084 2123 3.8278 

   iBCMO-DNN 3.8315 0.1082 846  

…        

Additionally, the performance of the current iBCMO-DNN algorithm in 

predicting buckling temperature responses is also shown in Figs. 4.24 abc. 

(a) SSSS, 0.1   (b) SCSC, 0.1   (c) CCCC, 0.1   

Figure 4.24: Quantile-quantile plot of the Ritz-iBCMO model with DNN-

iBCMO, / 20a h , 1p , / 5h l , biaxial compression under uniform 

distribution 

4.6. Conclusions 

In order to investigate the stochastic responses of microplates under uncertainty 

in material properties, the Polynomial Chaos Expansion (PCE), Stochastic 

Collocation (SC) method, and Monte Carlo method are employed. Moreover, this 

research proposed a novel intelligent computational algorithm, iBCMO-DNN, 

for stochastic buckling temperature analysis of microplates with uncertainty of 

material properties. A combination of BCMO-ANN has been proposed to predict 

stochastic vibration behaviors of microplates subjected to uncertainties of 

material properties. The DNN with the long short-term memory model has been 

employed as a surrogate method to replace the time-consuming computational 

model, while the iBCMO for searching the set of optimal solutions. 
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CHAPPTER 5 META-HEURISTIC OPTIMIZATION ALGORITHMS 

FOR VIBRATION AND BUCKLING OPTIMIZATION OF 

LAMINATED COMPOSITE PLATES 

5.1. Introduction   

A brief literature survey indicates that the BCMO and SGA algorithms are 

recognized as efficient methods for optimization of structures. However, there is 

no identified research employing these algorithms specifically for solving 

optimization problems related to laminated composite plates. This study aims to 

address existing gaps by proposing meta-heuristic optimization algorithms to 

determine the critical buckling loads and fundamental frequencies of laminated 

composite plates. 

5.2. Theoretical formulation 

The unified HSDT for laminated composite plates: 
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strains and stresses for the k  layer is expressed as: 
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where  
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with   is the fiber angle in each layer,  k

ijQ  of the orthotropic composite plates 

in the local coordinate system are given by: 
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5.3. Ritz method 

The membrane and transverse displacements, as well as rotations 

 0 0 0

1 2 3 1 2, , , , u u u  can be represented through a series of shape functions in 1 x , 

2 x  direction (  1iX x  and  2jY x ) and five unknowns variables (

1 2 3, , , ,ij ij ij ij iju u u x y ), expressed as follows: 
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5.4. Optimization algorithm  

In this section, three algorithms are presented to identify the fiber angle   that 

maximize the critical buckling loads and frequencies of laminated composite 

plates, with the following objective functions.  

Maximum    d

if  or   d

cr iN f  

Subjected to 90 90  o d o

i     (5.23) 

with d  is the number of layers. 

Three algorithms including differential evolution (DE), shrimp and goby 

association search algorithm (SGA) and balancing composite motion 

optimization (BCMO) are used to solve the above optimization problem. 

5.5. Numerical examples 
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5.5.2. Optimization study 

In order to compare the efficacy of various meta-heuristics, Figs. 5.4 shows the 

convergence histories of natural frequencies and buckling loads of SSSS plates 

by three different solutions (DE, SGA, and BCMO). It can be seen that the SGA 

and BCMO algorithms converge faster than the DE one.  

a) Symmetric layers  b) Arbitrary layers  
Figure 5.4: Comparison the maximum buckling load (uniaxial compression) of 

SSSS square laminated composite plates with size population 20NP  (

1 2/ 40E E ) 

5.6. Conclusions 

This chapter studies meta-heuristic optimization algorithms for vibration and 

buckling analysis of laminated composite plates. The theoretical framework 

incorporates a unified HSDT, Ritz method, BCMO, and SGA. The obtained 

numerical results showed an efficiency and accuracy of the present theory in 

predicting the responses of laminated composite plates. 

CHAPPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The dissertation has developed new approximation functions for the Ritz method; 

developed stochastic models for analysis behaviors of FG, FG sandwich, FGP, 

PMF plates and microplates; developed two novel intelligent computation 

algorithms for solving the stochastic problems of microplates; proposed two 

optimization methods to search the optimal fiber directions of laminated 

composite plates.  The unified higher-order shear deformation theory (HSDT) 

theory has been formulated to approximate of the displacement field. The 

modified gradient strain theory (MST) and the modified couple stress theory 

(MCT) are employed in the analysis of microplates, taking into account their 
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size-dependent behavior. The governing equations of motion are obtained using 

Hamilton's principle. Convergence and verification studies are conducted to 

establish the precision of the proposed solution. This study presents numerical 

results investigating the influence of material distribution, material length scale 

parameters, porosity density, temperature variations, and boundary conditions on 

the natural frequencies, critical buckling loads, and deflections of functionally 

graded microplates.  

While the current shape functions have demonstrated effectiveness on two-

dimensional microplates, their application on three-dimensional plates and 

microplates poses certain challenges. Furthermore, the present thesis fails to 

account for the behavioral characteristics of laminated composite microplates in 

situations where the fiber direction undergoes uncertain variations. The current 

methodology encounters challenges when dealing with plates that have arbitrary 

boundary conditions. Additionally, the thesis currently does not address the issue 

of microplates with periodic boundary conditions. 

6.2. Recommendations 

The following are some suggestions for how to proceed with the projected 

expansion of the study in the future: 

• The novel shape functions can be developed to analysis behaviors of 

laminated composite microplates for two-dimensional and three-

dimensional. 

• Analysis of skew composite/FG microplates can be developed by 

extending present methods. 

• A nonlinear model based on large displacements, rotations, and the Ritz 

method should be considered for the analysis of composite and FGP 

microplates under the arbitrary boundary conditions. 

• Address the issue of microplates with periodic boundary conditions. 

 


