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ABSTRACT 

 

Due to their superior hardness and lightness, laminated composite materials are 

widely utilized in fields like mechanical engineering, aerospace, and construction. 

However, their layered structure leads to stress concentrations and potential 

delamination at the interfaces. Thus, functionally graded materials (FGMs) have 

been developed to address this, offering a continuous variation in material 

properties along specific directions. FGMs excel in thermal resistance, corrosion 

resistance, and toughness, providing unique properties beyond those of their 

components. Recent advancements have also enabled the production of functionally 

graded porous materials and porous metal foam materials, which enhance sound 

dampening and reduce structural weight, making them highly valuable for modern 

applications. However, the development of such materials accompanied efficiently 

computational methods and models in order to predict accurately their responses at 

different structural scales. Therefore, this dissertation carried out the development 

of stochastic composite plate models subjected to mechanical load and thermal 

buckling. For this aim, the following main research topics have been studied in the 

thesis: 

Firstly, this thesis utilized the Ritz method's orthogonal polynomial to generate 

shape functions as the hybrid function. It was built by combining a polynomial with 

a series of orthogonal polynomial functions such as the Hermite and Laguerre 

polynomials. Besides, orthogonal polynomials (OP) were also created using the 

Gram-Schmidt orthogonalization process.  Shape functions were designed to fulfill 

the necessary boundary conditions. Therefore, the thesis proposed new 

computational algorithms, which combined the Ritz method with novels OP, unified 

higher-order shear deformation plate theory (HSDT), the modified couple stress 

(MCT), and the modified gradient strain (MST) theory for analysis of microplates.  

Based on the findings of this study, the OP-Ritz shape functions proposed in this 

thesis are suitable for the behaviors analysis of microplates. There is an important 
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difference in the behaviors of microplates derived from the MST and MCT for the 

MLSP-to-thickness ratio.  This showed that the MST was good at catching the size 

effects of microplates. 

Secondly, the practical application of materials is subject to various unforeseen 

factors that can significantly influence and modify their properties, thereby resulting 

in alterations to their static and dynamic behaviors. Hence, in order to deal with the 

above challenges, this study developed stochastic models (the polynomial chaos 

expansion (PCE) and Stochastic collocation (SC)) to examine the behaviors of 

microplates with uncertain material properties. In which, PCE speeds up the 

computing process while still maintains the accuracy. The key idea of this technique 

is to approximate random outputs as a series of basis functions and their 

corresponding coefficients in orthogonal space. SC is known as one of the 

stochastic expansion methods similar to the popular PCE. It derives the Lagrange 

interpolation polynomials for a set of collocation points and reproduces the model 

responses at these collocation points as expansion coefficients. The Monte Carlo 

Simulation (MCS) method was also considered as the exact solution and used to 

investigate the performance of the proposed PCE and SC models. The obtained 

numerical results showed that the PCE and SC give much better computation times 

than the MCS. 

Thirdly, with the aim of reducing the computational cost in solving the stochastic 

problems of microplates with high accuracy. The dissertation developed two novel 

intelligent computation algorithms by using the neural network systems (artificial 

neural network (ANN) and deep neural network (DNN)) integrated with the 

balancing composite motion optimization (BCMO) and improved BCMO to give 

the so-called BCMO-ANN and iBCMO-DNN algorithms for solving stochastic 

problems. The accuracy and efficiency of the proposed BCMO-ANN and iBCMO-

DNN algorithms are validated through stochastic behaviors of microplates subjected 

to uncertainties in material properties. 
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Lastly, this thesis proposed meta-heuristic optimization algorithms for behaviors 

analysis of laminated composite plates. It is a combination of unified higher-order 

shear deformation theory, the Ritz method, and two optimization algorithms, 

namely shrimp and goby association search algorithm (SGA), balancing composite 

motion optimization (BCMO). The SGA and BCMO are employed for the first time 

to ascertain the optimal buckling loads and frequencies of laminated composite 

plates. The numerical findings demonstrate that the increase of side to thickness 

ratios and Young's modulus   ratios leads to the rising of the natural frequencies and 

critical buckling loads of the laminated composite plates.  The performance the 

BCMO and SGA algorithms, which are better than a differential evolution (DE) 

algorithm when compared with the convergence rate and computation cost. 
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TÓM TẮT 
 

Do độ cứng và độ nhẹ vượt trội, vật liệu composite nhiều lớp được sử dụng rộng rãi 

trong các lĩnh vực như kỹ thuật cơ khí, hàng không vũ trụ và xây dựng. Tuy nhiên, 

cấu trúc nhiều lớp của chúng dẫn đến sự tập trung ứng suất và khả năng tách lớp tại 

các điểm giao nhau giữa các lớp. Vì vậy, vật liệu phân loại chức năng (FGM) đã 

được phát triển để giải quyết vấn đề này, FGM cung cấp sự thay đổi liên tục về các 

đặc tính vật liệu theo các hướng cụ thể. FGM vượt trội về khả năng chịu nhiệt, 

chống ăn mòn và độ bền, cung cấp các đặc tính độc đáo vượt xa các thành phần của 

chúng. Những tiến bộ gần đây cũng đã cho phép sản xuất các vật liệu xốp phân loại 

chức năng và vật liệu bọt kim loại xốp, giúp tăng cường khả năng giảm âm và giảm 

trọng lượng kết cấu, khiến chúng trở nên cực kỳ có giá trị đối với các ứng dụng hiện 

đại. Tuy nhiên, trong thực tế, sự phát triển của các vật liệu này đi kèm với các 

phương pháp và mô hình tính toán hiệu quả nhằm dự đoán chính xác đáp ứng của 

chúng ở các quy mô cấu trúc khác nhau. Luận án này đã thực hiện nhằm xây dựng 

mô hình tấm composite ngẫu nhiên chịu tác dụng của tải trọng cơ học và nhiệt độ. 

Để đạt được mục đích này, luận án đã nghiên cứu các nội dung chính sau: 

Thứ nhất, luận án này đã sử dụng phương pháp Ritz, trong đó hàm hình dạng là hàm 

lai với chuổi số là các đa thức trực giao. Các hàm lai này đã được xây dựng bằng 

cách kết hợp một đa thức với một chuổi đa thức trực giao như đa thức Hermite và 

Laguerre. Ngoài ra, các đa thức trực giao cũng được tạo bằng quá trình trực giao 

hóa Gram-Schmidt. Các hàm hình dạng được thiết kế để đáp ứng các điều kiện biên 

cần thiết. Do đó, luận án đề xuất các thuật toán tính toán mới, kết hợp phương pháp 

Ritz với các hàm dạng lai mới (OP), lý thuyết tấm biến dạng cắt bậc cao thống nhất 

(HSDT), ứng suất cặp biến dạng (MCT) và lý thuyết gradient biến dạng (MST) để 

phân tích các tấm vi mô. Dựa trên các phát hiện của nghiên cứu này, các hàm hình 

dạng OP-Ritz được đề xuất trong luận án này phù hợp để phân tích tĩnh, dao động 

và ổn định của các tấm vi mô. Có một sự khác biệt quan trọng về giá trị tính toán 

của chuyển vị, tần số và ổn định của các tấm vi mô có nguồn gốc từ MST và MCT 



viii 

 

đối với tham số vật liệu. Điều này cho thấy MST và MCT có hiệu quả trong việc 

nắm bắt các hiệu ứng kích thước của các tấm vi mô. 

Thứ hai, ứng dụng thực tế của vật liệu phải chịu nhiều yếu tố không lường trước 

được có thể ảnh hưởng và thay đổi đáng kể các đặc tính của chúng, từ đó dẫn đến 

thay đổi hành vi tĩnh và động của kết cấu. Chính vì vậy, để giải quyết những thách 

thức trên, nghiên cứu này đã phát triển các mô hình ngẫu nhiên (PCE và SC) để 

kiểm tra ứng xử của các tấm vi mô có đặc tính vật liệu không chắc chắn. Trong đó, 

PCE có quá trình tính toán  nhanh mà vẫn duy trì được độ chính xác cao. Ý tưởng 

chính của kỹ thuật này là tính gần đúng các đầu ra ngẫu nhiên dưới dạng một chuỗi 

các hàm cơ sở và các hệ số tương ứng của chúng trong không gian trực giao. SC 

được biết đến là một trong những phương pháp khai triển ngẫu nhiên tương tự như 

PCE. Phương pháp mô phỏng Monte Carlo (MCS) cũng được coi là giải pháp chính 

xác và được sử dụng để nghiên cứu hiệu suất của các mô hình PCE và SC đã đề 

xuất. Kết quả số thu được cho thấy PCE và SC cho thời gian tính toán tốt hơn nhiều 

so với MCS. 

Thứ ba, với mục đích giảm chi phí tính toán trong việc giải các bài toán ngẫu nhiên 

của tấm vi mô với độ chính xác cao. Luận án đã phát triển hai thuật toán tính toán 

thông minh mới bằng cách sử dụng hệ thống mạng nơ-ron ( ANN và DNN) tích hợp 

với thuật toán tối ưu hóa chuyển động tổng hợp cân bằng (BCMO) và BCMO cải 

tiến được gọi là BCMO-ANN và iBCMO-DNN để giải các bài toán ngẫu nhiên. Độ 

chính xác và hiệu quả của thuật toán BCMO-ANN và iBCMO-DNN được xác thực 

thông qua các ứng xử ngẫu nhiên của các tấm vi mô với sự không chắc chắn về tính 

chất vật liệu. 

Cuối cùng, luận án này áp dụng hai thuật toán tối ưu hóa meta-heuristic để phân tích 

hành vi của tấm composite nhiều lớp. Nó là sự kết hợp giữa lý thuyết biến dạng cắt 

bậc cao hiệu chỉnh, phương pháp Ritz với hai thuật toán tối ưu hóa mới (SGA và 

BCMO). SGA và BCMO lần đầu tiên được sử dụng để xác định trạng thái bất ổn 

định và tần số của các tấm composite nhiều lớp. Kết quả tính toán số chứng minh 

rằng việc tăng tỷ lệ cạnh trên độ dày và tỷ lệ mô đun Young dẫn đến sự gia tăng tần 

số tự nhiên và buckling của các tấm composite nhiều lớp. Hiệu suất của thuật toán 

BCMO và SGA tốt hơn thuật toán DE khi so sánh về tốc độ hội tụ và chi phí tính 

toán. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter composes five sections that present the research motivation, general 

literature review of stochastic composite microplates, objectives, scopes, research 

method, and dissertation structures. 

1.1 Research motivation 

Due to its many advantages in hardness and lightness, laminated composite (LC) 

materials have been widely used in many fields such as mechanical engineering, 

aerospace, construction, etc. The disadvantage of this type of material is that 

material discontinuity at the interface between the layers can lead to significant 

stress concentrations and delamination phenomena. In order to overcome this 

drawback, functionally graded (FG) materials have been developed, and the 

properties of the component materials change continuously in the required 

directions of the coordinate system. FGMs excel in thermal resistance, corrosion 

resistance, and toughness, providing unique properties beyond those of their 

components. Besides, based on the high technology in the fabrication of materials, 

functionally graded porous materials (FGP) and porous metal foam materials (PMF) 

can increase sound dampening while reducing the overall weight of the structures 

that can be manufactured. These materials have become more valuable as a new 

material for structures. In practice, the constituent size effects, uncertainties of 

material characteristics, geometries and loads of microplates provided significant 

challenges in predicting their behaviors. Therefore, the development of advanced 

computational methods to anticipate and optimize the behaviors of such microplates 

is crucial to effectively harness the potential of microplates. It is known that the 

classical elasticity theory of plates is suitable for the macro level. Still, it could not 

be used to accurately analyze responses of microplates or nanoplates due to the size 

effects. As structures are reduced to the nanoscale or microscale, the influence of 

constituent size, microstructural geometry, and boundary conditions become 
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increasingly prominent. To fully understand and predict the behaviors of nano and 

micro structures, it is essential to develop models that include size-dependent 

phenomena, among which the strain gradient elasticity and nonlocal elasticity 

theories have been commonly used. In this context, the consideration of the effects 

of shear strains, material distributions, geometry, boundary conditions, constituent 

size and non-clasical elasticity theories on static and dynamic behaviors of LC, FG, 

FGP and PMF plates is still an interesting topic that needs to be studied further. 

Moreover, it is essential to note that the variations in manufacturing processes, 

fluctuations in ambient conditions, and exposure to radiation or severe 

temperatures, could lead to uncertainties of geometries, material properties and 

loads of the structures. It therefore requires appropriate stochastic models to tackle 

these uncertainties and enhance the performance of plates.  

Given the aforementioned issues, the author has selected the research subject for 

this dissertation, titled “Development of stochastic composite plate models 

subjected to mechanical and thermal loads”. In this context, the thesis will 

develop new computational approaches for deterministic and stochastic analysis of 

LC, FG, FGP, PMF microplates in thermo-mechanical environments. The present 

research will provide a low computational time and high accuracy.  

1.2 Literature review  

Due to its many advantages in hardness and lightness, composite materials have 

been widely used in many fields, such as aviation and construction. Laminated 

composite materials are the first type of structure formed from two or more layers 

of component materials bonded together at the interfaces between the layers in 

which the direction of reinforcing fibers at the layers can be changed to meet the 

given requirements. The disadvantage of this type of material is that material 

discontinuity at the interface between the layers can lead to significant stress 

concentrations and delamination phenomena. In order to overcome this drawback, 

functionally graded materials (Fig.1.1) have been developed, and the properties of 

the component materials change continuously in the required directions of the 
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coordinate system ([1]). Moreover, with the advancements in material fabrication 

technology, FGP and PMF can enhance sound dampening while decreasing the 

overall weight of manufactured structures. These qualities have made them 

increasingly valuable as a new material for structural applications. However, the 

development of such materials accompanied efficiently computational methods and 

models in order to predict accurately their responses at different structural scales. 

  

Figure 1.1: Geometry of a structures microplate 

Regarding computational techniques, many methods have been developed to predict 

the behavior of plates. Two main approaches can be distinguished: analytical 

methods and numerical methods. Numerical methods have many advantages, such 

as the fact that they can solve complex problems with arbitrary boundary 

conditions. The finite method element (FEM) is the most commonly used method, 

attracting many  research teams to analyze the behavior of LC and FG plates [2]. 

However, the FEM has difficulties in meshing problems, and overcoming the shear-

locking effect. In order to avoid the use of meshing issues, the mesh-free methods 

can also be used by the geometry domain separation into points without the need for 

rejoining elements [3]. There are numerous methods for addressing the shear-

locking phenomenon, such as Hughes and Tezduyar's hypothetical natural 

deformation method [4], which enables defining the shear strain independently from 

the kinematic approximation. Based on this approach, many finite elements have 

been developed such as DKT [5], DSG [6], MIN3 [7]. The mixed interpolation of 

tensorial components (MITC3) [8] method has been used successfully as a shear-

locking removal technique for shell and plate finite elements. Compared with other 
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shear-locking removal techniques, the MITC3 technique exhibits spatially isotropic 

behavior which does not depend on the nodal numbering. This technique has been 

used for studies of plate/shell ([9-11]). Additionally, to increase the accuracy of 

FEM, Liu et al.[12] developed the smooth FEM method (S-FEM), which consists of 

four types of mains (element-domain smoothing (CS-FEM), element-node 

smoothing (NS-FEM), element-edge smoothing (ES-FEM), and element-facet 

smoothing (FS-FEM)). Many research groups have developed this technique for 

several finite elements and applied different structural behavior analysis of plates 

([13-18]). Moreover, Hughes et al. [19] proposed the integration of computer-aided 

design (CAD) and finite element analysis (FEA) into a single model, referring to 

this strategy as isogeometric analysis (IGA). This method uses B-splines or NURBS 

functions to model geometric domains consistently in CAD and get close to FEA 

solutions. For example,  Pham et al. [20]  analyzed PMF microplates using a refined 

HSDT, MST and IGA. Le et al. [21] utilized the MCT and IGA to investigate the 

linear bending and geometrically nonlinear responses of PMF microplates. Thai et 

al. [22] analysed the post-buckling of FG microplates subject to mechanical and 

thermal loads using IGA and third-order shear deformation theory (IGA-TSDT) 

based on the MST. Farzam et al. [23] investigated the size-dependent analysis of 

FG microplates with temperature-dependent material properties using MST and 

IGA- refined plate theory (RPT). Furthermore, the precise geometric representation 

is preserved even at the most basic discretization level. For the analytical approach, 

Navier's solution method is the simplest one. It uses trigonometric functions that 

meet the boundary conditions to approximate the displacement field variables. 

Although this method can only be applied to simple presumptive boundary 

conditions, because of its simplicity, this approach has been used by many authors 

([24-28]). To overcome this drawback, the Levy method can be used. For 

rectangular plates, this solution applies to the plate with two simply supported edges 

and the other two with different boundary conditions [29].  The differential 

quadrature method (DQM) developed by Bellman and Casti [30] and has been 
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successfully applied in solving systems of nonlinear differential equations. This 

method is also applied in the behavior analysis of beams and plates composite ([31-

33]). Airy’s stress function method has been used to investigate behaviors of 

composite structure ([34, 35]).  However, the selection of the stress function that 

satisfies both the biharmonic equation (a fourth-order partial differential equation) 

and boundary conditions could be challenging. Another approach, the Ritz method 

can be considered as the most general analytical method that allows solving 

problems with different boundary conditions in which the displacement field 

variable is approximated through form functions.  The Ritz method was initially 

introduced by Walter Ritz [36] to analyze the free vibrations of structures. Since 

then, a multitude of researchers have used this method to investigate the static and 

dynamic responses of beams, plates, and shells. It is worthy to noticing that the Ritz 

solution's precision, numerical instabilities and convergence rates are dependent on 

the construction of approximation functions. Consequently, it is essential to 

meticulously select a set of functions that not only produce physically accurate 

results but also possess favorable numerical properties. The set of approximation 

functions must not violate the essential or geometric boundary conditions and 

should be linearly independent and complete [37]. A brief literature shows that a 

number of researches have been performed in developing the shape functions of 

Ritz method in which it can be categorized into two typical types: orthogonal 

polynomials (OP) and non-orthogonal polynomials (NOP). For the OP shape 

function, Chebyshev’s polynomial has commonly used for analysis of composite 

structures owing to its convergence rate and numerical robustness [38]. It is noted 

that the orthogonal polynomials for the Ritz method could  be formulated from 

Gram-Schmidt procedure [39]. In practice, the approximation functions of Ritz 

method could be a series of non-orthogonal polynomials [40]. This particular set 

does not exhibit orthogonality, resulting in the loss of certain computational 

benefits. However, the primary benefit of these functions lies in their ability to 

eliminate the requirement for intricate generation procedures compared to the 
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creation of orthogonal polynomials. The evaluation of the integrals is significantly 

simpler when compared to those involving orthogonal polynomials. Moreover, it is 

also worthy to noticing that the shape functions should be selected to satisfy the 

boundary conditions ([41]), which are found to be efficient in the convergence’s 

rate. Alternatively, the penalty function method could be used to incorporate the 

boundary condition, however this approach leads to an increase in the dimension of 

the mass and stiffness matrices and thus causes increasingly computational cost. 

Therefore, the accuracy of the Ritz solution depends on choosing a suitable form 

function. These shape functions can be chosen to satisfy the boundary conditions; 

otherwise, the penalty function method can be used. Shape functions can be also the 

orthogonal polynomial or non-orthogonal polynomial. A series-type solution of the 

Ritz method can be one-dimensional or two-dimensional. A literature review 

reveals that numerical methods have many advantages. However, the FEM has 

difficulties in meshing problems and overcoming the shear-locking effect. 

Therefore, this thesis will focus on the Ritz method which is the analytical solution. 

It can be seen that Ritz’s OP functions offer significant advantages in numerical 

computations; thus, there is a need for further studies on the Ritz method for 

microplate problems. 

In addition to the calculation method, the selection of the appropriate plate model 

significantly impacts the study results. An overview of the displacement fields can 

be found in the study of Sayyad and Ghugal [42], Khandan et al [43]. Many plate 

theories have been developed, which include main categories such as: classical plate 

theory (CPT), first-order shear deformation theory (FSDT), higher-order shear 

deformation theory (HSDT), a quasi-3D theory, and three-dimensional theory. The 

CPT ignores the effect of the transverse shear deformation and is only suitable for 

thin plates. To overcome this shortcoming, the FSDT is the simplest method, but it 

requires a shear correction factor to properly handle the free-traction boundary 

conditions for shear stresses [44]. In contrast, the HSDTs [45] with higher-order 

variations of in-plane displacements or both in-plane and out-of-plane 



7 

 

displacements (Quasi-3D) [46]do not need such correction factors. However, the 

HSDTs ignore the thickness-stretching effect, resulting in a uniform transverse 

displacement across the plate's thickness. The significance of considering the 

thickness-stretching effect has been highlighted by Carrera et al. [2]. Besides, the 

three-dimensional elasticity theory was also developed, in which the field 

displacement is directly approximated via shape functions, which is difficult to 

compute in practice. Although plate models incorporating higher-order variations of 

both in-plane and out-of-plane displacements generally provide more accurate 

predictions than the HSDTs, they are more complex and costly to implement due to 

the increased number of variables. Thus, it is important to use unified HSDT for 

various shear deformation plate theory.  

Moreover, the structures at small scales require advanced computational models to 

capture size effects. The earlier experimental works revealed that the classical 

elasticity theory could not accurately predict responses of microstructures at small 

scale, advanced computations theories with length scale parameters have been 

therefore developed with different approaches. A number of studies have been 

performed to predict accurately static, buckling and vibration behaviors of the FG 

microplates ([47-49]) in which the modified coupled stress theory (MCT) and 

modified strain gradient theory (MST) are mostly used for various theories ( CPT, 

FSDT, HSDT, three dimensional elasticity theory). The MCT initiated by Yang et 

al. [50] was known as the simplest one to include the size effects with only one 

material length scale parameter (MLSP) associated with rotation gradient in the 

constitutive equations. The MST proposed by Lam et al. [51] modified the classical 

strain gradient theory of Mindlin [52], Mindlin and Eshel [53] to establish a new set 

of high-order metrics, where the total number of MLSP was reduced from five to 

three. The MST can be reduced to MCT if two MLSPs related to dilatation gradient 

and deviatoric stretch gradient were set to be zero. It should be mentioned that 

although the MST predicts more accurate than the MCT, it appears to be 

complicated to implement. Kim et al. [54] presented static, free vibration and 



8 

 

buckling behaviors of FGP simply-supported microplates by using the MCT, 

classical and FSDT. Fan et al. [55], Thanh et al. [56]  investigated the nonlinear 

buckling and vibration responses of FGP microplates using the MCT, isogeometric 

approach and HSDT. Guo et al. [57] investigated forced vibration responses of 

exponentially FGP microplates under moving loads. Moreover, another way to 

capture size effects of nanostructures is to use the nonlocal elasticity theory (NET) 

known as Eringen’s one ([58]). By involving the nonlocal parameter in constitutive 

equations, the NET has been employed for analysis of the FG nanoplates ([59-61]) 

However, it is complicated to implement different boundary conditions for 

nanostructures. Besides, thermal load can have various effects on plates, depending 

on the material and temperature range it is exposed to. Thus, the study of size-

dependent FG microstructures in this environment have been attracted by many 

researchers. Aria et al. [62] demonstrated the hygro-thermal behavior of FG 

sandwich microbeams using nonlocal elasticity theory. Shojaeefard et al. [63] used 

CPT and FSDT to investigate the temperature-dependent of FG porous circular 

microplates under a nonlinear thermal load. The study of how temperature affects 

the behavior of FG plates has generated significant interest ([64, 65]). Zenkour and 

Sobhy [66] studied the thermal buckling of various types of FG sandwich plates 

using the sinusoidal shear deformation theory. Fazzolari et al. [67] studied thermal 

buckling of FG sandwich plates using a refined quasi-3D theory. Daikh et al. ([68]) 

studied the thermal buckling, bending analysis of FG sandwich beams/plates resting 

on elastic foundations using a HSDT . The enhanced radial point interpolation 

mesh-free technique was used by Do et al. [69] to study the thermal buckling of FG 

sandwich plates. Sahoo et al. [70] investigated nonlinear vibration of FG sandwich 

structures under thermal loadings. The hydro-thermo-mechanical effects on static 

responses of FG plates have been studied by Mudhaffar et al. [71] by using a HSDT 

and Navier method. Daikh et al. [72] studied  the thermal buckling of FG sandwich 

cylindrical shells with the simply supported boundary conditions by using the 

Donnell theory. Non-local elastic theories are also considered when analyzing 
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structural size effects at the microstructural level. Nevertheless, the implementation 

of this theory for microplates with different boundary conditions, porous 

parameters, size-scale-thickness ratio, uncertain material, etc, is quite complicated. 

Therefore, the next goal will be to propose a size-dependent microplate model based 

on a general framework of higher-order shear deformation plate theory, MCT, and 

MST under mechanical and thermal loads.  

Moreover, it needs to be noted that, due to the manufacturing process or other 

unexpected factors, the material properties of the structures can be uncertain ([73, 

74]), which leads to the change on their static and dynamic behaviors. Hence, it is 

imperative to develop a stochastic model to examine the behavior of microplate 

with uncertain material properties. Monte Carlo Simulation (MCS) method [75]  is 

the simplest and most popular approach to solve this complicated problem. It was 

used for analysis of the FG and LC plates ([76-79]). Nonetheless, this approach is 

infeasible in different cases due to its expensive computational cost, especially 

when a complicated physical model is considered. In order to overcome this 

adverse, Kumar et al. [80] proposed an artificial neural network-based-MCS 

approach for stochastic buckling analysis of LC sandwich plates. Another approach 

is to use polynomial chaos expansion (PCE) which speeds up the computing process 

while still maintains the accuracy. This approach has been employed for static and 

dynamic analysis of LC and FG plates with uncertainty of materials properties. 

Peng et al. [81] studied a uncertainty analysis of LC plate with data-driven PCE 

method under insufficient input data of uncertain parameters based on FEM to solve 

the natural frequency. Umesh and Ganguli [82] presented  the material uncertainty 

effect on vibration control of smart composite plate using PCE and FEM. 

Chakraborty et al. [83] analysed the stochastic free vibration analysis of LC plates 

using polynomial correlated function expansion. Sasikumar et al. [84] proposed a 

data-driven PCE method for stochastic analysis of LC plates. Shaker et al. [85] 

studied the stochastic FEM to perform reliability analysis of the free vibration of 

LC plates with material and fabrication uncertainties using the first-order and 
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second-order reliability method based on the third-order shear deformation theory 

(TSDT). Li et al. [86] investigated stochastic thermal buckling characteristics of LC 

plates with the random system properties using the first-order perturbation 

technique. For FG plates, Li et al. [87] investigated stochastic static responses of FG 

plates with uncertainty of material properties using the PCE, FSDT and 

isogeometric approach. García et al. [88] illustrated the meta model-based approach 

for stochastic free vibration analysis of FG carbon nanotube reinforced plates using 

the FEM.  Stochastic collocation (SC)[89] is known as one of stochastic expansion 

method similar to the popular PCE. It method allows for the efficient and accurate 

computation of statistics and solutions of mathematical models that involve 

stochastic input parameters. It is particularly useful in the field of uncertainty 

quantification, where it can be used to estimate the propagation of uncertainties in 

physical systems or to quantify the sensitivity of system response to uncertain 

parameters.  It derives the Lagrange interpolation polynomials for a set of 

collocation points and reproduces the model responses at these collocation points as 

of expansion coefficients. A literature review shows that although many studies on 

the stochastic analysis of composite/FG plates have been performed, as far as the 

authors are aware the similar research on the porous FG/FGP microplates is still 

very limited. Therefore, developing stochastic models to investigate the behaviors 

of microplates with uncertain material properties is essential in practice.  

Besides the traditional stochastic models, optimization meta-heuristic algorithms 

and artificial intelligence are also used to analyze stochastic behaviors of structures. 

There has been significant scholarly interest in the optimal design of FG plates, as 

evidenced by numerous studies ([90, 91]). Optimization algorithms can be classified 

into two primary categories: gradient-based methods such as sequential quadratic 

programming, optimality criterion, force method, and non-gradient-based methods. 

Algorithms in the first group ([92-94]) quickly find the best solutions. However, a 

common limitation of these algorithms is their tendency to become stuck at local 

optimal solutions. Furthermore, it is imperative to conduct sensitivity analyses on 
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both the fitness and constraint functions, as they play a crucial role in the 

optimization process. However, it is worth noting that performing these analyses 

can be intricate and resource-intensive. In order to mitigate these limitations, a 

variety of by natural phenomena simulation algorithms have been devised, such as 

Moth-Fame Algorithm (MFA) [95], Gravitational Search Algorithm (GSA) [96], 

Firefly Algorithms (FA) [97], Memetic Algorithm (MA) [98], Ant Colony 

Optimization (ACO) [99], Particle Swarm Optimization (PSO) [100], Differential 

Evolution (DE) [101], Genetic Algorithms (GA) [102], Spotted Hyena Optimizer 

[103], etc. Owing to its advantages, these optimization algorithms have been 

applied for the optimization of FG plates [104] nanoplates [105] and micro-beams 

[106]. In practice, the algorithms require dependent parameters and high 

computational costs. In order to overcome this adverse, the Balancing Composite 

Motion Optimization algorithm (BCMO) [107] has been recently developed, in 

which no dependent parameters are required. This method is inspired by the fact 

that the solution space is assumed to be in Cartesian coordinates and the searching 

movements of candidate solutions are compositely equalized in both global and 

local ones. In fact, a candidate solution can move closer to better ones to exploit the 

local regions, and move further to explore the search space. Thus, the best-ranked 

individual in each generation can jump immediately from space to space or 

intensify its current local space. The BCMO has been applied to optimize behaviors 

of FG plates and a rectangular concrete-filled steel tube short columns ([108, 109]). 

The shrimp and goby association search algorithm (SGA)[110] has already been 

developed without depending on input parameters. Its concept is inspired by the 

symbiotic relationship between shrimp and goby fishes in their natural habitat. In 

this ecosystem, the goby uses the shrimp's burrow as a haven during the day and a 

regular resting place at night. Essentially, the security level of the shelter is 

contingent upon the shrimp's capacity to allure the gobiid fish. It is noted that the 

efficacy of these algorithms relies on the synchronization of a collective of particles, 

which impedes the ability to discern and independently assess individual particles. 
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Instead, particles participate in collective communication to determine their 

subsequent course of action. A collective of agents engaged in continuous 

movement and interaction across several activities is often known as a particle 

swarm.  Furthermore, the machine learning, which involves an artificial neural 

network (ANN), has been used to predict the behaviors of materials [111] . A 

literature review  [112] shows that although many investigations on the 

optimization analysis of composite/FG plates have been done, as far as the authors 

are aware, similar research on the microplates with uncertain materials is still very 

limited. Moreover, a literature survey indicates that the BCMO and SGA algorithms 

are recognized as efficient methods for optimization of structures. Besides, the 

combination between the BCMO algorithm and neural networks system to 

determine optimal responses for microplates with uncertainties of material 

properties has not been developed yet, this interesting topic needs to be 

investigated.  Therefore, in order to fill in the research mentioned above gap, this 

study proposes novel intelligent computation algorithms for solving the stochastic 

problems of microplates. 

1.3 Objectives of the dissertation 

The primary objective of this dissertation is to develop stochastic models for 

microplates under mechanical and thermal loading conditions. To achieve the 

desired objective, the dissertation focuses on the following key research topics: 

 Develop the shape functions for the series-type solution of the Ritz method. 

 Develop stochastic models to investigate the behaviors of microplates with 

uncertain material properties: polynomial chaos expansion, stochastic 

collocation method and Monte Carlo simulation. 

 Propose novel intelligent computation algorithms for solving the stochastic 

problems of microplates.   

 Provide optimization methods to search the optimal fiber directions of 

laminated composite plates. 
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1.4 Scope of the dissertation 

This dissertation's research scope is restricted to the following aspects: 

 The hybrid shape function will be developed in which combination the series 

of exponential or orthogonal polynomial and a polynomial to satisfy the 

boundary conditions of the Ritz method. 

 Functionally graded materials, functionally graded porous materials, porous 

metal foam and laminated composite material are used. 

 Composite plate models subjected to mechanical load and thermal buckling. 

 A size-dependent model for microplates based on a general framework of 

higher-order shear deformation plate theory, the modified strain gradient 

theory and the modified couple stress theory are employed.  

 The utilization of surrogate models, namely polynomial chaos expansion, 

stochastic collocation method, and Monte Carlo simulation, are employed in 

this study. 

 To achieve efficient evaluations for optimal responses, the meta-heuristic 

algorithms Balancing Composite Motion Optimization (BCMO), Shrimp and 

Goby association Search algorithm (SGA), and Differential evolution (DE) 

are developed.  

 Ritz-BCMO, Ritz-SGA, Ritz-DE, BCMO-ANN, Ritz-iBCMO and iBCMO-

DNN algorithms are developed for investigation of the impacts of material 

distribution, material length scale parameters, porosity density, temperature 

variations and boundary conditions on the static, natural frequencies, critical 

buckling loads and the critical buckling temperatures of plates. 

1.5 Thesis outline 

This dissertation is structured into seven chapters. A concise overview of each 

chapter is provided in the following section. 

 Chapter 1 describes the motivation, the literature review of the problem 

research, objectives, the scope, and the research approaches of the 

dissertation. 
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 Chapter 2 provides an overview of the theoretical basis. 

 Chapter 3 presents a Ritz-based computational method for size-dependent 

analysis of advanced composite microplates under thermo-mechanical loads. 

 Chapter 4 illustrates the intelligent computational algorithms for stochastic 

analysis of functionally graded microplates with uncertainties of material 

properties. 

 Chapter 5 provides the meta-heuristic optimization algorithms for vibration 

and buckling optimization of laminated composite plates. 

 Chapter 6 closes this dissertation with remarkable main conclusions and 

provides recommendations for future research. 
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CHAPTER 2 

OVERVIEW OF THEORETICAL BASIS  

 

This chapter focuses on presenting the main contents including advanced composite 

materials, plate theories, Ritz solution, size-dependent analysis, stochastic methods, 

neural network systems, meta-heuristic algorithms.  

2.1 Advanced composite materials for analysis of plates  

2.1.1 Laminated composite materials 

Due to their many advantages in stiffness and lightness, laminated composite 

materials have been widely applied in many engineering fields, such as aviation and 

construction, mechanical engineering, etc. The LC structure is made of two or more 

layers of component composite materials that are bonded together at the interface 

between the layers (Fig.2.1). 

Figure 2.1: The geometric of laminated composite plates 

The disadvantage of this type of material is that material discontinuity at the 

interface between the layers can lead to significant stress concentrations and 

delamination phenomena. 

2.1.2 Functionally graded materials  

In order to overcome drawbacks of LC materials, functionally graded materials 

(FGMs) have been made in which the properties of the different materials vary 
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continuously in one direction (Fig.2.2) to improve and optimize the structure's 

ability to withstand mechanical and thermal loads according to desired 

requirements. The concept of FGM first appeared in 1984 in Japan by a group of 

materials scientists in aviation [113]. 

Figure 2.2: Functionally grade materials 

Moreover, porosity can occur within materials during the process of manufacture. 

Functionally graded materials with porosity parameters (FGP) (Fig.2.3) have seen 

wide utility in various systems. The material properties such as Young’s modulus 

E , mass density  , Poisson’s ratio   of FGP material  can be approximated by 

the following expressions ([114]): 

        3 3 0.5c m c m c mP x P P V x P P P      (2.1) 

Figure 2.3: Geometry of FGP microplates 

where cP  and mP  are the material properties of ceramic and metal; cV  is the volume 

fraction of material, 0 1   is the porosity volume fraction;  3 / 2, / 2x h h  . 
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The investigation of the material properties involves the analysis of a series of 

functions that are associated with the distribution of volume fractions within these 

materials. Many models have been developed to solve the distribution of volume 

fractions: power-law model, Sigmoid model, exponential function law, and Mori-

Tanaka scheme.   

Power-law model [115]: 
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with p  is the power-law index which is positive and  3 / 2, / 2x h h  .  

 

Figure 2.4: The volume fraction of material   3cV x  follow Power-law 

The material properties  according to the Sigmoid model are determined as follows 

[115]: 

 

3
3

3

3
3

21
1 1 ; 0

2 2

21
1 ; 0

2 2

p

c p

x h
x

h
V x

x h
x

h

  
     

  
 

 
    

 

 (2.3) 



18 

 

Figure 2.5: The volume fraction of material   3cV x  follow Sigmoid 

The material properties  according to the exponential function law are determined as 

follows [26] : 
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Furthermore, the Mori-Tanaka scheme [116] predicts the accurate material 

properties: 
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with  , G , K are the Poisson’s ratio, local shear modulus local, and bulk modulus, 

respectively. 

2.1.3 Functionally graded sandwich materials 

In addition, functionally graded sandwich materials have been designed to optimize 

structures performance through a controlled gradation of properties across the 

material's thickness. Sandwich structures offer numerous advantages, such as being 

lightweight and having high bending stiffness, making them ideal for use in aircraft, 
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aerospace, flexible electronics, and biomedical applications. A typical sandwich 

structure consists of two FGMs face sheets with a homogeneous core in between. 

 

Figure 2.6: Geometric of functionally grade sandwich plate 

The FG sandwich materials with thickness h  as shown in Fig. 2.6 It is composed of 

a mixture of ceramic and metal materials whose material properties vary 

continuously in the thickness direction. The plate is made up of two FG faces 

comprised of ceramic-metal components and a homogenous core which called 

sandwich FG plate in which the volume fraction of the ceramic material  3cV x  

across the plate thickness is determined by ([117]):  

Figure 2.7: The volume fraction of the ceramic material  3cV x  of sandwich FG 

plate  1 2 1   
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2.1.4 Porous metal foam materials 

Besides, based on the high technology in the fabrication of materials, porous metal 

foam materials can increase sound dampening while reducing the overall weight of 

the structures that can be manufactured. An effective material properties of porous 

metal foam materials are expressed as follows ([118]): 

 Distribution of uniform porosity (UD) 

     3 max 1x    ;    3 max 1E x E    (2.7) 

 

Figure 2.8:  Porosity is uniformly distribution 

 Distribution of asymmetric porosity (AD) 

   3 max 1 cos
2 4

m

z
x

h

 
  

  
    

  
;  3 max 1 cos

2 4

z
E x E

h

 


  
    

  
 (2.8) 

Figure 2.9: Porosity is asymmetric distribution 

 Distribution of symmetric porosity (SD) 
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   3 max 1 cosm

z
x

h


  

  
    

  
;  3 max 1 cos

z
E x E

h




  
    

  
 (2.9) 

Figure 2.10: Porosity is symmetric distribution 

where maxE  and max  are maximum values of Young's modulus and mass density, 

respectively;   and m  denote the porosity parameters and mass density, 

respectively, which are given by:  

 min

max

1 ,0 1
E

E
      ; min

max

1 ,0 1m m


 


    ; 1 1m     (2.10) 

where minE  and min  are minimum Young's modulus and mass density, 

respectively. It is noted that the material characteristics in the case of a uniform 

distribution of porosity remain constant in the thickness direction and depend only 

on the porosity coefficient  . Thereafter, the coefficient   is written as follows: 

 

2
1 1 2 2

1 1 
   

 
     

 
    (2.11) 

2.2 Plate theories 

Plate theories are formulated by using the semi-inverse approach, which involves 

making an informed assumption about the shape of the displacement field or stress 

field. This assumption allows for sufficient flexibility in the assumed field to ensure 

compliance with the equations of elasticity. In the context of plates, the 

displacement field is expressed in terms of unknown functions 
j

i  of the surface 

coordinates  1 2,x x  and time t  [119]: 

     1 2 3 3 1 2

0

, , , , ,
N

j j

i i

j

u x x x t x x x t


  (2.12) 
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The explicit form of Eq. (2.12) varies depending on the kinematics of the 

deformation being considered including CPT, FSDT, HSDT, Quasi-3D, and three-

dimensional elasticity. 

2.2.1 Classical plate theory 

The classical plate theory ignores the effect of shear deformation, so it is only 

suitable for thin plates.  

Figure 2.11: Un-deformed and deformed geometries of an edge of a plate 

However, due to the simplicity of the approximate displacement field, this is the 

simplest approach to analyzing the behaviors of LC and FG plates [115], the 

displacement field of CPT can be shown as follows: 

   0 0

1 1 2 3 1 1 2 3 3,1, , , ,u x x x t u x x x u   (2.13a) 

   0 0

2 1 2 3 2 1 2 3 3,2, , , ,u x x x t u x x x u   (2.13b) 

   0

3 1 2 3 3 1 2, , , ,u x x x t u x x  (2.13c) 

where 
0

1u , 
0

2u , 
0

3u  are the displacement components according to 1x , 2x , 3x   

coordinates at the neutral surface.  

2.2.2 First-order shear deformation theory 

To address the effect of shear deformation in plates, the first-order shear 

deformation theory is the simplest method, but it requires a shear correction factor 
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to properly handle the free-traction boundary conditions for shear stresses ([44]), the 

displacement field can be expressed as follows:  

     0

1 1 2 3 1 1 2 3 1 1 2, , , , ,u x x x t u x x x x x   (2.14a) 

     0

2 1 2 3 2 1 2 3 2 1 2, , , , ,u x x x t u x x x x x   (2.14b) 

   0

3 1 2 3 3 1 2, , , ,u x x x t u x x  (2.14c) 

with  1 , 2  are the angle of rotation with respect to the 1x  and 2x  axes, 

respectively.  Besides, the FSDT can return to the CPT when the angle of rotations 

is derivative transverse displacement. 

 

Figure 2.12: Un-deformed and deformed geometries of an edge of a plate 

2.2.3 Higher-order shear deformation theory 

The higher-order shear deformation theory does not require a shear transverse factor 

and behaves better than FSDT. Many groups of authors have proposed HSDT 

theories with various degrees of success [120] in which some studies have 

developed some models and some techniques to reduce the number of variables in 

the computational model ([121, 122]). It can be seen that building the HSDT 

including the membrane and transverse displacements, rotations, with high 
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accuracy, simplicity, and efficiency is a topic that attracts many researchers. It is 

derived from the plate theory as follows: 

       0 0

1 1 2 3 1 1 2 3 3,1 3 1 1 2, , , , ,u x x x t u x x x u f x x x    (2.15a) 

       0 0

2 1 2 3 2 1 2 3 3,2 3 2 1 2, , , , ,u x x x t u x x x u f x x x    (2.15b) 

   0

3 1 2 3 3 1 2, , , ,u x x x t u x x  (2.15c) 

where  3f x  is a high-order term whose first derivative satisfies the free-stress 

boundary condition at the top and bottom surfaces of the plates, i.e. 

 ,3 3 0.5 0f x h   . 

Figure 2.13: Deformation of a transverse normal according to the higher-order plate 

theory 

Besides, it is well-known that the HSDT generally predicts more accurate than the 

FSDT, however, its accuracy depends on a choice of the shear functions [123].  

2.2.4 A Quasi-3D theory 

In recent years, researchers ([124, 125]) also proposed various quasi-3D theories 

which displacement field is described as shows: 

       0 0

1 1 2 3 1 1 2 3 3,1 3 1 1 2, , , , ,u x x x t u x x x u f x x x    (2.16a) 

       0 0

2 1 2 3 2 1 2 3 3,2 3 2 1 2, , , , ,u x x x t u x x x u f x x x    (2.16b) 

       0

3 1 2 3 3 1 2 ,3 3 3 1 2, , , , ,u x x x t u x x f x x x   (2.16c) 
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Although plate models incorporating higher-order variations of both in-plane and 

out-of-plane displacements generally provide more accurate predictions than the 

HSDTs, they are more complex and costly to implement due to the increased 

number of variables. 

In particular, three-dimensional (3D) [126] analysis, based on linear and small strain 

elasticity theory, does not rely on any hypotheses involving the kinematics of 

deformation. Such analysis provides realistic results that the two-dimensional 

theories cannot otherwise predict. However, constructing form functions for this 

theory is a challenge. 

2.3 Size dependent analysis of microplates 

The recent development of FG microplates with continuous material variations in a 

required direction and significant porosity density requires advanced computational 

theories and models. However, it is well known that the classical elasticity theory 

could not accurately predict the behaviors of such structures at a small scale. To 

overcome this problem, the material size-dependent theory has been proposed to 

predict static and dynamic behaviors of nano- and micro-structures using different 

approaches. The nonlocal elasticity theory initiated by Eringen [58] can be used to 

capture the size effects of nanostructures. The nonlocal stress components can be 

defined as: 

      ' ' ', dij ij
V

t x x x x x     (2.17) 

where  
ijt is the total nonlocal stress,  is a length scale parameter, 

ij is the local 

Cauchy stress tensor, and   ' ,x x   is the nonlocal kernel function. 

Nevertheless, the implementation of this theory for microplates with different 

boundary conditions appears to be quite complicated. Another way to investigate 

the size effects is to use the classical strain gradient theory of Mindlin ([52, 53]) 

defined the density of strain energy as:  

  UB

A

dA             σ ε m χ m χ m χ m χ m χ    (2.18) 
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where , , , , ,ε χ χ χ χ χ  are strains, rotation, second gradient of displacement, gradient of 

strain, gradient of rotation, symmetric part of gradient strain, respectively; σ  is 

Cauchy stress; ,m m,m,m,m are high-order stresses corresponding with strain 

gradients , , , ,χ χ χ χ χ , respectively. The components of strain ij  and strain gradients 

, , , ,ij ijk ijk ij ijk      are defined as follows: 

  , , / 4ij n mj imn n mi jmnu e u e   ; ,ijk k iju  ;  , , / 2ijk k ji j kiu u    (2.19a) 

 ,

1

2
ijk jlk k lie u  ;  , , ,

1

3
ijk k ij i jk j kiu u u    ;  , , / 2ij i j j iu u    (2.19b) 

with 
ijke  is the alternator. 

The modified strain gradient theory (MST) reduces the number of independent 

higher-order length scale parameters for the second strains in Mindlin's strain 

gradient theory from five to three ([51]). The process of reduction is a crucial 

advancement in facilitating the experimental analysis of strain gradient behavior. By 

solely employing bending and torsion, it becomes possible to fully characterize the 

elastic strain gradient of a material that is approximately incompressible. The strain 

energy variation of the system UB  is obtained by the MST theory: 

  UB

A

dA         σ ε p τ η m χ    (2.20) 

where , , ,ε χ ξ η  are strains, symmetric rotation gradients, dilatation gradient and 

deviation stretch gradient, respectively; σ  is Cauchy stress; , ,m p τ are high-order 

stresses corresponding with strain gradients , ,χ ξ η , respectively. 

The components of strain ij  and strain gradients , ,i ijk ij    are defined as follows: 

  , , / 2ij i j j iu u   ; ,i mm i   (2.21a) 

 
     

 

, , , , ,

,

/ 3 2 2

2 /15

ijk jk i ki j ij k i mi m jk k mk m ij

j mj m ki

         

  

      

 


 (2.21b) 

  , , / 4ij n mj imn n mi jmnu e u e    (2.21c)  
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where ij  is Knonecker delta; imne  is permutation symbol. The constitutive 

equations are used to determine the stress components as follows: 

 
2ij kk ij ij     ; 2

12ij ijm l  ; 2

22j jp l  ; 2

32ijk ijkl    (2.22) 

where ,   are Lamé constants; 1 2 3, ,l l l  are three material length scale parameters 

(MLSP) which should be practically determined by experimental works. In the 

absence of stretch and dilatation gradients in the MST theory, the modified couple 

stress (MCT) initiated by Yang et al. [50] was known as the simplest one to include 

the size effects with only one MLSP associated. The strain energy of the system 

UB  is given by: 

  UB

A

dA     σ ε m χ   (2.23) 

2.4 Ritz solution 

The Ritz method was initially introduced by Walter Ritz [36] to analyze the free 

vibrations of structures. Since then, a multitude of researchers have used this 

method to investigate the static and dynamic responses of beams, plates, and shells. 

According to the Ritz technique, the following series type solution of approximation 

functions and related series values may be used to represent the transverse and 

membrane  displacements, rotations,  0 0 0

1 2 3 1 2, , , ,u u u    of the plates: 

           
1 2

0

1 1 2 1 1 2 1 ,1 1 2

1 1

( , , ), ( , , ) ,
N N

ji ji j i

j i

u x x t x x t u t x t F x P x
 

   (2.24a) 

           
1 2

0

2 1 2 2 1 2 2 1 ,2 2

1 1

( , , ), ( , , ) ,
N N

ji ji j i

j i

u x x t x x t u t y t F x P x
 

  (2.24b) 

      
1 2

0

3 1 2 3 1 2

1 1

( , , )
N N

ji j i

j i

u x x t u t F x P x
 

  (2.24c) 

where 
1 2 3, , , ,ji ji ji ji jiu u u x y  are variables that need to be calculated; the shape 

functions in the 1x   and 2x   directions are represented by    1 2,j iF x P x .   

It can be noted that the Ritz solution's precision, numerical instabilities and 

convergence rates are dependent on the construction of approximation functions 
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[127], which must be orthogonal and satisfy the conditions for stress freedom. 

Consequently, it is essential to meticulously select a set of functions that not only 

produce physically accurate results but also possess favorable numerical properties. 

Therefore, developing new hybrid shape functions for the Ritz method is necessary. 

2.4.1 Product of trigonometric functions 

Admissible functions as product of trigonometric functions. The initial 

implementation of this particular function was conducted by Chai [41]. The 

investigation conducted by this researcher focused on the analysis of the free 

vibration characteristics exhibited by plates, both with and without the presence of a 

concentrated mass. The investigation is predicated upon the utilization of the 

Rayleigh method, wherein a solitary term of the trigonometric function product is 

employed. 

   1 1
1 sin sinj

x j x
F x

a a

    
    

   
  (2.25) 

 Nguyen et al. [128] utilized the Ritz method to investigate the buckling, bending, 

and vibration of laminated composite beams using the trigonometric-series solution 

as a shape function with a number of series which is 14 for deflection for simply 

supported as follow: 

  1 1sinj

j
x x

L


  ;   1 1cosj

j
x x

L


  ;  1 1cosj

j
x x

L


     (2.26) 

Where L  is length of beam. 

2.4.2 Static beam functions 

Zhou Ding [129] was the first to propose the utilization of static beam functions as 

admissible functions in the Ritz method. The above functions come from the basic 

solution of the differential equation that describes what happens to a Euler-

Bernoulli beam when a concentrated load is put on it. A collection of third-order 

polynomial functions can be established by altering the placement of the point load 

exerted on the beam. The determination of the coefficients of the polynomials is 

based on the boundary conditions. In addition to determining the frequency 
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parameters of a clamped beam, the eigenvalues of five plates with distinct boundary 

conditions are also computed. There is a notable level of concurrence with the 

precise solution, along with a commendable level of accuracy when compared to 

outcomes obtained using characteristic functions.  Static Beam Functions (SBF):   

   2 3 2
1 1 1 1 sinj j j j j

jx
F x A B x C x D x

L

 
      

 
  (2.27) 

with  
     

2 3

1 2 1 1
0; ; ;

j j

j j j j

j jj
A B C D

L L L

     
      . 

Lee et al. [130] utilized static beam functions to investigate the free vibration 

analysis of rectangular plates supported by elastic point supports. The researchers 

present an analysis of the initial three modes exhibited by a square plate that is 

subjected to simple support along all four edges, while also incorporating a central 

elastic point support. This study examines the impact of both the stiffness and the 

placement of the elastic point support on the frequency parameter. 

2.4.3 Characteristic functions 

Young [131] utilized characteristic functions or eigen-functions as a means of 

examining the free vibrations exhibited by different plate configurations. These 

configurations encompassed clamped plates, cantilever plates, as well as plates with 

two adjacent edges clamped and the remaining two edges left free. The 

aforementioned functions establish the normal modes of vibration for a beam. 

Characteristic Functions (CF) as below: 

    1 1 1 1 1sin sinh cos coshj j j j j jF x x x x x          (2.28) 

with 
 sin sinh 0.5

;
cos cosh

j j

j j

j j

a a j

a a a

  
 

 

 
 


. 

Kim [132]conducted an analysis of the vibration characteristics of fully clamped 

rectangular plates composed of a functionally graded material consisting of both 

metal and ceramic components. The present study investigates the influence of 

temperature on the material properties, which exhibit a variation across thickness. 
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This variation follows a power-law distribution based on the volume fractions of the 

constituents. The application of the Ritz method involves utilizing the characteristic 

functions of clamped beams while incorporating a third-order shear deformation 

theory to accurately consider the effects of rotary inertia and transverse shear 

strains. The presented numerical findings indicate that the vibration characteristics 

are notably impacted by the composition of the materials, the geometry of the plate, 

and the increase in temperature. 

2.4.4 Modified characteristic functions 

Gartner and Olgac [133] introduced a revised set of characteristic functions for 

beams to address the numerical challenges associated with their original 

formulation. This modification ensures that the magnitudes of the terms fall within 

the range of [-1, 1]. The modified Characteristic Functions as follow:  

    1 1

1 1 1cos sin j jx L x

j j j j j jF x x A x B e C e
 

 
  

      (2.29) 

with
   

 

0.5 1 1
;

1 1

j

j

j

j j j

j e
A

a e












  
  

 
 ;

 

 

 

11
;

1 1 1 1j j

j

j jj j
B C

e e
  


   

   
 

Pao and Peterson [134] employed a collection of altered characteristic functions 

within the framework of the Ritz method to graphically represent the contours of 

free vibration and buckling mode shapes of plates. The plates that were examined in 

this study possessed a square shape and were subjected to full clamping. These 

plates were constructed using both isotropic and composite materials. In addition to 

illustrating the amplitude variations of the first six mode shapes, the contour plots 

also provide insights into the orientation of the fibers in the single-layer laminate 

plate under analysis. In their study, Dasgupta and Huang [135] introduced a layer-

wise approach to analyze the free vibration of thick, arbitrarily laminated spherical 

panels. The panels were subjected to various boundary conditions at their four 

edges, including combinations of simply supported, free, clamped, and guided 

conditions in each lamina. The proposed model uses a displacement field that is 

defined by finite element interpolation shape functions in the thickness direction 
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and modified characteristic functions in both the in-plane and latitudinal directions. 

According to the authors, the utilization of both the Ritz and finite element methods 

offers substantial computational resource savings compared to a sole three-

dimensional finite element analysis while maintaining a given level of accuracy.  

2.4.5 Orthogonal polynomials 

This task will discuss the admissible functions known as orthogonal polynomials 

(OP) proposed by Bhat [136] , which are constructed using the Gram-Schmidt 

method [137]. These functions exhibit a rapid convergence rate, although they 

encounter challenges in determining the initial function. The initial polynomial 

 0 1x exhibits adherence to both the essential geometric conditions and the 

inherent boundary conditions,  ,x c d . Using the Gram-Schmidt approach as 

follow: 

              1 1 1 1 0 1 1 1 1 1 2 1, k k k k kx x A x x x A x D x            (2.30a) 

 

   

   
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x w x x dx

A

w x x dx
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









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     

   

1 1 1 1 2 1

2

1 2 1

d

k k

c
k d

k

c

x w x x x dx

D

w x x dx

 



 








   (2.30b) 

where  1w x  being the weighting function. Orthogonality is satisfied by the 

polynomials  1k x  as below: 

      1 1 1

0d

k l

klc

if k l
w x x x

a if k l
 


 


   (2.31) 

Sun et al. [39] proposed a method for calculating the vibration of rotating 

cylindrical shells featuring arbitrary edges via the Ritz method with orthogonal 

polynomials as the shape function for series-type solutions, which are resolved from 

the Gram-Schmidt procedure in which the first function (SSSS BC: 

      2

0 0 01; ;u v w           ) is carried out in a way that satisfies the 

cylindrical shell’s geometric boundary constraints. Song et al. [138]  showed the 

traveling wave analysis of rotating cross-ply laminated cylindrical shells based on 
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Donnel's shell theory and the Ritz approach for boundary conditions, in which, a set 

of orthogonal polynomials as the shape function is produced via the Gram-Schmidt 

process. Parashar et al. [139] employed the Ritz method to study the free vibration 

of piezoceramic cylindrical shells based on a three-dimensional model, the starting 

functions satisfying the electric boundary conditions which are used for the Gram-

Schmidt technique to build the shape function, with the starting functions satisfying 

the electric boundary conditions. 

2.4.6 Non-orthogonal polynomials 

This particular set does not exhibit orthogonality, resulting in the loss of certain 

computational benefits. However, the primary benefit of these functions lies in their 

ability to eliminate the requirement for intricate generation procedures, such as 

those employed in the creation of orthogonal polynomials. The evaluation of the 

integrals is significantly simpler when compared to those involving orthogonal 

polynomials. For example, Non-orthogonal polynomials (NOP) which constitute a 

set of polynomials that are derived by increasing the exponent of the multiplying 

variable ([140]) for full clamped BC, the flexural vibration of rectangular plates 

approached by using simple polynomials in the Rayleigh-Ritz method as follow:  

    
2 1

1 1 1

j

jF x a x x     (2.32) 

Nguyen et al. ([141, 142]) presented the free vibration and buckling and analysis of 

functionally graded sandwich beams based on the Ritz solution in which the 

admissible functions was derived from non-orthogonal polynomial series.  

   1

1 1

jx x    (2.33) 

Aydogdu ([143, 144]) investigated the vibration and buckling of laminated 

composite beams based on the Ritz approach therein the shape function is 

determined in a series of simple algebraic polynomials that are not orthogonal, the 

shape function for full clamped  as below: 

    
2

11 , /j x L          (2.34) 

with L is the length of beams. 



33 

 

2.4.7 Hybrid shape function 

Recently, there has been development in the utilization of the admissible function as 

a hybrid form. This development has shown rapid convergence in the analysis of 

natural frequency, buckling, and displacement for both plates and beams. For 

instance, Mantari and Canales [145] studied the buckling and free vibration of LC 

beams using the Ritz method with shape functions that are built from a hybrid 

polynomial-trigonometric series compared with pure polynomial series: 
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 (2.35) 

Nguyen Duong et al. [146] studied the for the buckling and frequency behavior of I-

beams by employing the Ritz method in which the form function as a hybrid with a 

series of exponential functions combined with a polynomial to satisfy the boundary 

conditions. The shape function for edges clamped CC as follow: 
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1 11
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x x
T e

L L

   
    
   

 (2.36) 

with L is the length of beams. 

Li et al. [117] demonstrated the frequency of rectangular FG plates via the Ritz 

method in a three-dimensional model using the Chebyshev polynomial- type one 

series multiplied by appropriate functions to satisfy the essential boundary 

conditions: 

      1 1cos 1 arccos , 1,2,3jT x j x j        (2.37) 

2.5 Stochastic method 

The properties of the material may be uncertain in actuality, owing to the 

manufacturing process or other unexpected situations. This uncertainty alters the 

static and dynamic behaviors of the structures, necessitating the use of sophisticated 

computational techniques.  
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The mean or expected value of a function  f x  of an n  dimensional random 

variable vector can be expressed as [147] : 

      f E f x f x x dx


        (2.38) 

Similarly the variance of the random function  f x  is given by the integral below: 

       
2

2

f fVar f x f x x dx 


         (2.39) 

with  x is distribution specified. 

2.5.1 Monte Carlo Simulation 

The most common and straightforward approach for addressing this challenging 

issue is the Monte Carlo Simulation (MCS) method [75].  In this approach, a set of 

P  samples is randomly selected from the given distribution. The system's responses 

are assessed for each sample, denoted as iu , where i  ranges from 1 to P  . 

Therefore, the mean    value and standard deviation  SD  are as follow: 
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    (2.40a) 

  
2

1

1
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i

i

SD u
P




 

  (2.40b) 

However, this method can result in high computing costs, especially when a 

complex physical model is considered.  

2.5.2 Probabilistic spectral methods for the propagation of uncertainty 

An alternative approach is to use polynomial chaos expansion (PCE), which can 

accelerate the computation while maintaining accuracy, as a way to overcome the 

limitations of MCS. The fundamental goal of this technique is to approximate 

random outputs as a series of basis functions and their corresponding coefficients in 

orthogonal space. Stochastic collocation (SC) is known as one of stochastic 

expansion method similar to the popular PCE. It derives the Lagrange interpolation 
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polynomials for a set of collocation points and reproduces the model responses at 

these collocation points as of expansion coefficients. The series is comprised of two 

essential elements: the basis functions and their corresponding coefficients: 

    
0

ˆ
i i

i

u c




x q   (2.41) 

where i are multivariate orthogonal basis functions; q  is a vector of independent 

random variables; 

2.5.2.1 Polynomial chaos expansion 

The above series Eq. (2.41) in terms of a truncated orthogonal series as follows by 

Askey’s scheme ([148, 149]): 

 
 !

! !

n d
P

n d


   (2.42)  

in which P is the permutation of the qualified order of the polynomial n , and the 

number of random variable d . 

Eq. (2.41) becomes: 

    
1

0

ˆ
P

i i

i

u c r




 x q   (2.43) 

with ic  are coefficients to be determined so that the residual r  is minimized; 

Spectral projection approach: This task can be easily obtained by forcing the 

residual minimum resulting in the inner product of the residual and each basis 

function becomes zero. By taking the inner product of both sides of Eq. (2.41) with 

respect to j : 

 
1
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ˆ, ,
P

j i i i

i

u c  




   (2.44) 

then enforcing the orthogonality of j , Eq. (2.47) becomes: 

  
ˆ, 1

ˆ
, ,

i

i i Q

i i i i

u
c u d




   
   q q    (2.45) 

The “truth” response û  is unknown, thus Gauss quadrature approach is 

implemented for computing ic  as follows: 
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      
1

1 1 1
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ˆ... ... ,..., ,...,

d
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i j j j j i j j

j ji

c w w u q q q q
  

         (2.46) 

where ,i i i    can be analytically computed; i

gpN  is the number of quadrature 

point; i

jq  and i

jw  are the set of quadrature points and their weights, respectively for 

the random variable thi .  

Linear regression approach: The estimation of the vector of residuals can be 

derived from Eq. (2.41) as follow: 

 TU c     (2.47) 

Where U is corresponding output evaluations;  is the matrix whose elements are 

given by  i

ij j  q . The estimation of the coefficients c is achieved by 

minimizing the L2-norm, also known as least-square regression, of the residual that 

follows: 

 
2

2
min Tc Arg U c     (2.48) 

The coefficients can be determined by solving Eq. (2.51). 

  
1

T Tc U  


   (2.49) 

2.5.2.2 Stochastic collocation method 

For 1-D problem (i.e., one random input X ) and in  interpolation points, it 

approximates the stochastic response u  by forming the Lagrange functions and 

estimating the model response at interpolation points  iu q as follows ([150, 151]): 

     
1

ˆ
in

i i

i

u X u q L q


   (2.50) 

 where q  is a standard variable mapping to the physical variable X  and for 

maximizing performance of this approach iq  are defined as appropriate Gauss 

quadrature points corresponding to the distribution of q . The 1-D Lagrange 

interpolation  iL q  is defined as: 
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   
1

in
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j i j
j i

q q
L q

q q






   (2.51) 

A tensor product of 1-D functions is applied to expand the SC approximation to the 

multi-dimensional space. Particularly, the expansion of d -variable and 

kn collocation points for the thk variable can be expressed as:  

      
1

1 1

1

1 1

1 1

ˆ ... ,..., ...
d

d d

d

nn
d d

j j j j

j j

u u q q L L
 

    q  (2.52) 

where 1 2, ,...,
T

dq q q   q  is a vector of random inputs. 

2.6 Neural network systems 

A neural network, also known as an artificial neural network (ANN), is a dynamic 

system that acquires knowledge through interconnected nodes or neurons arranged 

in a layered structure that bears a resemblance to the human brain. A neural network 

possesses the capability to acquire knowledge from data, thereby enabling it to 

undergo training processes aimed at pattern recognition, data classification, and 

future event prediction. A neural network decomposes the input into hierarchical 

layers of abstraction. The process of training involves utilizing numerous examples 

to enable the recognition of patterns in speech or images, akin to the cognitive 

abilities of the human brain. The behavior of a neural network is determined by the 

configuration of its constituent elements, specifically, the manner in which they are 

interconnected and the relative magnitudes of the connection weights. The weights 

of the artificial neural network are dynamically modified during the training 

process, adhering to a predetermined learning rule, until the network achieves the 

desired task with accuracy. In engineering applications, three prevalent types of 

neural networks are commonly employed such as feedforward neural network 

(FNN), Convolutional neural network (CNN), Recurrent neural network (RNN). 
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2.6.1 Single layer neural network 

An artificial neural network is composed of an input layer, one hidden layer, and an 

output layer. 

Figure 2.14: The simple architecture of a neural network 

2.6.2 Multilayer-recurrent neural networks  

Recurrent neural networks (RNNs) [152] exhibit significant efficacy in cases where 

a model is specifically engineered to handle sequential data. The proposed model 

uses a mechanism in which data is sent forward and then back-propagated to earlier 

stages of the artificial neural network. This is done in order to improve task 

performance and improve the network's ability to predict.  

Figure 2.15: The architecture of a deep neural network 

The intermediate layers situated between the input and output layers exhibit a 

recurrent nature, as they incorporate a mechanism to cyclically transmit and 

preserve pertinent information. The memory of outputs from a layer is recurrently 

connected back to the input, where it is stored and utilized to enhance the 

processing of subsequent inputs.  
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Nevertheless, the sensitivity of RNNs to the problems of exploding and vanishing 

gradients is considered a significant drawback of this methodology [153]. In the 

context of the training process, it is worth noting that the reduplications of various 

derivatives, whether they are large or small in magnitude, have the potential to 

result in the exponential amplification or attenuation of gradients. Upon the 

introduction of novel inputs, the network ceases to consider the initial ones, 

resulting in a gradual decline in its sensitivity over time. Moreover, the resolution of 

this matter can be addressed through the utilization of Long-short-term memory 

(LSTM) [154]. The methodology employed incorporates recurrent connections to 

memory blocks within the network. Each memory block is comprised of multiple 

memory cells that possess the capacity to store the temporal states of the network. 

2.6.3 Activation function 

Before reaching the nodes, the input data from the outside is multiplied by the 

weights. Each node in the succeeding layers will get the total of the preceding 

nodes' output values multiplied by their respective weights, and the activation 

function's output data for the sum is supplied as follows ([155]): 

  
1

1 1

1

n

n

L
n n n n

i i ij j i
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y x w y b 


 



 
    

 
                (2.53) 

where  is activation function. Different activation functions have been, therefore, 

developed in the literature ([156]). 

2.6.4 Loss function 

The role of the loss function is crucial in the process of reducing the various 

components of a complex model into a single scalar value. This scalar value serves 

as an indicator of the model's quality, with improvements in this value reflecting a 

better-performing model [157]. The objective of the loss function is to assess the 

disparity between the desired target values and the predicted values. During the 

training phase of a neural network, the internal parameters of the network are 

iteratively adjusted in order to minimize the loss function. This refers to the 

phenomenon where the disparity between the anticipated outcome and the actual 
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outcome gradually diminishes, ultimately converging towards zero. The 

construction of loss functions is therefore undertaken to address various types of 

optimization problems. The mean square error (MSE) is a widely employed metric 

in practical applications for assessing the precision of prediction models [158]. The 

utilization of this function is also acknowledged as a loss function in the training 

phase of neural networks. The statement of MSE is depicted as follows: 

  
21 P

i i

i

MSE y y
P

   (2.54) 

where P  is the number of training samples; iy  is the actual output data; iy  is the 

predicted value of the thi  sample. 

2.6.5 Backpropagation and mini-batch gradient descent 

The technique of backpropagation is extensively employed in the domain of 

supervised learning, with a specific focus on the training of neural networks. 

Backpropagation involves figuring out the relationship between the weights and 

biases in the neural network and the gradient of the loss function [159]. In the 

backpropagation process, the gradient of the loss function is sent from the output 

layer to the input layer of the network over and over again. This lets you figure out 

the loss function's derivative with respect to the network's input layer. In the 

training phase of the neural network, the primary goal is to minimize the loss 

function through the utilization of a specialized backpropagation algorithm. Several 

algorithms have been developed for network training to date, such as stochastic 

gradient descent (SGD) [160], the adaptive gradient algorithm [161], adaptive 

moment estimation (Adam) [162]. 

In the conventional approach, the parameters are typically updated in gradient 

descent by computing the gradient of the loss function for each individual training 

sample. Consequently, it is not possible to employ vectorization in the code to 

eliminate the need for iterating over the training set. In contrast, batch gradient 

descent is a method that involves updating the parameters by computing the 

gradient of the loss function with respect to the entire training set before making 
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any updates. Therefore, a significant amount of time is required to complete a single 

update. To address these concerns, Hinton [163] introduced a method known as 

mini-batch gradient descent. The mini-batch gradient descent algorithm involves 

updating the parameters by computing the gradient of the loss function with respect 

to a small batch of the training set and subsequently adjusting the parameters 

accordingly. This enables the rapid updating of model parameters while also 

leveraging the benefits of vectorization. Therefore, the mini-batch gradient descent 

algorithm is able to achieve a trade-off between fast convergence and the presence 

of noise in the gradient update process. This results in the algorithm acquiring 

flexibility and robustness. 

2.7 Meta-heuristic algorithms 

In contrast to optimization algorithms and iterative methods, meta-heuristics 

algorithms do not ensure the discovery of a globally optimal solution for certain 

problem classes. Instead, many meta-heuristics algorithms employ stochastic 

optimization [164], making the solution contingent on the random variables 

generated.  Consequently, they offer valuable avenues for addressing optimization 

problems. Therefore, metaheuristic algorithms can be used to analyze the stochastic 

behaviors of structures with uncertain material properties. Three algorithms 

including differential evolution (DE), shrimp and goby association search algorithm 

(SGA) and balancing composite motion optimization (BCMO) are used to solve the 

above problem. 

2.7.1. DE algorithm 

Initiated by Storn and Price [165, 166], DE algorithm has numerically shown 

efficacy and robustness in identifying an optimum solution throughout a defined 

continuous domain. 

Initialization: The initial distribution of the population is created in a stochastic 

way as follows: 

    min max min

, 1,i j j j jx x rand d x x                                              (2.55)     
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with d   represents the count of design variables. 

Mutation: A mutated vector t

iv  derives from the goal vectors t

ix   in the current 

iteration through mutation. The five frequently employed mutation choices are as 

follows: 

 rand/1 :  
1 2 3

t t t t

i T T TF  v v v v ; best/1 :  
1 2

t t t t

i best T TF  v v v v  

 current - to - best/1 :    
1 2

t t t t t t

i T T best i bestJ J    v x x x x x  

 rand/2 :    
1 2 3 4 5

t t t t t t

i T T T T TJ J    v x x x x x   

 best/2 :    
3 4 1 2

t t t t t t

i T T T T bestJ J    v x x x x x  (2.56) 

where 1T , 2T , 3T , 4T and 5T  consist of randomly selected integer values from within 

the range of  1, NP , NP  is a population size; J  is randomly chosen  0,1 , when 

each of them is entirely distinct from the index i , ,

t

i jv is determined: 
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Crossover: During this stage, a crossover mechanism enhances the variety among 

individual vectors 
t

iu  within the present population. 
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 (2.58) 

Selection: This process aims to pick superior individuals from the current 

population for the subsequent iteration. 
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2.7.2. SGA algorithm  

Sang-To et al. [110] first has introduced SGA algorithm, which showed the efficacy 

in addressing high-dimensional single-objective issues of varying complexity. 

The initial population: 

  1

1

t t t

i i iB B r S B      (2.60) 

where B  is the position vector of an individual; S   denotes the positional vector of 

the finest burrow; d  is number of items;  2,1   is linear function;  1 0,1r  . 

Global Search: the mathematical modeling of signal transmission is expressed as:  

1

, 2 ,

t t

m d m dB r G   ;   1

, 2

t

i d d d dB r ub lb lb      (2.61) 

with lb  and ub  are lower  and upper boundaries. ,

t

i dB  indicates the 
thd information 

component of shrimp ; ,

t

m dB  is the 
thd information of gobiid fish. 

Local Search: The weakest candidates are placed into the top two shelters to 

enhance survival, concurrently bolstering the efficacy of local search process. 

  1

1 31t t

iB S r      ;  1

2 31t t

iB S r      (262) 

where 1

tS , 2

tS  represents the optimal positions of neighboring burrows;  2,1  ; 

 3 1,1r   . 

More details regarding the SGA algorithm can be found in Ref.[110]. 

2.7.3. BCMO algorithm  

Le-Duc et al. [107] proposed the BCMO algorithm, which is a population-based 

optimization technique that aims to achieve a global optimum by skillfully 

balancing the composite motion properties of individual entities. The process of 

achieving a balance between global and local search is facilitated by employing a 

probabilistic model of selection, which in turn creates a mechanism for movement 

for each individual. 
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Initialization: The population is established in a random manner shows that:  

    1,L U L

i j i jx x rand d x x                                              (2.63)         

where U

ix  and L

ix   are the upper and lower bounds of the 
thi  individual; d  is 

number of parameter applied.  

Immediate global point and optimal individual: The global point t

Oinx , which 

represents the current global optimum, is determined by the previous best point 1

1

tx  , 

in relation to a trial 1

tu , utilizing the objective function. 
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where 1

tu  is calculated as follows based on data about the current generation's 

population: 

  1 1/ 2 2/1/ 2t U L t t

k k ku x x v v                                      (2.65) 

where 1/ 2

t

k kv and 2/1

t

kv   are determined using 1LSL  as follows: 
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Coordinated movement of individuals within the solution space: In the context 

of BCMO, the motion of the global search jv  which is determined: 

    
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                              (2.67) 

where NP  is the population size;  j j Oinr x x                        

The probabilities for these  ikv   cases are identical and can be calculated in the 

following manner:  
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           / 0.5 0.5 0.25in i j jG v G v G v        1,...,4n         (2.68) 

The thi  individual's revised position in the succeeding generation is as follows: 

      1

/

t t

i i i j jx x v v                                          (2.69) 

Further information regarding the BCMO algorithm is available in Ref. [107].  

2.8 Conclusion 

A literature review shows that it is necessary to develop stochastic composite plate 

models subjected to mechanical and thermal loads. For this aim, the dissertation 

will focus on the contents: 

 Develop the new hybrid shape functions for the Ritz method. 

 Develop stochastic models to investigate the behaviors of microplates with 

uncertain material properties. 

 Develop new computation algorithms using artificial intelligence to solve the 

stochastic problems of microplates.   

 Applying optimization methods to search the optimal fiber directions of 

laminated composite plates. 
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CHAPTER 3 

A RITZ-BASED COMPUTATIONAL METHOD FOR 

SIZE-DEPENDENT ANALYSIS OF ADVANCED 

COMPOSITE MICROPLATES UNDER THERMO-

MECHANICAL LOADS 

 

Based on equations of the elasticity, this chapter proposes a new size-dependent 

computational method of advanced composite microplates under thermo-

mechanical loads by combine unified higher-order shear deformation theory and 

modified strain gradient theory. The governing equations of motions are derived 

from Hamilton’s principle. The solution Ritz are approximated by bi-directional 

series in which new hybrid shape functions are proposed, then the stiffness and 

mass matrix are explicitly derived. By demonstrating superior convergence speed 

and stability compared to alternative shape functions, these methods represent a 

significant advancement in computational techniques. Numerical results are 

presented for different configurations of the microplates such as the power-law 

index, material length scale parameter, length-to-thickness ratio and boundary 

conditions on their critical buckling load thermal buckling and natural frequencies.  

3.1 Introduction 

Owing to distinctive properties in the energy absorption capacities, high strength 

and lightweight, porous materials have been applied in various engineering fields 

such as aerospace, petrochemical industry, etc ([167-169]). In practice, the 

development of such materials accompanied efficiently computational methods and 

models in order to predict accurately their responses at different structural scales. 
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The earlier experimental work showed that the constituent size effects need to be 

considered in computing responses of micro and nano structures. In this context, it 

is well-known that the classical elasticity theory is inadequate, hence surrogate 

theories accounting for size effects have been exploring to calculate the responses 

of nano and micro structures. One such theory is the MCT proposed by Yang [50], 

which used a single material length scale parameter (MLSP) to account for the size 

effects. Because of its simplicity, the MCT has been used for size dependent 

analysis of FG and FGP microplates with different porosity densities. Saber et al. 

[170] investigated free vibration analysis of FG microplates using the FSDT and 

Levy solution. Tran et al. ([171, 172]) developed a unified HSDT using the MCT 

and Ritz method to analyze vibration and buckling behaviors of FGP microplates. 

An alternative approach for exploring the size effects is to utilize the modified strain 

gradient theory (MST) by introducing the effects of rotation, dilatation and 

deviatoric stretch gradients in constitutive equations [51], which incorporates three 

MLSPs. This methodology has been applied to forecast the behaviors of 

microstructures. In comparison, the MST could predict microstructures’ responses 

more accurate than the MCT owing to accounting for three MLSPs, however this 

method is complicated in theoretical formulation and implementation. The 

exceptional material attributes of porous metal foam (PMF) have increasingly 

enticed researchers to explore its characteristics and behaviors for various 

structures. Wang et al. [173] investigated static and buckling behaviors of 3D PMF 

plates within the context of a refined HSDT, and Galerkin method. Pham et al. 

[174] examined bending, free vibration, and forced vibration transient responses of 

PMF plate by using the IGA and a refined HSDT. Tu et al.[175] analyzed the 

buckling and post-buckling responses of thin PMF plates using Galerkin’s 

analytical solution and CPT. Sobhy et al. [176] investigated the phase velocity of 

the waves and wave frequency of PMF nanoplates using a refined HSDT and wave 

propagation analysis.  
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In addition to plate models and size-dependent theories, computational methods 

significantly influence the analysis of porous structures. These methods are 

generally divided into numerical and analytical approaches, among which the Ritz 

method stands out due to its accuracy and simplicity in both formulation and 

implementation. First introduced by Walter Ritz to study free vibrations, this 

method has since been widely applied to analyze the static and dynamic behavior of 

beams, plates, and shells. The effectiveness of the Ritz method depends largely on 

the choice of approximation functions, which must be complete, linearly 

independent, and satisfy essential or geometric boundary conditions. Research has 

shown that these functions typically fall into two categories: orthogonal 

polynomials (OP) and non-orthogonal polynomials (NOP). Chebyshev polynomials, 

a type of OP, are commonly used for their excellent convergence and numerical 

stability. Moreover, the OP often generated via the Gram-Schmidt process. In 

contrast, NOPs are easier to construct and simplify integral evaluations, though they 

sacrifice certain numerical benefits. While penalty methods can enforce boundary 

conditions, they increase matrix dimensions and computational cost. Ultimately, the 

accuracy and efficiency of the Ritz method rely heavily on selecting appropriate 

shape functions that ensure both physical correctness and numerical stability. A 

literature review reveals that though the OP offer significant advantages in 

numerical computations, their development for analysis of microplates is still a gap. 

This chapter will fill this gap, and that is its main motivation. 

This chapter proposes various new computational algorithms, which combined the 

Ritz method under novel shape functions with unified higher- order shear 

deformation theory and modified strain gradient for analysis of microplates. The 

characteristic equations are derived using Hamilton's principle and solved by using 

Ritz solutions. Numerical instability and converge rate of the proposed solutions, 

the effects of materials, geometry, porosity and boundary conditions on free 

vibration, buckling and thermal buckling responses are investigated and evaluated. 
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3.2 Theoretical formulation 

3.2.1 Advanced functionally graded materials 

Laminated composite materials, known for their exceptional hardness and low 

weight, are widely used in mechanical engineering, aerospace, and construction. 

However, their layered architecture can result in stress concentrations and 

delamination at the interfaces. To overcome these limitations, functionally graded 

materials (FGMs) have been developed. FGMs feature a gradual variation in 

material properties along specific directions. They offer enhanced thermal 

resistance, corrosion resistance, and toughness—delivering performance beyond 

that of conventional composites. Recent innovations have further led to the creation 

of functionally graded porous materials and porous metal foams, which provide 

excellent sound insulation and reduced structural weight, making them highly 

suitable for modern, high-performance applications. 

3.2.1.1 Porous metal foam material 

Consider PMF rectangular microplate, which has three types of porosity 

distributions as seen in Fig. 2.8-2.10, with the thickness h  and sides a b . The 

effective material properties are expressed via porosity parameter  and maximum 

Young's modulus maxE as well as the corresponding coefficients m  and max  of 

mass density as follows ([118]): 

 Distribution of uniform porosity  

     3 max 1x     (3.1a) 

    3 max 1E x E    (3.1b) 

 Distribution of asymmetric porosity  

   3 max 1 cos
2 4

m

z
x

h

 
  

  
    

  
 (3.2a) 

  3 max 1 cos
2 4

z
E x E

h

 


  
    

  
 (3.2b) 
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 Distribution of symmetric porosity  

   3 max 1 cosm

z
x

h


  

  
    

  
 (3.3a) 

  3 max 1 cos
z

E x E
h




  
    

  
 (3.3b) 

where maxE  and max  are maximum values of Young's modulus and mass density, 

respectively;   and m  denotes the porosity parameters and mass density, which 

are given by:  

 min

max

1 ,0 1
E

E
       (3.4a) 

 min

max

1 ,0 1m m


 


      (3.4b) 

where minE  and min  are minimum Young's modulus and mass density.  

In which 

 1 1m        (3.5) 

The material characteristics in the case of a distribution of uniform porosity remain 

constant in the thickness direction and depend only on the porosity coefficient  . 

Thereafter, the coefficient   is written as follows: 

 

2
1 1 2 2

1 1 
   

 
     

 
    (3.6) 

3.2.1.2 Functionally graded sandwich materials 

In the coordinate system  1 2 3, ,x x x , the FG sandwich rectangular microplate as 

seen in Fig.2.6 with thickness h  and the sides a b .  

The plate is made up of two FG faces comprised of ceramic-metal components and 

a homogenous core. The following formulas can be used to evaluate the effective 

material properties of FG sandwich microplates: 

      3 3c m c mP x P P V x P    (3.7) 
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where the volume fraction of the ceramic material  3cV x  across the plate thickness 

is determined by ([117]): 

  

4 3
3 3 4

4 3

3 2 3 3

3 1
1 3 2

2 1

, FG top layer

1   ceramic core layer

FG bottom layer

p

c

p

z x
z x z

z z

V x z x z

x z
z x z

z z

 
   

 


  

 

    

 (3.8) 

with the power-law index p , cP  and mP  are the characteristics of ceramic and metal 

materials, respectively, such as the Young's moduli E , mass density  , and 

Poisson's ratio  .  

3.2.1.3 Functionally graded porous materials 

Considering a rectangle FGP microplate in the coordinate system  1 2 3, ,x x x  with 

thickness h , sides a b  as provided in Fig. 2.3.  

The effective material properties of FGP microplates are given by [114]: 

       3
3

2

2 2

p

c m m c m

x h
P x P P P P P

h

 
     

 
 (3.9) 

where cP  and mP  are the Poisson’s ratio  , Young’s moduli E  of ceramic and 

metal materials, respectively; p  is the power-law index; 0 ≤ β ≪ 1  is the porosity 

volume fraction;  3 / 2, / 2x h h  .  

3.2.1.4 Properties of materials and temperature distribution 

Moreover, in order to investigate the effect of temperature on the buckling 

responses, three types of temperature distribution are considered as below ([107, 

108]):  

 For uniform distribution (UTR):    oT z T T    where the bottom surface's 

reference temperature is oT . 

 For linear distribution (LTR):    
1

2
t b b

z
T z T T T

h

 
    

 
 where the 
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temperatures at the top and bottom surfaces of FGP microplates are 

represented by tT  and bT , respectively. 

 For the nonlinear temperature rise (NLTR): the expression of the current 

temperature is derived from the Fourier equation of steady-state heat 

conduction as follows:    
   /2 /2

/2

1

1/

z
t b

h h

h

T T
T z T b

k dk z dz  




  


 

where  k z  is the coefficient of thermal conductivity. 

3.2.2 Modified strain gradient theory based on a framework of unified high-

order shear deformation theory 

For simplicity purpose, the effects of transverse normal strain are neglected, i.e. 

   0

3 1 2 3 3 1 2, , ,u x x x u x x  where  0

3 1 2,u x x  is transverse displacement at the mid-

surface of the microplates. Moreover, it is supposed that the transverse shear 

stresses are expressed in terms of the transverse shear forces as follows:  

    13 ,3 3 1 1 2,f x Q x x   (3.10a) 

    23 ,3 3 2 1 2,f x Q x x    (3.10b) 

where  3f x  is a higher-order term whose first derivative satisfies the free-stress 

boundary condition at the top and bottom surfaces of the microplates, i.e. 

,3 3 0
2

h
f x
 

   
 

;    1 1 2 2 1 2, , ,Q x x Q x x  are the transverse shear forces. 

Additionally, transverse shear strains are linearly related to the membrane 

displacements    1 1 2 3 2 1 2 3, , , , ,u x x x u x x x  and transverse one  0

3 1 2,u x x  by: 

 ,3 10 13
13 1,3 3,1

f Q
u u




 
      (3.11a) 

 ,3 20 23
23 2,3 3,2

f Q
u u




 
     (3.11b) 
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where  
 

 
3

3
2 1

E x
x





 is the shear modulus. Furthermore, integrating Eq. (3.11) 

in 3x  direction leads to a general displacement field of the microplates as follows: 

        0 0

1 1 2 3 1 1 2 3 3,1 3 1 1 2, , , ,u x x x u x x x u x Q x x    (3.12a) 

        0 0

2 1 2 3 2 1 2 3 3,2 3 2 1 2, , , ,u x x x u x x x u x Q x x    (3.12b) 

    0

3 1 2 3 3 1 2, , ,u x x x u x x  (3.12c) 

where  
 

3

,3

3 3

30

x
f

x dx
x

   . It is observed that Eq. (3.12) can be considered as a 

general zeroth-order shear deformation theory in which displacement field of 

Shimpi ([177]) , Ray ([178])can be obtained by the assumption of homogeneous 

materials and   
3

3 2

3 4

2 3

z
f x z

h h

 
  

 
. Moreover, it is known that the transverse 

shear forces can be expressed in terms of the rotation  1 2,   and gradients of the 

transverse displacement as follows: 

    0

1 1 2 1 3,1, sQ x x H u   (3.13a) 

    0

2 1 2 2 3,2, sQ x x H u   (3.13b) 

where  
/2

3 3

/2

h

s s

h

H k x dx


   is the transverse shear stiffness of the microplates; 

5 / 6sk   is shear coefficient factor. Substituting Eq. (3.13) into Eq. (3.12) leads to 

a general HSDT as follows: 

          0 0

1 1 2 3 1 1 2 1 3 3,1 2 3 1 1 2, , , ,u x x x u x x x u x x x    (3.14a) 

          0 0

2 1 2 3 2 1 2 1 3 3,2 2 3 2 1 2, , , ,u x x x u x x x u x x x    (3.14b) 

    0

3 1 2 3 3 1 2, , ,u x x x u x x  (3.14c) 
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where        1 3 3 3 2 3 3,s sx H x x x H x       . Similarly, it is from Eq. (3.14) 

that the displacement field of Reissner [179], Shi et al. [180] can be derived with 

 
3

3 2

3 4

2 3

z
f x z

h h

 
  

 
,  and Reddy’s theory [181] with  

3

3 2

6 4

5 3

z
f x z

h h

 
  

 
.  

The microplates' total potential energy is calculated by using Hamilton's principle as 

follows: 

  
2

1

0

t

UB VB FB KB

t

dt             (3.15) 

where ,VB UB   , FB
  and KB

  are the variations of work done by membrane 

compressive forces, strain energy, work done by external forces and kinetic energy, 

respectively.   The strain energy variation of the system UB  is obtained by the 

MST ([51]): 

  UB

A

dA         σ ε p τ η m χ    (3.16) 

where , , ,ε χ ξ η  are strains, symmetric rotation gradients, dilatation gradient and 

deviation stretch gradient, respectively; σ  is Cauchy stress; , ,m p τ  are high-order 

stresses corresponding with strain gradients , ,χ ξ η , respectively. 

The components of strain ij  and strain gradients , ,i ijk ij    are defined as follows: 

  , , / 2ij i j j iu u   ; ,i mm i   (3.17a) 

  , , / 4ij n mj imn n mi jmnu e u e    (3.17b)  

 
     

 

, , , , ,

,

/ 3 2 2

2 /15

ijk jk i ki j ij k i mi m jk k mk m ij

j mj m ki

         

  

      

 


 (3.17c) 

where ij  is Knonecker delta; imne  is permutation symbol. The constitutive 

equations are used to determine the stress components as follows: 

 
2ij kk ij ij     ; 2

12ij ijm l  ; 2

22j jp l  ; 2

32ijk ijkl    (3.18a) 
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2

22j jp l  ; 2

32ijk ijkl    (3.18b) 

where ,   are Lamé constants; 1 2 3, ,l l l  are three material length scale parameters 

(MLSP) which should be practically determined by experimental works. 

Substituting Eq. (3.17a) into  Eq. (3.14), the strains    i ssT  
 

ε ε ε  are achieved 

as follows: 

       3

3 3

ss
x ε ε ;            2 1 0

2 3 1 3

i
x x   ε ε ε ε  (3.19a)  

 
           2 1 0

2 3 1 3

i
x x   ε ε ε ε  (3.19b) 

where      3 3 ,3 3 3/sx H f x x   and,  
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ε ;  
 

 

 

 

1
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11
3,11

1 1 0

22 3,22

01
3,12

12
2

u
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u







   
    

    
   

   

ε  (3.20a)  
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ε ;
 

 

 

 

2

11
1,1

2 2

22 2,2

2
1,2 2,1

12

 

 

 

   
    

    
      

ε  (3.20b) 

The non-zero components of dilatation gradients  1 2 3

T
  ξ  are given by: 

          0 1 2 3 4

1 2 1,3 2,3    ξ ξ ξ ξ ξ ξ  (3.21) 

where 
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     
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   

ξ ;
 

 

 

 

1
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1 1 0 0
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3
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u u

u u







   
    

     
   

   

ξ   (3.22a) 
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ξ    (3.22b) 
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ξ  (3.22c) 

The non-zero components of deviatoric stretch gradients ijk  are given by: 

  111 11,1 1 11,1 12,2 13,3

1
2

5
           (3.23a) 

  222 22,2 2 22,2 12,1 23,3

1
2

5
          ;  333 3 13,1 23,2

1

5
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               (3.23g) 
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               (3.23h) 

  123 231 312 132 321 213 23,1 13,2 12,3

1

6
                  (3.23j) 

Substituting the strains in Eqs. (3.19) and (3.21) into Eq. (3.23), and Eq. (3.17c) into 

Eq. (3.14) leads to the expressions of deviatoric stretch gradient and strain gradient 

components as follows: 
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The stress-strain relationship of microplates is represented as follows: 
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The variation of the strain energy of microplates is hence derived from Eq. (3.16) as 

follows: 

 

               

                   

                       

                           

3 3 2 2 1 1 0 0

4 4 3 3 2 2 1 1 0 0

5 5 4 4 3 3 2 2 1 1 0 0

6 6 5 5 4 4 3 3 2 2 1 1 0 0

UB

A

A

dA

dA

   

    

     

      

    

   

    

     

      

    

   


   

     

      






σ ε p τ η m χ

 P ε P ε P ε P ε

P ξ + P ξ P ξ P ξ P ξ

P χ P χ P χ P χ P χ P χ

P η P η P η P η P η P η P η



(3.27) 



60 

 

where the stress resultants are given by: 
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The following stress resultants could be derived in terms of gradients and strains: 
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where the microplates stiffness components are described as follows: 
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The variation of work done by membrane compressive loads in thermo-mechanical 

environments is determined by: 

 

   

    

0 0 0 0

3,1 3,1 3,2 3,2

0 0 0 0

1 3,1 3,1 2 3,2 3,2

tr

VB

A

m m

A

N u u u u dA

N u u N u u dA

  

 

   

 




 (3.31) 

where  
1

m
N  and  

2

m
N  are in-plane edge loads,  

12 0
m

N  ; 

       
1 2 12, 0

tr tr tr tr
N N N N    are the pre-buckling in-plane thermal loads given by: 
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in which   is the coefficient of thermal expansion;   oT T z T    is the current 

temperature's deviation from the reference one oT . The work done by a transverse 

load q  of the microplates is given by: 
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The variation of kinetic energy KB
  calculated by: 
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where 0 1 2 1 2 2, , , , ,I I I J J K  are mass components of the microplate which are defined 

as:  
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3.2.3 Ritz-type series solution  

According to the Ritz approach, the following series of approximation functions and 

associated series values can be used to describe the membrane and transverse 

displacements  0 0 0

1 2 3 1 2, , , ,u u u    of the microplates: 
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where 1 2 3, , , ,ij ij ij ij iju u u x y  are represent unknown variables need to determined; the 

shape functions in 1x  , 2x   direction are    1 2,i jR x P x , respectively. As a 

consequence, only two shape functions affect the five unknowns of the microplates. 

As mentioned in the introduction section, the accuracy and efficiency of the Ritz 

method strongly depend on the construction of the approximation functions. In 

general, these shape functions should be complete, continuous and independently 

linear. In this study, the Hermite polynomial, Laguerre polynomial, exponential 

function and orthogonal polynomials made from Gram Schmidt method which are 

defined by this recursion formula, are used to develop novel Ritz method's shape 

functions.  

Hermite polynomial: 

Hermite polynomial are characterized by the following recursion formula: 
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Hermite polynomials satisfy normalization as follows: 
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Laguerre polynomial: 

Hypergeometric functions define the generalized Laguerre function: 
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The function returns orthogonal generalized Laguerre polynomials for nonnegative 

integer values of n : 
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Furthermore, generalized Laguerre polynomials fulfill this normalization: 
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The first five Hermite polynomials and Laguerre polynomials are displayed in Fig. 

3.1 

(a)  The first five Hermite polynomials (b)  The first five Laguerre polynomials 

Figure 3.1: The first five algorithm polynomials for series type solution 

Gram-Schmidt-based orthogonal polynomials: 

Next, the admissible functions known as orthogonal polynomials (OP) proposed by 

Bhat [136] are discussed, which are constructed using the GS method [137]. These 
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functions exhibit a rapid convergence rate, although they encounter challenges in 

determining the initial function. Using the GS approach is defined as follows: 

              1 1 0 1 2, k k k k kx x A x x x A x D x            (3.42a) 
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where  w x  being the weighting function. The orthogonality is satisfied by the 

polynomials  k x  as below: 
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 with   1w x  ;  0 2 1x x   , and    , 1,1c d   . The first five orthogonal 

polynomials are shown in Fig. 3.2.  

The functions  1iR x  and  2jP x  are generated to satisfy the boundary conditions 

(BCs) at the microplate edges as follows: 

 Clamped (C): 
0 0 0

2 1 3 2 1 0u u u       at 2 0,x b and 1 0,x a  

 Simply supported (S): 
0 0

2 3 2 0u u     at 1 0,x a  and 
0 0

1 3 1 0u u    at 

2 0,x b  

The combination of clamped and simply-supported BCs on the edges of the 

microplates leads to the various ones as follows: SSSS, SCSC, CSCS, CCCC which 

will be taken into account in the numerical examples as follows in the Table 3.1: 
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Table 3.1: Approximation functions of series solutions with different BCs 

Boundary 

conditions 

 Approximation functions 

  1jR x   2jP x  

SSSS Ritz-Hermite  1 1 jx a x He   2 2 jx b x He  

 Ritz-Laguerre  1 1 jx a x L   2 2 jx b x L  

 Ritz-OP  1 1 jx a x    2 2 jx b x   

SCSC Ritz-Hermite  
2

1 1 jx a x He   
2

2 2 jx b x He  

 Ritz-Laguerre  
2

1 1 jx a x L   
2

2 2 jx b x L  

 Ritz-OP  
2

1 1 jx a x    
2

2 2 jx b x   

CSCS Ritz-Hermite  2

1 1 jx a x He   2

2 2 jx b x He  

 Ritz-Laguerre  2

1 1 jx a x L   2

2 2 jx b x L  

 Ritz-OP  2

1 1 jx a x    2

2 2 jx b x   

CCCC Ritz-Hermite  
22

1 1 jx a x He   
22

2 2 jx b x He  

 Ritz-Laguerre  
22

1 1 jx a x L   
22

2 2 jx b x L  

 Ritz-OP  
22

1 1 jx a x    
22

2 2 jx b x   

 

Figure 3.2: The first five orthogonal polynomials based on GS process 
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Additionally, in order to construct characteristic equations of motion for the 

microplates, substituting the approximations in Eq. (3.36) into Eq. (3.34), Eq. 

(3.33), Eq. (3.31) and Eq. (3.16) by accounting for Eq. (3.15) leads to: 

  0 gN K K d Md F=    (3.44) 

where    1 2 3

T
t d u u u x y  is the displacement vector to be determined; 

      K K K K K  [182, 183]  is the stiffness matrix which is composed of 

those of the strains 
K , symmetric rotation gradients 

K , dilatation gradient 


K ,deviation stretch gradient 

K , and F  is the force vector, ; g
K  is the geometric 

stiffness matrix; M  is the mass matrix. These components are given more details as 

follows:                

  

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

14 24 34 44 45

15 25 35 45 55

   with , , ,

T

T T

T T T

T T T T

    

    

     

    

    

    

 
 
 
  
 
 
 
 

K K K K K

K K K K K

K K K K K K

K K K K K

K K K K K

 (3.45a)  

 

11 13 14

22 23 25

13 23 33 34 35

14 34 44 45

25 35 45 55

0 0

0 0

   

0

0

T T

T T

T T T

 
 
 
 
 
 
 
 

M M M

M M M

M M M M M M

M M M M

M M M M

         (3.45b)  

    
T

F 0 0 f 0 0                        (3.45c) 

 
33 11 00 00 1133    with g gg

ijkl ik jl ik jlK H S H S

 
 
 
   
 
 
  

0 0 0 0 0

0 0 0 0 0

K 0 0 K 0 0

0 0 0 0 0

0 0 0 0 0

      (3.45d) 

where the components of stiffness matrix 
K  are defined as follows: 

 11 22 00 11 11 12 02 20 11 11

11 66 12 66,ijkl ik jl ik jl ijkl ik jl ik jlK A T S A T S K A T S A T S             

 13 22 00 02 20 11 11

11 12 662ijkl ik jl ik jl ik jlK B T S B T S B T S       
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 14 22 00 11 11 15 02 20 11 11

11 66 12 66,ijkl s ik jl s ik jl ijkl s ik jl s ik jlK B T S B T S K B T S B T S          

 22 00 22 11 11 23 20 02 00 22 11 11

22 66 12 22 66, 2ijkl ik jl ik jl ijkl ik jl ik jl ik jlK A T S A T S K B T S B T S B T S            

 24 20 02 11 11 25 00 22 11 11

12 66 22 66,ijkl s ik jl s ik jl ijkl s ik jl s ik jlK B T S B T S K B T S B T S          

 
 

 

33 22 00 02 20 20 02 00 22 11 11

11 12 22 66

00 11 11 00 0 11 00 00 11

44 55

4ijkl ik jl ik jl ik jl ik jl ik jl

s ik jl s ik jl ik jl ik jl

K D T S D T S T S D T S D T S

A T S A T S N T S T S

    

 

    

   
 

 34 22 00 20 02 11 11 11 00

11 12 66 552ijkl s ik jl s ik jl s ik jl s ik jlK D T S D T S D T S A T S         

 35 02 20 00 22 11 11 00 11

12 22 66 442ijkl s ik jl s ik jl s ik jl s ik jlK D T S D T S D T S A T S         

 44 22 00 11 11 11 00

11 66 55ijkl s ik jl s ik jl s ik jlK H T S H T S A T S       

 

45 02 20 11 11

12 66

55 00 22 11 11 00 11

22 66 44

ijkl s ik jl s ik jl

ijkl s ik jl s ik jl s ik jl

K H T S H T S

K H T S H T S A T S

  

   

 

  
 (3.46) 

The components of stiffness matrix 
K  are defined as follows: 

  11 22 11 11 22

4
ijkl ik jl ik jl

A
K T S T S


   ,  12 22 11 11 22

4
ijkl ik jl ik jl

A
K T S T S


     

  13 02 11 11 02

4
ijkl ik jl ik jl

B
K T S T S



   , 
14 22 11 11 22 11 021

4
sijkl s ik jl s ik jl ik jlK B T S B T S B T S


   
   

 
 

 
15 02 11 22 11 11 221

4
sijkl ik jl s ik jl s ik jlK B T S B T S B T S


   
   

 
,  22 22 11 11 22

4
ijkl ik jl ik jl

A
K T S T S


    

  23 11 02 02 11

4
ijkl ik jl ik jl

B
K T S T S



   , 
24 11 02 22 11 11 221

4
sijkl ik jl s ik jl s ik jlK B T S B T S B T S


   
   

 
 

 
25 22 11 11 22 02 111

4
sijkl s ik jl s ik jl ik jlK B T S B T S B T S


   
   

 
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  

 

33 00 22 20 02 02 20 22 00 11 11

00 11 11 00

1
2 2

4

1

4

ijkl ik jl ik jl ik jl ik jl ik jl

ik jl ik jl

K A B D T S T S T S T S T S

D T S T S

  



      

 

  

  

 

34 20 02 22 00 11 11

20 11 11 20 11 00

1

4
s sijkl ik jl ik jl ik jl

s ik jl ik jl s ik jl

K B D T S T S T S

K T S T S D T S

 

 

   


  


 

 
  

 

35 00 22 02 20 11 11

00 11 11 20 20 11

1

4
s sijkl ik jl ik jl ik jl

s sik jl ik jl ik jl

K B D T S T S T S

D T S K T S T S

 

 

    


  


 

 

 

   

44 22 00 11 11 11 00

11 20 11 02 22 11 11 22

1
2

4
s sijkl ik jl ik jl ik jl

ik jl ik jl s ik jl ik jl

K H T S T S H T S

L T S T S H T S T S



 

  


   


 

      45 11 20 02 11 02 20 11 11 11 22 22 111

4
sijkl ik jl ik jl ik jl ik jl s ik jl ik jlK L T S T S H T S T S H T S T S

        
  

 

 

 

   

55 11 11 00 22 00 11

20 11 02 11 11 22 22 11

1
2

4
s sijkl ik jl ik jl ik jl

ik jl ik jl s ik jl ik jl

K H T S T S H T S

L T S T S H T S T S



 


  



   


 (3.47) 

The components of stiffness matrix 
K : 

    11 33 00 22 11 12 13 20 02 31,ijkl ik jl ik jl ijkl ik jl ik jlK A T S T S K A T S T S         

  13 33 00 13 20 02 31 22 11

ijkl ik jl ik jl ik jl ik jlK B T S T S T S T S       

  14 33 00 22 11

ijkl s ik jl ik jlK B T S T S   ,  15 13 20 02 31

ijkl s ik jl ik jlK B T S T S     

  22 11 22 00 33

ijkl ik jl ik jlK A T S T S   ,  23 31 02 11 22 20 13 00 33

ijkl ik jl ik jl ik jl ik jlK B T S T S T S T S      

  24 31 02 20 13

ijkl s ik jl ik jlK B T S T S   ,  25 11 22 00 33

ijkl s ik jl ik jlK B T S T S    
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 

 

 

33 33 00 00 33 31 02 02 31

13 20 20 13 11 22 22 11

22 00 20 02 02 20 00 22

ijkl ik jl ik jl ik jl ik jl

ik jl ik jl ik jl ik jl

ik jl ik jl ik jl ik jl

K D T S T S T S T S

D T S T S T S T S

D T S T S T S T S

 





   

   

   

  

    34 33 00 31 02 22 11 20 13 22 00 20 02
sijkl s ik jl ik jl ik jl ik jl ik jl ik jlK D T S T S T S T S D T S T S
        

    35 13 20 11 22 02 31 00 33 02 20 00 22
sijkl s ik jl ik jl ik jl ik jl ik jl ik jlK D T S T S T S T S D T S T S
        

 
44 33 00 22 11 22 00

sijkl s ik jl s ik jl ik jlK H T S H T S H T S
    

 
45 13 20 02 31 02 20

sijkl s ik jl s ik jl ik jlK H T S H T S H T S
      

 
55 00 33 11 22 00 22

sijkl s ik jl s ik jl ik jlK H T S H T S H T S
      (3.48) 

The components of stiffness matrix 
K  are defined as follows: 

  11 33 00 31 02 13 20 11 22 22 1122 11 11 18 72
25

ijkl ik jl ik jl ik jl ik jl ik jl

A
K T S T S T S T S T S


       

  12 13 20 02 31 11 22 22 112
11 11 18 18

25
ijkl ik jl ik jl ik jl ik jl

A
K T S T S T S T S


       

 

 

 

 

13 33 00 31 02 13 20

13 00 11 02 02 11

11 22 02 31 22 11

22 11 33 / 25

11 7 14 / 25

54 22 108 / 25

ijkl ik jl ik jl ik jl

s ik jl ik jl ik jl

ik jl ik jl ik jl

K B T S T S T S

A T S T S T S

B T S T S T S

 





  

  

  

 

 

 

 

14 33 00 31 02 13 20 11 22 22 11

13 00 11 02

22 11 11 18 72 / 25

11 7 / 25

ijkl s ik jl ik jl ik jl ik jl ik jl

s ik jl ik jl

K B T S T S T S T S T S

A T S T S

 



    

 
 

  15 11 22 13 20 22 11 02 31 02 112 18 11 18 11 14 / 25sijkl s ik jl ik jl ik jl ik jl ik jlK B T S T S T S T S A T S
      

  
 

  22 11 22 00 33 02 31 20 13 22 1172 22 11 11 18 / 25ijkl ik jl ik jl ik jl ik jl ik jlK A T S T S T S T S T S       
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 

 

 

23 00 33 31 02 11 22

02 31 20 13 22 11

11 02 02 11 00 13

22 22 108 / 25

11 33 54 / 25

14 7 11 / 25

ijkl ik jl ik jl ik jl

ik jl ik jl ik jl

s ik jl ik jl ik jl

K B T S T S T S

B T S T S T S

A T S T S T S

 





  

   

  

 

  24 31 02 11 22 22 11 20 13 11 022 14
11 18 18 11

25 25

ss
ijkl ik jl ik jl ik jl ik jl ik jl

B A
K T S T S T S T S T S


      

 

 

 

25 11 22 00 33 02 31 20 13 22 11

02 11 00 13

72 22 11 11 18
25

7 11
25

s
ijkl ik jl ik jl ik jl ik jl ik jl

s

ik jl ik jl

B
K T S T S T S T S T S

A
T S T S






    

 

  

 

 

 

 

33 33 00 31 02 13 20 11 22

22 11 00 33 02 31 20 13

00 13 13 00 31 00 00 31

02 11

22 33 33 162
25

162 22 33 33
25

11 11 11 11
25

21 2
25

ijkl ik jl ik jl ik jl ik jl

ik jl ik jl ik jl ik jl

s
ik jl ik jl ik jl ik jl

s
ik jl

D
K T S T S T S T S

D
T S T S T S T S

Q
T S T S T S T S

Q
T S










   

    

   

  

 

 

11 02 11 20 20 11

22 00 20 02 02 20 00 22 11 11

11 00 00 11

1 21 21

2
18 7 7 18 100

25

18

25

ik jl ik jl ik jl

tsts
ik jl ik jl ik jl ik jl ik jl

ts

ik jl ik jl

T S T S T S

H F D
T S T S T S T S T S

H
T S T S

 



 

 
    

 

 

 

 

   

 

34 33 00 31 02 13 20

11 22 20 13 22 11 13 00 11 02

22 00 20 02 11 11

20

22 33 11
25

54 22 108 11 21
25 25

18 7 50
25

14
25

s
ijkl ik jl ik jl ik jl

s s
ik jl ik jl ik jl ik jl ik jl

ts shsts
ik jl ik jl ik jl

hs

ik

D
K T S T S T S

QD
T S T S T S T S T S

H J F D
T S T S T S

F
T






  



  

    

  
  

  11 31 00 11 20 11 0018
11 7

25

ts

jl ik jl ik jl ik jl

H
S T S T S T S



  
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   

 

35 11 22 22 11 00 33 02 11 00 13

02 31 20 13 13 20 00 11

00 22 02 20 1

108 54 22 21 11
25 25

18
33 11 22

25 25

18 7 50
25

s s
ijkl ik jl ik jl ik jl ik jl ik jl

tss
ik jl ik jl ik jl ik jl

ts shsts
ik jl ik jl ik

QD
K T S T S T S T S T S

D H
T S T S T S T S

H J F D
T S T S T






  

    

    

  
   

 

1 11

11 20 00 31 20 1114 11 7
25

jl

hs

ik jl ik jl ik jl

S

F
T S T S T S



  

  

 

 

 

 

44 33 00 31 02 13 20 11 22 22 11

22 00 11 11 11 00

31 00 11 20 13 00 11 02

22 11 11 18 72
25

2 18
18 25

25 25

11 7 11 7
25

s
ijkl ik jl ik jl ik jl ik jl ik jl

s tshsts
ik jl ik jl ik jl

hs

ik jl ik jl ik jl ik jl

H
K T S T S T S T S T S

H J H H
T S T S T S

F
T S T S T S T S




  



    

 
  

   

 

 

 

   

45 11 22 22 11 13 20 02 31

02 11 11 20 11 11 02 20

36 36 22 22
25

214
25 7

25 25

s
ijkl ik jl ik jl ik jl ik jl

shs hsts
ik jl ik jl ik jl ik jl

H
K T S T S T S T S

H J HF
T S T S T S T S




  

   

 
   

 

 

 

 

 

55 11 22 00 33 02 31 20 13 22 11

00 22 11 11 00 11

00 13 02 11 00 31 20 11

72 22 11 11 18
25

2 18
18 25

25 25

11 7 11 7
25

s
ijkl ik jl ik jl ik jl ik jl ik jl

s tshsts
ik jl ik jl ik jl

hs

ik jl ik jl ik jl ik jl

H
K T S T S T S T S T S

H J H H
T S T S T S

F
T S T S T S T S




  



    

 
  

   

 (3.49) 

The components of mass matrix M  are given by: 

 11 11 00 13 11 00 14 11 00

0 1 1, ,ijkl ik jl ijkl ik jl ijkl ik jlM I T S M I T S M J T S    

 22 00 11 23 00 11 25 00 11

0 1 1, ,ijkl ik jl ijkl ik jl ijkl ik jlM I T S M I T S M J T S    

  33 00 00 11 00 00 11 34 11 00 35 00 11

0 2 2 2, ,ijkl ik jl ik jl ik jl ijkl ik jl ijkl ik jlM I T S I T S T S M J T S M J T S      

 44 11 00 55 00 11

2 2,ijkl ik jl ijkl ik jlM K T S M K T S   (3.50) 
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with 1 2

1 1 2 20 0

,

ra br s s
jrs rsi k l

ik jlr s r s

PR R P
T dx S dx

x x x x

  
 

     . 
1 2

0 0

a b

ij i j
f qR P dx dx     

Furthermore, based on Eq. (3.44), the critical buckling loads crN  of the microplate 

can be obtained by disregarding the mass inertia components, and solving the 

characteristic equation  0 gN K K d 0 . For free vibration analysis, it is supposed 

that 0 0N   and   i tt e d d , where 2 1i    represents the imaginary unit, and   

denotes the natural frequency of the microplate. By solving the 

equation  2 K M d 0 , the natural frequencies will be determined. It is worth to 

notice that for static analysis, the static responses of the microplates can be obtained 

from the equation  Kd F . 

3.3 Numerical results 

3.3.1 Convergence study of solution 

The PMF microplates are designed to be made of metal foam materials whose 

characteristics are followed: max 200E   GPa, max 7850  kg/m3, max 0.33v   [174]. 

For simplicity purpose, the numerical examples utilize the following normalized 

response parameters max max100 /h E   . To evaluate the convergence and 

efficiency of the current computational method, this example will compare the 

convergence speed and stability of the proposed Hermite-Ritz and Laguerre-Ritz, 

Exponential-Ritz, OP-Ritz solutions with those of the Ritz solution obtained from 

other shape functions. The following approximation functions will be used in Eq. 

(3.36) for the computations: 

Static Beam Functions (SBF) [129]:   

   2 3 2
2 2 2 2 sinj j j j j

jx
F x A B x C x D x

b

 
      

 
  (3.47) 

with  
     

2 3

1 2 1 1
0; ; ;

j j

j j j j

j jj
A B C D

b b b

     
      . 

Non-Orthogonal Polynomials (NOP) [140]: 
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    
2 1

2 2 2

j

jF x b x x     (3.48) 

Product of Trigonometric Functions (PTF) [41]: 

   2 2
2 sin sinj

x j x
F x

b b

    
    

   
  (3.49) 

Characteristic Functions (CF) [131]: 

    2 2 2 2 2sin sinh cos coshj j j j j jF x x x x x          (3.50) 

with 
 sin sinh 0.5

;
cos cosh

j j

j j

j j

b b j

b b b

  
 

 

 
 


. It is noted that the functions  1jT x   

are defined in a similar way by replacing the variable 2x  for 1x , the length b  for 

the width a  in the previous equations.  For the purpose of investigating the 

convergence of approximation functions, the reference distance is defined as 

follows: 

 1f i id       (3.51) 

where i  and 1i   are  results  of  fundamental  frequency of porous metal foam at 

in  and 1in  , respectively. In order to evaluate the convergence of the proposed Ritz 

solutions, Table 3.2 and Figs. 3.3-3.4 compare the convergence speed of 

fundamental frequencies of the PMF CCCC plates with side-to-thickness ratio 

/ 10a h   and porous parameter 0.3  . It is worthy to noticing that the results are 

computed with six types of shape functions (Hermite-Ritz and Laguerre-Ritz, 

Exponential-Ritz, OP-Ritz, SBF, NOP, CF and PTF), the number of series in 

2x  and 1x direction are supposed to be similar, i.e. 1 2n n n  . The tabular data 

and graph illustrate that the overall trend of solutions is to decrease with an increase 

in the number of series until reaching a converged value, after which the graphs 

stabilize. In comparing the stabilization of solutions based on the number of series, 
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it’s noted that the responses derived from the SBF function require the largest 

number of series 15n  ,  while the proposed Hermite and Laguerre orthogonal 

polynomials record the lowest number of series 3n  . The responses from OP_GS 

and Exponential polynomials have converged at 5n   and 6n  , respectively. The 

responses from NOP and PTF and CF functions are obviously converged at 8n   

and 9n  , respectively. The current Hermite-Ritz and Laguerre-Ritz, Exponential-

Ritz, OP-Ritz solutions exhibit efficiency in terms of convergence when compared 

to solutions using earlier shape functions ([41, 129, 140, 184]). 

Table 3.2: Comparison with convergence speed of the series solution  1 2n n n   

of porous metal foam PMF microplates with full clamped boundary condition for 

( / 10a h  , 0.3  , /h l   ) 

Solution Number of series 1 2n n n       

 2 3 5 6 8 9 10 15 16 17 

SBF 11.765 11.27 10.681 10.125 9.905 9.858 9.772 9.4444 9.444 9.444 

NOP 9.455 9.44 9.382 9.373 9.362 9.363 9.362 9.364 9.362 9.362 

PTF 9.784 9.486 9.401 9.400 9.362 9.364 9.362 9.364 9.363 9.362 

CF 9.560 9.545 9.503 9.467 9.402 9.388 9.388 9.388 9.388 9.388 

Hermite 9.649 9.382 9.382 9.382 9.381 9.383 9.384 9.381 9.382 9.382 

Laguerre 9.5341 9.364 9.364 9.364 9.364 9.364 9.364 9.364 9.364 9.364 

OP_GS 9.5571 9.381 9.373 9.373 9.373 9.373 9.373 9.373 9.373 9.373 

Exponential  9.5730 9.406 9.357 9.355 9.355 9.355 9.355 9.355 9.355 9.355 

IGA [174] 9.5202    

Figure 3.3: Comparison with both convergence speed of number of series of porous 

metal foam PMF microplates with full clamped boundary condition for normalized 

fundamental frequency ( / 10a h  , 0.3  , /h l   ) 
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Figure 3.4: Distance of normalized fundamental frequency of porous metal foam 

PMF microplates with full clamped boundary condition ( / 10a h  , 

0.3  , /h l   ) 

3.3.2 Analysis of PMF microplates 

3.3.2.1 Size dependent analysis of PMF microplates using modified couple 

stress 

3.3.2.1.1 Free vibration analysis 

In this example, free vibration max max100 /h E    behaviors of the square PMF 

microplates with various BCs such as SSSS, CCCC and SCSC are analysed. The 

PMF microplates are designed to be made of metal foam materials whose 

characteristics are followed: max 200E   GPa, max 7850  kg/m3, max 0.33v  .  In 

order to examine the convergence of buckling and free vibration responses of PMF 

microplates with different BCs, Table 3.3 presents the results of square microplates 

with / 10a h  , 0.1   and / 1h l   using the Hermite and Laguerre polynomials. 

The results obtained demonstrate a rapid convergence of the proposed solution for 

all cases, with a convergence point observed at a number of series of n=3 serves as a 

convergence point. 
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Table 3.3: Convergence study of the series solution of porous metal foam PMF 

microplates with different boundary conditions ( / 10a h  , 0.1  , / 1h l  ) under 

uniform distribution and Hermite polynomial 

BCs Solution Number of series 1 2n n n    

  1 2 3 4 5 6 7 

Normalized fundamental frequency  

SSSS Hermite 15.6713 13.6135 13.6004 13.6005 13.6016 13.6008 13.6005 

 Laguerre 15.6197 13.5862 13.5604 13.5603 13.5604 13.5605 13.5604 

SCSC Hermite 22.2541 20.2237 20.2040 20.2040 20.2042 20.2043 20.2041 

 Laguerre 22.1756 20.0831 20.0677 20.0679 20.0677 20.0678 20.0677 

CCCC Hermite 29.6893 28.9057 28.6386 28.6385 28.6388 28.6387 28.6386 

 Laguerre 29.6589 28.8648 28.6135 28.6137 28.6136 28.6135 28.6135 

Normalized critical buckling load for biaxial compression 

SSSS Hermite 12.5538 10.7729 9.1169 9.1170 9.1169 9.1171 9.1170 

 Laguerre 12.5497 10.7654 9.1132 9.1133 9.1131 9.1132 9.1132 

SCSC Hermite 19.9021 18.2037 17.3403 17.3426 17.3412 17.3408 17.3404 

 Laguerre 19.7828 18.1026 17.2474 17.2426 27.2424 27.2425 17.2424 

CCCC Hermite 32.9265 31.8104 31.7498 31.7498 31.7499 31.7499 31.7498 

 Laguerre 32.9873 31.8926 31.8486 31.8487 31.8488 31.8486 31.8486 

 

Their normalized fundamental frequencies are reported in Tables 3.4-3.6 with 

0.1  , 0.2, 0.3, and 0.4, /h l   , 10, 5, 2, 1, / 10a h  , and three porosity 

distributions (UD, AD, SD).  
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Table 3.4: Normalized fundamental frequencies of PMF rectangular microplates for 

simply supported boundary condition with / 10a h   

Type  

distribution 

  Theory /h l  

    10 5 2 1 

Uniform 0.1 Ritz-Hermite 5.7950 5.9242 6.2959 8.4518 13.6004 

  Ritz-Laguerre 5.7850 5.9136 6.2836 8.4305 13.5604 

  IGA [174] 5.7276 - - - - 

 0.2 Ritz-Hermite 5.6551 5.7849 6.1579 8.3123 13.4323 

  Ritz-Laguerre 5.6453 5.7745 6.1458 8.2914 13.3928 

  IGA [174] 5.6244 - - - - 

 0.3 Ritz-Hermite 5.5103 5.6404 6.0140 8.1634 13.2463 

  Ritz-Laguerre 5.5007 5.6302 6.0021 8.1428 13.2073 

  IGA [174] 5.5125 - - - - 

 0.4 Ritz-Hermite 5.3583 5.4886 5.8620 8.0019 13.0374 

  Ritz-Laguerre 5.3490 5.4786 5.8504 7.9815 12.9990 

Symmetric 0.1 Ritz-Hermite 5.8931 6.0203 6.3864 8.5195 13.6430 

  Ritz-Laguerre 5.8830 6.0095 6.3740 8.4983 13.6031 

  IGA [174] 5.8052 - - - - 

 0.2 Ritz-Hermite 5.8614 5.9868 6.3482 8.4562 13.5258 

  Ritz-Laguerre 5.8513 5.9761 6.3359 8.4351 13.4864 

  IGA [174] 5.7905 - - - - 

 0.3 Ritz-Hermite 5.8373 5.9607 6.3164 8.3945 13.4030 

  Ritz-Laguerre 5.8273 5.9501 6.3042 8.3737 13.3641 

  IGA [174] 5.7806 - - - - 

 0.4 Ritz-Hermite 5.8227 5.9437 6.2927 8.3360 13.2752 

  Ritz-Laguerre 5.8127 5.9332 6.2806 8.3154 13.2369 

Asymmetric 0.1 Ritz-Hermite 5.8142 5.9431 6.3138 8.4655 13.6100 

  Ritz-Laguerre 5.8042 5.9324 6.3014 8.4443 13.5701 

  IGA [174] 5.7422 - - - - 

 0.2 Ritz-Hermite 5.6935 5.8226 6.1937 8.3414 13.4558 

  Ritz-Laguerre 5.6836 5.8121 6.1816 8.3204 13.4163 

  IGA [174] 5.6527 - - - - 

 0.3 Ritz-Hermite 5.5665 5.6958 6.0673 8.2097 13.2901 

  Ritz-Laguerre 5.5568 5.6856 6.0554 8.1890 13.2511 

  IGA [174] 5.5529 - - - - 

 0.4 Ritz-Hermite 5.4297 5.5594 5.9313 8.0680 13.1114 

  Ritz-Laguerre 5.4203 5.5493 5.9195 8.0475 13.0729 

 



80 

 

Table 3.5: Normalized fundamental frequencies of PMF rectangular microplates for 

full clamped boundary condition with / 10a h   

Type  

distribution 

  Theory /h l      

    10 5 2 1 

Uniform 0.1 Ritz-Hermite 9.8398 10.2084 11.2347 16.6898 28.6386 

  Ritz-Laguerre 9.8202 10.1891 11.2161 16.6711 28.6135 

  IGA [174] 9.8918 - - - - 

 0.2 Ritz-Hermite 9.7059 9.9853 11.0126 16.4507 28.2951 

  Ritz-Laguerre 9.6968 9.9666 10.9945 16.4325 28.2804 

  IGA [174] 9.7136 - - - - 

 0.3 Ritz-Hermite 9.3824 9.7521 10.7786 16.1909 27.4022 

  Ritz-Laguerre 9.3639 9.7339 10.7610 16.1731 27.4001 

  IGA [174] 9.5202 - - - - 

 0.4 Ritz-Hermite 9.2358 9.5050 10.5287 15.9042 26.9741 

  Ritz-Laguerre 9.2178 9.4874 10.5117 15.8868 26.9688 

Symmetric 0.1 Ritz-Hermite 9.9853 10.3490 11.3634 16.7781 28.6911 

  Ritz-Laguerre 9.9653 10.3293 11.3444 16.7591 28.6658 

  IGA [174] 10.0044 - - - - 

 0.2 Ritz-Hermite 9.9215 10.2809 11.2836 16.6400 28.4350 

  Ritz-Laguerre 9.9015 10.2612 11.2647 16.6211 28.4099 

  IGA [174] 9.9537 - - - - 

 0.3 Ritz-Hermite 9.8661 10.2205 11.2095 16.4985 28.1614 

  Ritz-Laguerre 9.8462 10.2009 11.1906 16.4797 28.1365 

  IGA [174] 9.9063 - - - - 

 0.4 Ritz-Hermite 9.8213 10.1698 11.1428 16.3549 27.8712 

  Ritz-Laguerre 9.8013 10.1501 11.1238 16.3361 27.8465 

Asymmetric 0.1 Ritz-Hermite 9.8687 10.2363 11.2605 16.7085 28.6519 

  Ritz-Laguerre 9.8524 10.2195 11.2422 16.6814 28.6226 

  IGA [174] 9.9133 - - - - 

 0.2 Ritz-Hermite 9.7140 10.0418 11.0654 16.4925 28.3518 

  Ritz-Laguerre 9.7080 10.0253 11.0474 16.4660 28.3035 

  IGA [174] 9.7558 - - - - 

 0.3 Ritz-Hermite 9.4686 9.8365 10.8590 16.2617 27.9877 

  Ritz-Laguerre 9.4531 9.8205 10.8415 16.2358 27.9804 

  IGA [174] 9.5816 - - - - 

 0.4 Ritz-Hermite 9.2470 9.6151 10.6365 16.0129 27.6375 

  Ritz-Laguerre 9.2319 9.5994 10.6195 15.9877 27.6314 
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Table 3.6: Normalized fundamental frequencies of rectangular porous metal foam 

microplates with / 10a h  and SCSC boundary condition 

Type  

distribution 

  Theory /h l      

    10 5 2 1 

Uniform 0.1 Ritz-Hermite 7.6602 7.8896 8.5375 12.1058 20.2040 

  Ritz-Laguerre 7.6430 7.8683 8.5058 12.0348 20.0677 

 0.2 Ritz-Hermite 7.4797 7.7099 8.3591 11.9203 19.9663 

  Ritz-Laguerre 7.4625 7.6886 8.3275 11.8498 19.8314 

 0.3 Ritz-Hermite 7.2922 7.5229 8.1724 11.7204 19.7014 

  Ritz-Laguerre 7.2751 7.5016 8.1409 11.6506 19.5679 

 0.4 Ritz-Hermite 7.0950 7.3256 7.9741 11.5015 19.4016 

  Ritz-Laguerre 7.0779 7.3045 7.9429 11.4326 19.2700 

Symmetric 0.1 Ritz-Hermite 7.7830 8.0090 8.6483 12.1852 20.2524 

  Ritz-Laguerre 7.7662 7.9881 8.6170 12.1143 20.1162 

 0.2 Ritz-Hermite 7.7377 7.9609 8.5924 12.0894 20.0745 

  Ritz-Laguerre 7.7213 7.9404 8.5615 12.0193 19.9396 

 0.3 Ritz-Hermite 7.7011 7.9209 8.5430 11.9935 19.8859 

  Ritz-Laguerre 7.6852 7.9010 8.5128 11.9242 19.7525 

 0.4 Ritz-Hermite 7.6752 7.8911 8.5022 11.8989 19.6876 

  Ritz-Laguerre 7.6601 7.8718 8.4727 11.8306 19.5557 

Asymmetric 0.1 Ritz-Hermite 7.6843 7.9132 8.5594 12.1223 20.2155 

  Ritz-Laguerre 7.6767 7.9007 8.5350 12.0520 20.0710 

 0.2 Ritz-Hermite 7.5280 7.7572 8.4037 11.9558 19.9961 

  Ritz-Laguerre 7.5201 7.7445 8.3791 11.8861 19.8530 

 0.3 Ritz-Hermite 7.3635 7.5929 8.2393 11.7786 19.7597 

  Ritz-Laguerre 7.3554 7.5800 8.2147 11.7094 19.6182 

 0.4 Ritz-Hermite 7.1861 7.4158 8.0622 11.5877 19.5045 

  Ritz-Laguerre 7.1778 7.4028 8.0376 11.5192 19.3646 

 

Since no data of free vibration responses of PMF microplates using the MCT and 

HSDT is available, the obtained results are compared with those from the earlier 
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work of Pham et al. [174] for PMF macroplates without the size effects, i.e. 

/h l   . It can be seen from Tables 3.4 and 3.5 that there are good agreements 

between the two models for all cases. It is also observed from these tables that the 

results vary with the porosity distribution in which the largest and smallest 

frequencies correspond to SD and UD. Some new results for microplates are given 

in Tables 3.4-3.6 can be used for the benchmark in future research.  

(a)  SSSS (b)  SCSC 

(c)  CCCC 

Figure 3.5: Variation of normalized fundamental frequencies with respect the 

length scale-to-thickness ratio /h l  and / 10a h   under uniform distribution 

Figs. 3.5 and 3.6 illustrate the effect of the porosity coefficients, porosity 

distribution, size effects and boundary conditions on the normalized fundamental 
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frequencies of square PMF microplates. Accordingly, their fundamental frequencies 

decrease as the porosity coefficient and thickness-to-MLSP ratio increase for both 

various boundary conditions and porosity contributions. The curves are observed to 

become flat when the ratio of /h l   reaches to 20 from which the size effects appear 

insignificantly. It is also seen that the size effect is most prominent at the ratio of 

/ 1h l    and decreases sharply from / 1h l    to / 10h l   . 

(a) Symmetric distribution  (b) Asymmetric distribution 

Figure 3.6: Variation of normalized fundamental frequencies with respect the 

length scale-to-thickness ratio /h l  and / 10a h  , 0.2    

3.3.2.1.2 Critical buckling analysis 

In this example, buckling  2 3

max/cr crN N a h E behaviors of the square PMF 

microplates with various configurations are considered. Their normalized critical 

buckling loads with various configurations are given in Tables 3.7-3.10. It is noted 

that the obtained results in Tables 3.7 and 3.8 for PMF SSSS microplates under 

biaxial compression       0 0 0

1 2 12, , 1,1,0N N N   and uniaxial compression 

      0 0 0

1 2 12, , 1,0,0N N N   are benchmarked with those derived from Hung et al. 

([20]) without the size effects ( /h l   ). It is observed that two models are in good 

agreements for different cases. New results with different thickness-to-MLSP’s 

ratios and boundary conditions are provided in Tables 3.7- 3.10 for future 

benchmarks.  
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Table 3.7: The normalized critical buckling load of the SSSS metal foam square 

microplate under uniaxial compression / 10a h   

Type  

distribution 

  Theory /h l      

    10 5 2 1 

Uniform 0.1 Ritz-Hermite 3.2565 3.4002 3.8312 6.8477 17.6179 

  Ritz-Laguerre 3.2576 3.4013 3.8324 6.8499 17.6228 

  IGA [20] 3.2625 - - - - 

 0.2 Ritz-Hermite 2.9905 3.1263 3.5339 6.3864 16.5708 

  Ritz-Laguerre 2.9915 3.1274 3.5351 6.3884 16.5753 

  IGA [20] 3.0337 - - - - 

 0.3 Ritz-Hermite 2.7274 2.8549 3.2376 5.9161 15.4791 

  Ritz-Laguerre 2.7282 2.8559 3.2387 5.9179 15.4833 

  IGA [20] 2.7992 - - - - 

 0.4 Ritz-Hermite 2.6027 2.7348 3.1309 5.6331 14.9277 

  Ritz-Laguerre 2.6079 2.7400 3.1363 5.6478 14.9290 

  IGA [20] 2.5578 - - - - 

 0.5 Ritz-Hermite 2.3250 2.4465 2.8109 5.3608 14.4634 

  Ritz-Laguerre 2.3297 2.4512 2.8157 5.3651 14.4632 

  IGA [20] 2.3076   - - - - 

 0.6 Ritz-Hermite 2.0427 2.1526 2.4824 4.7904 13.0289 

  Ritz-Laguerre 2.0468 2.1568 2.4867 4.7941 13.0286 

  IGA [20] 2.0459 - - - - 

 0.7 Ritz-Hermite 1.7507 1.8478 2.1393 4.1788 11.4591 

  Ritz-Laguerre 1.7542 1.8515 2.1430 4.1820 11.4588 

  IGA [20] 1.7679 - - - - 

Symmetric 0.1 Ritz-Hermite 3.3825 3.5275 3.9626 7.0081 17.8820 

  Ritz-Laguerre 3.3891 3.5345 3.9706 7.0230 17.9206 

  IGA [20] 3.3520   - - - - 

 0.2 Ritz-Hermite 3.2272 3.3645 3.7764 6.6593 16.9527 

  Ritz-Laguerre 3.2335 3.3712 3.7841 6.6736 16.9900 

  IGA [20] 3.2164   - - - - 

 0.3 Ritz-Hermite 3.0753 3.2046 3.5923 6.3057 15.9944 

  Ritz-Laguerre 3.0814 3.2109 3.5996 6.3194 16.0303 

  IGA [20] 3.0796 - - - - 

 0.4 Ritz-Hermite 2.9259 3.0467 3.4092 5.9459 15.0038 

  Ritz-Laguerre 2.9315 3.0526 3.4160 5.9588 15.0384 

  IGA [20] 2.9410   - - - - 

 0.5 Ritz-Hermite 2.7781 2.8901 3.2262 5.5785 13.9779 

  Ritz-Laguerre 2.7833 2.8957 3.2326 5.5908 14.0113 

  IGA [20] 2.8000   - - - - 

 0.6 Ritz-Hermite 2.6304 2.7332 3.0418 5.2012 12.9126 

  Ritz-Laguerre 2.6354 2.7385 3.0479 5.2132 12.9452 

  IGA [20] 2.6555 - - - - 

 0.7 Ritz-Hermite 2.4808 2.5741 2.8538 4.8117 11.8035 

  Ritz-Laguerre 2.4854 2.5789 2.8595 4.8232 11.8355 

  IGA [20] 2.5054 - - - - 
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Table 3.8: The normalized critical buckling load of the SSSS metal foam square 

microplate under biaxial compression / 10a h   

Type  

distribution 

  Theory /h l      

    10 5 2 1 

Uniform 0.1 Ritz-Hermite 1.6598 1.7344 1.9582 3.5245 9.1169 

  Ritz-Laguerre 1.6617 1.7362 1.9599 3.5252 9.1132 

  IGA [20] 1.6313 - - - - 

 0.2 Ritz-Hermite 1.5242 1.5948 1.8064 3.2876 8.5757 

  Ritz-Laguerre 1.5260 1.5965 1.8080 3.2881 8.5722 

  IGA [20] 1.5169 - - - - 

 0.3 Ritz-Hermite 1.3901 1.4564 1.6551 3.0459 8.0114 

  Ritz-Laguerre 1.3917 1.4580 1.6566 3.0464 8.0081 

  IGA [20] 1.3996 - - - - 

 0.4 Ritz-Hermite 1.2566 1.3182 1.5032 2.7976 7.4187 

  Ritz-Laguerre 1.2581 1.3197 1.5045 2.7980 7.4157 

  IGA [20] 1.2789 - - - - 

 0.5 Ritz-Hermite 1.1284 1.1791 1.3492 2.5398 6.7905 

  Ritz-Laguerre 1.1298 1.1804 1.3505 2.5403 6.7876 

  IGA [20] 1.1538 - - - - 

Symmetric 0.1 Ritz-Hermite 1.6919 1.7645 1.9821 3.5052 8.9437 

  Ritz-Laguerre 1.6958 1.7685 1.9866 3.5134 8.9647 

  IGA [20] 1.6760 - - - - 

 0.2 Ritz-Hermite 1.6143 1.6830 1.8890 3.3308 8.4789 

  Ritz-Laguerre 1.6179 1.6868 1.8933 3.3386 8.4991 

  IGA [20] 1.6082 - - - - 

 0.3 Ritz-Hermite 1.5383 1.6029 1.7968 3.1539 7.9996 

  Ritz-Laguerre 1.5418 1.6066 1.8010 3.1614 8.0191 

  IGA [20] 1.5398 - - - - 

 0.4 Ritz-Hermite 1.4636 1.5240 1.7053 2.9740 7.5042 

  Ritz-Laguerre 1.4668 1.5274 1.7091 2.9811 7.5229 

  IGA [20] 1.4705 - - - - 

 0.5 Ritz-Hermite 1.3896 1.4457 1.6138 2.7902 6.9911 

  Ritz-Laguerre 1.3927 1.4489 1.6174 2.7970 7.0091 

  IGA [20] 1.4000   - - - - 

 

New results for two kinds of critical buckling load of PMF microplates using MCT 

theory with two kinds of boundary conditions (CCCC and SCSC) are found in 

Tables 3.9 and 3.10 under uniform distribution and symmetric distribution. Besides, 

the results obtained from the two approaches of the Ritz method are also compared 

with each other. 
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Table 3.9: The normalized critical buckling load of the metal foam square 

microplates under biaxial compression with many boundary conditions, / 10a h   

BCs Type  

distribution 

  Theory /h l      

    10 5 2 1 

SCSC Uniform 0.1 Ritz-Hermite 2.5725 2.7218 3.1684 6.2766 17.3403 

   Ritz-Laguerre 2.5757 2.7225 3.1620 6.2673 17.2474 

  0.2 Ritz-Hermite 2.3649 2.5061 2.9284 5.8675 16.3300 

   Ritz-Laguerre 2.3678 2.5066 2.9223 5.8509 16.2477 

  0.3 Ritz-Hermite 2.1591 2.2916 2.6882 5.4480 15.2726 

   Ritz-Laguerre 2.1616 2.2920 2.6823 5.4343 15.1917 

  0.4 Ritz-Hermite 1.9536 2.0770 2.4460 5.0145 14.0583 

   Ritz-Laguerre 1.9559 2.0772 2.4405 4.9939 13.9994 

  0.5 Ritz-Hermite 1.7467 1.8602 2.1996 4.5622 12.9731 

   Ritz-Laguerre 1.7487 1.8603 2.1945 4.5549 12.8973 

 Symmetric 0.1 Ritz-Hermite 2.6373 2.7851 3.2271 6.3035 17.3159 

   Ritz-Laguerre 2.6396 2.7852 3.2212 6.2610 17.1914 

  0.2 Ritz-Hermite 2.5144 2.6542 3.0727 5.9848 16.3127 

   Ritz-Laguerre 2.5166 2.6545 3.0672 5.9450 16.1989 

  0.3 Ritz-Hermite 2.3934 2.5250 2.9189 5.6599 15.4188 

   Ritz-Laguerre 2.3956 2.5253 2.9138 5.6229 15.2963 

  0.4 Ritz-Hermite 2.2735 2.3966 2.7648 5.3274 14.4510 

   Ritz-Laguerre 2.2757 2.3971 2.7603 5.2934 14.3806 

  0.5 Ritz-Hermite 2.1539 2.2680 2.6095 4.9858 13.4462 

   Ritz-Laguerre 2.1561 2.2686 2.6055 4.9551 13.3688 

CCCC Uniform 0.1 Ritz-Hermite 3.8964 4.1769 5.0167 10.8758 31.7498 

   Ritz-Laguerre 3.8916 4.1732 5.0160 10.8953 31.8486 

  0.2 Ritz-Hermite 3.5870 3.8523 4.6465 10.1878 29.9295 

   Ritz-Laguerre 3.5828 3.8490 4.6460 10.2061 30.0218 

  0.3 Ritz-Hermite 3.2794 3.5285 4.2743 9.4783 28.0183 

   Ritz-Laguerre 3.2755 3.5254 4.2739 9.4952 28.1040 

  0.4 Ritz-Hermite 2.9713 3.2031 3.8974 8.7412 25.9982 

   Ritz-Laguerre 2.9678 3.2004 3.8970 8.7567 26.0769 

  0.5 Ritz-Hermite 2.6601 2.8734 3.5121 7.9681 23.8437 

   Ritz-Laguerre 2.6569 2.8709 3.5117 7.9821 23.9152 

 Symmetric 0.1 Ritz-Hermite 4.0128 4.2937 5.1346 11.0014 31.9071 

   Ritz-Laguerre 4.0101 4.2911 5.1323 11.0004 31.9084 

  0.2 Ritz-Hermite 3.8218 4.0876 4.8836 10.4371 30.2273 

   Ritz-Laguerre 3.8192 4.0851 4.8815 10.4361 30.2285 

  0.3 Ritz-Hermite 3.6324 3.8826 4.6318 9.8587 28.4864 

   Ritz-Laguerre 3.6299 3.8802 4.6298 9.8578 28.4875 

  0.4 Ritz-Hermite 3.4431 3.6771 4.3775 9.2638 26.6787 

   Ritz-Laguerre 3.4407 3.6748 4.3755 9.2628 26.6797 

  0.5 Ritz-Hermite 3.2524 3.4693 4.1187 8.6494 24.7981 

   Ritz-Laguerre 3.2501 3.4672 4.1169 8.6485 24.7990 
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Table 3.10: The normalized critical buckling load of the metal foam square 

microplates under uniaxial compression with many boundary conditions, / 10a h   

BCs Type  

distribution 

  Theory /h l      

    10 5 2 1 

SCSC Uniform 0.1 Ritz-Hermite 4.7816 5.0648 5.9094 11.7613 32.5557 

   Ritz-Laguerre 4.7944 5.0757 5.9164 11.7602 32.5554 

  0.2 Ritz-Hermite 4.3975 4.6651 5.4635 10.9965 30.6609 

   Ritz-Laguerre 4.4087 4.6747 5.4694 10.9948 30.6594 

  0.3 Ritz-Hermite 4.0162 4.2675 5.0169 10.2118 28.6774 

   Ritz-Laguerre 4.0261 4.2757 5.0218 10.2096 28.6749 

  0.4 Ritz-Hermite 3.6353 3.8691 4.5663 9.4006 26.5867 

   Ritz-Laguerre 3.6439 3.8761 4.5703 9.3980 26.5831 

  0.5 Ritz-Hermite 3.2515 3.4664 4.1075 8.5539 24.3627 

   Ritz-Laguerre 3.2587 3.4723 4.1106 8.5508 24.3584 

 Symmetric 0.1 Ritz-Hermite 4.9348 5.2183 6.0637 11.9181 32.7184 

   Ritz-Laguerre 4.9488 5.2303 6.0716 11.9175 32.7172 

  0.2 Ritz-Hermite 4.7033 4.9718 5.7723 11.3150 31.0072 

   Ritz-Laguerre 4.7171 4.9837 5.7802 11.3142 31.0035 

  0.3 Ritz-Hermite 4.4751 4.7279 5.4817 10.6997 29.2375 

   Ritz-Laguerre 4.4885 4.7395 5.4895 10.6987 29.2309 

  0.4 Ritz-Hermite 4.2482 4.4848 5.1900 10.0696 27.4035 

   Ritz-Laguerre 4.2617 4.4966 5.1979 10.0685 27.3939 

  0.5 Ritz-Hermite 4.0211 4.2408 4.8954 9.4221 25.4996 

   Ritz-Laguerre 4.0348 4.2528 4.9036 9.4207 25.4861 

CCCC Uniform 0.1 Ritz-Hermite 7.2066 7.7529 9.3772 20.5925 60.5079 

   Ritz-Laguerre 7.2087 7.7607 9.3998 20.6066 60.5522 

  0.2 Ritz-Hermite 6.6402 7.1564 8.6914 19.2962 56.1332 

   Ritz-Laguerre 6.6424 7.1637 8.7125 19.3026 56.1381 

  0.3 Ritz-Hermite 6.0758 6.5601 8.0006 17.9581 51.9046 

   Ritz-Laguerre 6.0778 6.5668 8.0200 18.0165 51.9990 

  0.4 Ritz-Hermite 5.5495 5.9598 7.2997 16.5666 48.0675 

   Ritz-Laguerre 5.5513 5.9660 7.3175 16.6068 48.0901 

 Symmetric 0.1 Ritz-Hermite 7.4160 7.9634 9.5899 20.8101 60.6146 

   Ritz-Laguerre 7.4182 7.9713 9.6128 20.9251 61.0770 

  0.2 Ritz-Hermite 7.0582 7.5769 9.1175 19.7408 57.4269 

   Ritz-Laguerre 7.0605 7.5846 9.1394 19.8490 57.8579 

  0.3 Ritz-Hermite 6.7020 7.1909 8.6423 18.6441 54.1228 

   Ritz-Laguerre 6.7040 7.1980 8.6627 18.7448 54.5204 

  0.4 Ritz-Hermite 6.3440 6.8020 8.1607 17.5149 50.6915 

   Ritz-Laguerre 6.3462 6.8089 8.1800 17.6081 51.0542 

 

Moreover, Fig. 3.7 displays the normalized critical buckling loads of PMF SD 

microplates with respect to the thickness-to-MLSP’s ratio. It is interesting to 

observe that the porosity does not significantly impact on the size effect, when the 

thickness-to-MLSP’s ratio increases, the curves of critical buckling loads decrease 
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suddenly from / 10h l   and then become stable from / 20h l  . As expected, the 

normalized critical buckling loads slightly decreases with an increase of the porous 

parameter due to the reduction of the stiffness. In comparison of the porosity 

distribution types (UD and SD), similar to the free vibration responses, it is 

observed that the uniform arrangement of porosity requires a critical buckling load 

smaller than the symmetric distribution. It affirms that the symmetric distribution of 

porosity demonstrates more advantage in stiffness than the uniform one. 

 

(a)  SSSS (b)  SCSC 

(c)  CCCC 

Figure 3.7: Variation of normalized critical buckling load for uniaxial compression 

with respect the length scale-to-thickness ratio /h l  and / 10a h   under symmetric 

distribution 
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3.3.2.2 The size dependent analysis of PMF microplates using modified strain 

gradient 

In this example, free vibration max max/h E    and buckling loads (uniaxial 

compression and biaxial compression)  2 3

max/cr crN N a h E  behaviors of the 

square PMF microplates with simply supported (SSSS)  are analysed. The PMF 

microplates are designed to be made of metal foam materials whose characteristics 

are followed: max 200E   GPa, max 7850  kg/m3, max 0.33v  .   

Table 3.11: Normalized fundamental frequencies of PMF rectangular microplates 

for simply supported boundary condition with / 10a h   

Type  

distribution 

  Theory /h l  

  10 5 2 1 

Uniform 0.1 Ritz-Hermite 0.0606 0.0715 0.1234 0.2264 

  Ritz-Laguerre 0.0606 0.0715 0.1233 0.2262 

 0.2 Ritz-Hermite 0.0592 0.0702 0.1218 0.2240 

  Ritz-Laguerre 0.0592 0.0702 0.1218 0.2239 

  IGA [20] 0.0601 0.0706 0.1203 0.2196 

 0.3 Ritz-Hermite 0.0578 0.0688 0.1201 0.2212 

  Ritz-Laguerre 0.0578 0.0688 0.1200 0.2211 

  IGA [20] 0.0590 0.0692 0.1179 0.2153 

Symmetric 0.1 Ritz-Hermite 0.0615 0.0723 0.1238 0.2267 

  Ritz-Laguerre 0.0615 0.0723 0.1238 0.2265 

 0.2 Ritz-Hermite 0.0611 0.0718 0.1228 0.2247 

  Ritz-Laguerre 0.0611 0.0718 0.1228 0.2246 

  IGA [20] 0.0617 0.0720 0.1215 0.2212 

 0.3 Ritz-Hermite 0.0608 0.0714 0.1218 0.2225 

  Ritz-Laguerre 0.0608 0.0713 0.1217 0.2224 

  IGA [20] 0.0615 0.0715 0.1200 0.2180 

Asymmetric 0.1 Ritz-Hermite 0.0608 0.0717 0.1235 0.2264 

  Ritz-Laguerre 0.0607 0.0717 0.1234 0.2263 

 0.2 Ritz-Hermite 0.0596 0.0705 0.1221 0.2242 

  Ritz-Laguerre 0.0596 0.0705 0.1220 0.2241 

  IGA [20] 0.0604 0.0708 0.1206 0.2202 

 0.3 Ritz-Hermite 0.0584 0.0693 0.1205 0.2218 

  Ritz-Laguerre 0.0583 0.0692 0.1205 0.2217 

  IGA [20] 0.0594 0.0696 0.1185 0.2164 
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Their normalized fundamental frequencies are reported in Tables 3.11-3.13 with 

0.1  , 0.2, and 0.3,  / 10h l  , 5, 2, 1, / 10a h  , and three porosity distributions 

(UD, AD, SD) are benchmarked with those derived from Hung et al. [20] with 

various material length scale parameters. 

Table 3.12: Normalized critical buckling load under uniaxial compression of PMF 

rectangular microplates for simply supported boundary condition with / 10a h   

Type  

distribution 

  Theory /h l  

  10 5 2 1 

Uniform 0.1 Ritz-Hermite 3.6690 5.0792 14.9412 50.0314 

  Ritz-Laguerre 3.6665 5.0754 14.9287 49.9844 

  IGA [20] 3.7311 5.1334 14.9043 49.7140 

 0.2 Ritz-Hermite 3.3772 4.7119 14.0463 47.2574 

  Ritz-Laguerre 3.3748 4.7084 14.0345 47.2129 

  IGA [20] 3.4694 4.7734 13.8590 46.2271 

Symmetric 0.1 Ritz-Hermite 3.7821 5.1928 15.0594 50.1759 

  Ritz-Laguerre 3.7795 5.1890 15.0467 50.1283 

  IGA [20] 3.8216 5.2281 15.0408 50.0280 

 0.2 Ritz-Hermite 3.6027 4.9396 14.2906 47.5816 

  Ritz-Laguerre 3.6002 4.9359 14.2785 47.5360 

  IGA [20] 3.6551 4.9697 14.1530 46.9191 

Asymmetric 0.1 Ritz-Hermite 3.6912 5.1018 14.9670 50.0702 

  Ritz-Laguerre 3.6887 5.0981 14.9544 50.0230 

  IGA [20] 3.7482 5.1521 14.9364 49.7997 

 0.2 Ritz-Hermite 3.4194 4.7560 14.1038 47.3657 

  Ritz-Laguerre 3.4171 4.7525 14.0919 47.3211 

  IGA [20] 3.5018 4.8109 13.9370 46.4604 
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Table 3.13: Normalized critical buckling load under biaxial compression of PMF 

rectangular microplates for simply supported boundary condition with / 10a h   

Type  

distribution 

  Theory /h l  

  10 5 2 1 

Uniform 0.1 Ritz-Hermite 1.8345 2.5395 7.4701 25.0148 

  Ritz-Laguerre 1.8332 2.5376 7.4640 24.9916 

  IGA [20] 1.8655 2.5667 7.4522 24.8570 

 0.2 Ritz-Hermite 1.6886 2.3558 7.0226 23.6278 

  Ritz-Laguerre 1.6874 2.3541 7.0169 23.6059 

  IGA [20] 1.7347 2.3867 6.9295 23.1136 

Symmetric 0.1 Ritz-Hermite 1.8910 2.5963 7.5291 25.0870 

  Ritz-Laguerre 1.8897 2.5944 7.5229 25.0635 

  IGA [20] 1.9108 2.6140 7.5204 25.0140 

 0.2 Ritz-Hermite 1.8013 2.4697 7.1447 23.7899 

  Ritz-Laguerre 1.8001 2.4679 7.1388 23.7674 

  IGA [20] 1.8276 2.4849 7.0765 23.4596 

Asymmetric 0.1 Ritz-Hermite 1.8456 2.5508 7.4829 25.0342 

  Ritz-Laguerre 1.8443 2.5490 7.4768 25.0109 

  IGA [20] 1.8741 2.5761 7.4682 24.8999 

 0.2 Ritz-Hermite 1.7097 2.3779 7.0513 23.6820 

  Ritz-Laguerre 1.7085 2.3762 7.0456 23.6599 

  IGA [20] 1.7509 2.4054 6.9685 23.2302 
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3.3.3 Analysis of FG sandwich microplates 

3.3.3.1 Analysis of FG sandwich microplates using MCT 

3.3.3.1.1 Material properties of FG sandwich microplates 

They are made from a ceramic and metal whose mean material properties are given 

by: 

 MAT 1: ZrO2 ( 244.27cE  GPa,
612.766 10c
  1/C, 0.3c  ),  

Ti – Al6 – 4V  ( 66.2mE  GPa,
610.3 10m
   1/C, 0.3m  ).  

 MAT 2:  Al2O3 ( 380cE  GPa, 3800c   kg/m3,
67.4 10c
  1/C, 0.3c  ), 

Al ( 70mE  GPa, 2702m   kg/m3, 
61023m
  1/C, 0.3m  ).  

The following normalized parameters are used: 

 
2

0
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h E


  ; ( 0 1E  GPa, 0 1   kg/m3) (3.52a) 
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0100
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crr
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 ; 

310cr crT T     (3.52b) 

3.3.3.1.2 Vibration analysis 

Non-dimensional deterministic fundamental frequencies of SSSS  2 3Al / Al O   

sandwich microplates (MAT 2) are shown in Table 3.14 to demonstrate the 

correctness of the current theory for vibration analysis. It is noted that the results are 

computed without temperature effects and validated with those from Thai et al. 

[185].  
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Table 3.14: Comparison of non-dimensional fundamental frequency   of square 

SSSS FG sandwich microplates (MAT 2, / 10a h  ) 

p  /h l  
Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0.5 

 

  Present 1.4414 1.4814 1.5044 1.5182 1.5448 1.5728 

 MCT [185] 1.4462 1.4861 1.5084 1.5213 1.5492 1.5766 

5 Present 1.5978 1.6412 1.6639 1.6793 1.7059 1.7345 

 MCT [185] 1.5987 1.6423 1.6643 1.6788 1.7064 1.7345 

5/3 Present 2.5192 2.5876 2.6090 2.6353 2.6650 2.6996 

 MCT [185] 2.5006 2.5667 2.5900 2.6142 2.6437 2.6787 

1 Present 3.7337 3.8305 3.8583 3.8965 3.9337 3.9800 

 MCT [185] 3.6872 3.7836 3.8126 3.8488 3.8885 3.9325 

1   Present 1.2428 1.3002 1.3330 1.3536 1.3951 1.4398 

  MCT [185] 1.2449 1.3019 1.3352 1.3552 1.3975 1.4413 

5 Present  1.3972 1.4622 1.4948 1.5189 1.5610 1.6054 

  MCT [185] 1.3963 1.4612 1.4941 1.4941 1.5590 1.6038 

5/3 Present 2.2831 2.3940 2.4305 2.4687 2.5162 2.5745 

  MCT [185] 2.2638 2.3729 2.4092 2.4492 2.4950 2.5512 

 1 Present 3.4251 3.5941 3.6398 3.7004 3.7575 3.8367 

  MCT [185] 3.3769 3.5413 3.5882 3.6486 3.7072 3.7830 

5   Present 0.9468 0.9822 1.0308 1.0442   1.1094 1.1739 

  MCT [185] 0.9473   0.9832   1.0320   1.0461   1.1105   1.1756 

 5 Present 1.0994 1.1394 1.1886 1.2156 1.2796 1.3500 

  MCT [185] 1.1083   1.1379   1.1882   1.2136   1.2785   1.3480 

 5/3 Present 1.7689 1.9910 2.0574 2.1321 2.2139 2.3144 

  MCT [185] 1.7540   1.9730   2.0398   2.1137   2.1944   2.2944 

 1 Present 2.6648 3.0474 3.1405 3.2691 3.3784 3.5261 

  MCT [185] 2.6261   2.9984   3.0933   3.2160   3.3274   3.4702 

10   Present 0.9284 0.9430 0.9922 0.9960 1.0605 1.1229 

  MCT [185] 0.9296   0.9443   0.9935   0.9969   1.0625   1.1247 

 5 Present 1.0338 1.0924 1.1448 1.1626 1.2313 1.2991 

  MCT [185] 1.0326   1.0912   1.1434   1.1619   1.2294   1.2982 

 5/3 Present 1.6480 1.9024 1.9786 2.0600 2.1486 2.2601 

  MCT [185] 1.6350   1.8863   1.9614   2.0420   2.1309   2.2392 

 1 Present 2.4530 2.9105 3.0198 3.1652 3.2897 3.4536 

  MCT [185] 2.4205   2.8645   2.9739   3.1138   3.2394   3.3986 



94 

 

3.3.3.1.3 Mechanical buckling and thermal bucking analysis 

The biaxial of non-dimensional deterministic critical buckling loads of SSSS 

2 3Al / Al O   microplates (MAT 2) are shown in Table 3.15 for various values of 

/ 10a h  , p  and  /h l , and compared with those published by Thai et al. [186]. An 

excellent agreement with earlier ones can be observed.  

Table 3.15: Non-dimensional critical buckling loads of square SSSS FG sandwich 

microplates (MAT 2) ( / 10a h  ) with biaxial compression 

p  /h l  Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0 

 
  Present 6.5028 6.5028 6.5028 6.5028 6.5028 6.5028 

 MCT [186] 6.5244   6.5244   6.5244   6.5244   6.5244   6.5244 

5 Present 7.6525 7.6525 7.6525 7.6525 7.6525 7.6525 

 MCT [186] 7.6507   7.6507   7.6507   7.6507   7.6507   7.6507 

5/3 Present 16.8490 16.8490 16.8490 16.8490 16.8490 16.8490 

 MCT [186] 16.6536   16.6536   16.6536   16.6536   16.6536   16.6536 

1 Present 35.2385 35.2385 35.2385 35.2385 35.2385 35.2385 

 MCT [186] 34.6404   34.6404   34.6404   34.6404   34.6404   34.6404 

1   Present 2.5838 2.9203 3.0972 3.2326 3.4749 3.7534 

  MCT [186] 2.5925 2.9301 3.1077 3.2435 3.4867 3.7662 

5 Present 3.2653 3.6956 3.8959 4.0704 4.3440 4.6693 

 MCT [186] 3.2609   3.6906   3.8908   4.0649   4.3383   4.6632 

5/3 Present 8.7161 9.8974 10.2848 10.7723 11.2954 11.9955 

  MCT [186] 8.5680   9.7282   10.1120   10.5884   11.1065   11.7939 

 1 Present 19.6139 22.2967 23.0585 24.1715 25.1938 26.6433 

  MCT [186] 19.0532   21.6545   22.4164   23.4849   24.5068   25.9187 

5   Present 1.3294 1.5215 1.7020 1.7900 2.0562 2.3675 

  MCT [186] 1.3337   1.5266   1.7077   1.7960   2.0632   2.3756 

 5 Present 1.6980 2.0469 2.2664 2.4197 2.7380 3.1275 

  MCT [186] 1.6960   2.0445   2.2636   2.4168   2.7346   3.1231 

 5/3 Present 4.6463 6.2490 6.7810 7.4568 8.1917 9.2066 

  MCT [186] 4.5696   6.1430   6.6668   7.3276   8.0512   9.0429 

 1 Present 10.5408 14.6501 15.8069 17.5270 19.0950 21.3603 

  MCT [186] 10.2367   14.1766   15.3203   16.9495   18.4979   20.6714 

10   Present 1.2439 1.3734 1.5461 1.5976 1.8540 2.1401 

  MCT [186] 1.2479   1.3779   1.5514   1.6029   1.8603   2.1474 

 5 Present 1.4413 1.7118 1.9372 2.0199 2.3532 2.6647 

  MCT [186] 1.4115   1.6816   1.8885   1.9710   2.2723    2.6059 

 5/3 Present 3.9196 5.5886 6.1450 6.8379 7.6059 8.6601 

  MCT [186] 3.8578   5.4951   6.0425   6.7211   7.4766   8.5067 

 1 Present 8.6748 13.0792 14.3174 16.1503 17.8273 20.2462 

  MCT [186] 8.4504   12.6622   13.8814   15.6153   17.2662   19.5807 
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The deterministic critical buckling temperature of SSSS FG sandwich microplates 

with MAT 1 under biaxial compression is also estimated in order to further validate 

the proposed technique with uniform and linear distribution. The outcomes are 

compared with those obtained by Zenkour et al. [66] and Daikh et al. [187].  As 

seen in Tables 3.16 and 3.17, the present solutions match well with those from 

earlier ones. Tables 3.18 and 3.19 provide some new results of the thermal buckling 

of CSCS and CCCC FG sandwich microplates.  

Table 3.16: Non-dimensional critical buckling temperature crT  of square SSSS FG 

sandwich microplates (MAT 1) under uniform distribution with biaxial compression 

/a h  p  /h l  Theory 1-0-1 2-1-2 2-2-1 1-1-1 1-2-1 

5 0.5   Present 2.8652 2.8237 2.8582 2.8263 2.8652 

   HPT [66] - - 2.8632 2.8322 2.8697 

   HPT[187] 2.8707 2.8302 - 2.8322 2.8697 

  10 Present 3.0391 2.9952 3.0275 2.9963 3.0336 

  5 Present 3.5609 3.5097 3.5356 3.5064 3.5387 

  2 Present 7.2172 7.1128 7.0927 7.0784 7.0753 

  1 Present 20.2608 19.9707 19.7861 19.8241 19.6944 

 2   Present 2.6301 2.3961 2.4177 2.3595 2.4279 

   HPT [66] - - 2.4183 2.3599 2.4287 

   HPT[187] 2.6345 2.3963 - 2.3599 2.4287 

  10 Present 2.8142 2.5734 2.5903 2.5336 2.5987 

  5 Present 3.3664 3.1055 3.1083 3.0558 3.1111 

  2 Present 7.2302 6.8289 6.7329 6.7105 6.6972 

  1 Present 21.0124 20.1094 19.6617 19.7458 19.4885 

10 0.5   Present 0.8006 0.7895 0.8036 0.7920 0.8072 

   HPT [66] - - 0.8059 0.7945 0.8092 

   HPT[187] 0.8031 0.7922 - 0.7945 0.8092 

  10 Present 0.8445 0.8327 0.8464 0.8349 0.8496 

  5 Present 0.9761 0.9625 0.9745 0.9636 0.9771 

  2 Present 1.8983 1.8713 1.8719 1.8646 1.8694 

  1 Present 5.1908 5.1170 5.0767 5.0822 5.0556 

 2   Present 0.7169 0.6498 0.6612 0.6414 0.6656 

   HPT [66] - - 0.6621 0.6423 0.6668 

   HPT[187] 0.7178 0.6507 - 0.6423 0.6668 

  10 Present 0.7633 0.6945 0.7047 0.6853 0.7089 

  5 Present 0.9024 0.8285 0.8351 0.8168 0.8381 

  2 Present 1.8758 1.7663 1.7484 1.7374 1.7418 

  1 Present 5.1513 5.1143 5.0090 5.0241 4.9683 
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Table 3.17: Non-dimensional critical buckling temperature crT  of square SSSS FG 

sandwich microplates (MAT 1) under linear distribution with biaxial compression, 

25o

bT C  

/a h  p  /h l  Theory 1-0-1 2-1-2 2-2-1 1-1-1 1-2-1 

5 0.5   Present 5.6189 5.5292 5.3622 5.5293 5.5998 

   HPT [66] - - 5.4417 5.6144 5.6894 

   HPT[187] 5.6914 5.6105 - 5.6144 5.6894 

  10 Present 5.9600 5.8650 5.6798 5.8620 5.9289 

  5 Present 6.9831 6.8723 6.6328 6.8598 6.9160 

  2 Present 14.1524 13.9264 13.3052 13.8469 13.8268 

  1 Present 39.7280 39.0998 37.1151 38.7782 38.4860 

 2   Present 5.1581 4.6895 4.3583 4.6133 4.7424 

   HPT [66] - - 4.4071 4.6699 4.8074 

   HPT[187] 5.2103 4.7427 - 4.6699 4.8074 

  10 Present 5.5190 5.0366 4.6695 4.9536 5.0760 

  5 Present 6.6017 6.0777 5.6031 5.9745 6.0768 

  2 Present 14.1778 13.3634 12.1359 13.1187 13.0802 

  1 Present 41.2017 39.3500 35.4382 38.6005 38.0611 

10 0.5   Present 1.5708 1.5466 1.5167 1.5502 1.5782 

   HPT [66] - - 1.4972 1.5391 1.5685 

   HPT[187] 1.5562 1.5344 - 1.5391 1.5685 

  10 Present 1.6569 1.6313 1.5885 1.6341 1.6613 

  5 Present 1.9149 1.8853 1.8289 1.8857 1.9101 

  2 Present 3.7231 3.6646 3.5122 3.6483 3.6539 

  1 Present 10.1790 10.0190 9.5235 9.9421 9.8801 

 2   Present 1.4067 1.2725 1.1925 1.2549 1.3014 

   HPT [66] - - 1.1731 1.2347 1.2837 

   HPT[187] 1.3856 1.2515 - 1.2347 1.2837 

  10 Present 1.4976 1.3599 1.2708 1.3406 1.3855 

  5 Present 1.7703 1.6221 1.5060 1.5977 1.6376 

  2 Present 3.6790 3.4571 3.1521 3.3973 3.4026 

  1 Present 10.4936 10.0084 9.0288 9.8221 9.7038 
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Table 3.18: Non-dimensional critical buckling temperature crT  of square FG 

sandwich microplates (MAT 1) under uniform distribution with biaxial compression 

BCs p  /h l  Theory 1-0-1 2-1-2 2-2-1 1-1-1 1-2-1 

/ 5a h           

CSCS 0.5   Present 4.2188 4.1548 4.1877 4.1550 4.1920 

  10 Present 4.5793 4.5102 4.5388 4.5036 4.5412 

  5 Present 5.6498 5.5657 5.5812 5.5502 5.5776 

  2 Present 13.0949 12.9023 12.8237 12.8234 12.7779 

  1 Present 39.5812 39.0115 38.5968 38.7035 38.3992 

 2   Present 3.9457 3.6089 3.6173 3.5456 3.6242 

  10 Present 4.3266 3.9758 3.9747 3.9069 3.9778 

  5 Present 5.4591 5.0670 5.0370 4.9780 5.0287 

  2 Present 13.3304 12.6528 12.4203 12.4232 12.3328 

  1 Present 41.3300 39.6361 38.6845 38.9069 38.3152 

CCCC 0.5   Present 6.0403 5.9696 5.9703 5.9712 5.9830 

  10 Present 6.7604 6.6550 6.6614 6.6319 6.6559 

  5 Present 8.8280 8.6919 8.6757 8.6523 8.6555 

  2 Present 23.2428 22.8973 22.6967 22.7331 22.5951 

  1 Present 74.4843 73.4092 72.5563 72.8005 72.1597 

 2   Present 5.8827 5.3268 5.2999 5.2335 5.2793 

  10 Present 6.5364 6.0414 5.9914 5.9246 5.9784 

  5 Present 8.7276 8.1530 8.0464 7.9963 8.0113 

  2 Present 23.9800 22.8551 22.3528 22.4250 22.1628 

  1 Present 78.1686 75.0826 73.1813 73.6825 72.4412 

/ 10a h           

CSCS 0.5   Present 1.2629 1.2447 1.2646 1.2478   1.2698 

  10 Present 1.3546 1.3340 1.3533 1.3364 1.3576 

  5 Present 1.6242 1.6010 1.6170 1.6011 1.6198 

  2 Present 3.5111 3.4605 3.4532 3.4448 3.4456 

  1 Present 10.2315 10.0853 9.9942 10.0122 9.9487 

 2   Present 1.1380 1.0329 1.0486 1.0189 1.0553 

  10 Present 1.2337 1.1251 1.1384 1.1094 1.1441 

  5 Present 1.5198 1.4006 1.4067 1.3799 1.4097 

  2 Present 3.5114 3.3192 3.2751 3.2633 3.2585 

  1 Present 10.6067 10.1548 9.9316 9.9733 9.8451 

CCCC 0.5   Present 1.9793 1.9499 1.9779 1.9508 1.9854 

  10 Present 2.1554 2.1239 2.1499 2.1253 2.1541 

  5 Present 2.6817 2.6424 2.6614 2.6319 2.6636 

  2 Present 6.3550 6.2624 6.2357 6.2286 6.2173 

  1 Present 19.4421 19.1633 18.9723 19.0172 18.8798 

 2   Present 1.7995 1.6372 1.6558 1.6148 1.6632 

  10 Present 1.9849 1.8154 1.8306 1.7888 1.8377 

  5 Present 2.5416 2.3515 2.3524 2.3146 2.3540 

  2 Present 6.4214 6.0892 5.9919 5.9838 5.9545 

  1 Present 20.2446 19.4079 18.9595 19.0571 18.7855 
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Table 3.19:  Non-dimensional critical buckling temperature crT  of square FG 

sandwich microplates (MAT 1) under linear distribution with biaxial compression, 

25o

bT C  

BCs p  /h l  Theory 1-0-1 2-1-2 2-2-1 1-1-1 1-2-1 

/ 5a h           

CSCS 0.5   Present 8.2731 8.1351 7.8562 8.1208 8.1926 

  10 Present 8.9800 8.8310 8.5147 8.8104 8.8749 

  5 Present 11.0790 10.8976 10.4700 10.8576 10.9002 

  2 Present 25.6773 25.2613 24.0553 25.0843 24.9704 

  1 Present 77.6111 76.3782 72.3996 75.7077 75.0373 

 2   Present 7.7376 7.0658 6.5206 6.9356 7.0788 

  10 Present 8.4844 7.7805 7.1646 7.6383 7.7694 

  5 Present 10.7051 9.9158 9.0793 9.7320 9.8218 

  2 Present 26.1390 24.7593 22.3865 24.2862 24.0863 

  1 Present 81.0401 77.5589 69.7241 76.0570 74.8287 

CCCC 0.5   Present 11.3498 11.6886 11.0893 11.5192 11.6801 

  10 Present 13.2567 13.0291 12.4996 12.9769 13.0029 

  5 Present 17.3110 17.0191 16.2743 16.9250 16.9179 

  2 Present 45.5751 44.8296 42.5747 44.4686 44.1542 

  1 Present 146.048 143.722 140.099 142.404 141.009 

 2   Present 11.3820 10.4687 9.5652 10.4857 10.3737 

  10 Present 12.8190 11.8248 10.8069 11.5793 11.6859 

  5 Present 17.1112 15.9533 14.5040 15.6295 15.6496 

  2 Present 47.0206 44.7227 40.2883 43.8378 43.2838 

  1 Present 153.272 146.918 139.899 143.037 141.475 

/ 10a h 
 

        

CSCS 0.5   Present 2.4771 2.4377 2.3737   2.4416 2.4823 

  10 Present 2.6548 2.6122 2.5393 2.6150 2.6538 

  5 Present 3.1858 3.1354 2.0526 3.1329 3.1664 

  2 Present 6.8856 6.7759 6.4783 6.7391 6.7339 

  1 Present 20.0628 19.7461 18.7476 19.5854 19.4417 

 2   Present 2.2323 2.0222 1.8907 1.9928 2.0618 

  10 Present 2.4200 2.2026 2.0526 2.1697 2.2354 

  5 Present 2.9809 2.7417 2.5362 2.6985 2.7540 

  2 Present 6.8860 6.4958 5.9037 6.3800 6.3647 

  1 Present 20.7985 19.8714 17.9010 19.4970 19.2279 

CCCC 0.5   Present 3.8819 3.8270 3.4247   3.8245 3.8766 

  10 Present 4.2267 4.1577 4.0323 4.1589 4.2104 

  5 Present 5.2592 5.1741 4.9934 5.1644 5.2064 

  2 Present 12.4618 12.2613 11.6975 12.1844 12.1503 

  1 Present 38.1228 37.5191 35.5885 37.1999 36.8942 

 2   Present 3.5242 3.2014 2.9860 3.1533 3.2524 

  10 Present 3.8936 3.5540 3.3005 3.4976 3.5894 

  5 Present 4.9846 4.6020 4.2407 4.5257 4.5983 

  2 Present 12.5920 11.9164 10.8003 11.6984 11.6310 

  1 Present 39.6963 37.9774 34.1725 37.2542 36.6881 
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3.3.3.2 Analysis of FG sandwich microplates using MST 

The deterministic critical buckling temperature 
310cr crT T     of (SSSS, CSCS, 

CCCC) FG sandwich microplates with MAT 1 under biaxial compression is also 

estimated in order to further validate the proposed technique with uniform and 

linear distribution using modified strain gradient theory with three material length 

scale parameters. Tables 3.20 and 3.21 provide some new results of the thermal 

buckling of SSSS, CSCS and CCCC FG sandwich microplates.  

Table 3.20: Non-dimensional critical buckling temperature crT  of square FG 

sandwich microplates (MAT 1) under uniform distribution with biaxial 

compression, / 10a h   

BCs p  /h l  1-0-1 2-1-2 2-2-1 1-1-1 1-2-1 

SSSS 0.5 10 0.9532 0.9399 0.9523 0.9412 0.9550 

  5 1.4081 1.3884 1.3955 1.3860 1.3957 

  2 4.5928 4.5269 4.4962 4.4983 4.4791 

  1 15.9077 15.6816 15.5202 15.5599 15.4420 

 2 10 0.8779 0.8049 0.8122 0.7937 0.8154 

  5 1.3580 1.2672 1.2626 1.2475 1.2611 

  2 4.7128 4.4969 4.4093 4.4180 4.3751 

  1 16.6085 15.9421 15.5673 15.6539 15.4170 

CCCC 0.5 10 2.3827 2.3476 2.3704 2.3477 2.3746 

  5 3.5907 3.5386 3.5477 3.5284 3.5449 

  2 12.0173 11.8423 11.7536 11.7636 11.7058 

  1 41.6999 41.1039 40.6891 40.7874 40.4832 

 2 10 2.2247 2.0459 2.0551 2.0147 2.0593 

  5 3.4980 3.2717 3.2480 3.2177 3.2412 

  2 12.3656 11.8038 11.5624 11.5926 11.4674 

  1 43.4969 41.7230 40.7455 40.9630 40.3455 

CSCS 0.5 10 1.5094 1.4878 1.5052 1.4889 1.5087 

  5 2.2481 2.2162 2.2249 2.2113 2.2245 

  2 7.4110 7.3039 7.2515 7.2565 7.2231 

  1 25.6694 25.2969 25.0420 25.1062 24.9150 

 2 10 1.3981 1.2834 1.2925 1.2648 1.2967 

  5 2.1777 2.0339 2.0236 2.0015 2.0201 

  2 7.6157 7.2685 7.1232 7.1397 7.0664 

  1 26.8012 25.7212 25.1128 25.2531 24.8685 
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Table 3.21:  Non-dimensional critical buckling temperature crT  of square FG 

sandwich microplates (MAT 1) under linear distribution with biaxial compression, 

25o

bT C , / 10a h   

 

 

BCs p  /h l  1-0-1 2-1-2 2-2-1 1-1-1 1-2-1 

SSSS 0.5 10 1.8690 1.8401 1.7863 1.8410 1.8661 

  5 2.7610 2.7183 2.6175 2.7112 2.7273 

  2 9.0055 8.8629 8.4338 8.7990 8.7528 

  1 31.1916 30.7010 29.1123 30.4362 30.1754 

 2 10 1.7214 1.5750 1.4639 1.5515 1.5925 

  5 2.6628 2.4796 2.2756 2.4387 2.4628 

  2 9.2407 8.7993 7.9472 8.6364 8.5443 

  1 32.5657 31.1950 28.0579 30.6006 30.1099 

CCCC 0.5 10 4.6738 4.5976 4.4475 4.5932 4.6412 

  5 7.0411 6.9288 6.6582 6.9031 6.9287 

  2 23.5612 23.1860 22.0473 23.0116 22.8747 

  1 81.7677 80.4775 76.3244 79.7851 79.1105 

 2 10 4.3623 4.0038 3.7047 3.9389 4.0264 

  5 6.8615 6.4023 5.8555 6.2908 6.3334 

  2 24.2464 23.0982 20.8402 22.6626 22.3976 

  1 85.2892 81.6442 73.4378 80.0766 78.7964 

CSCS 0.5 10 2.9606 2.9138 2.8242 2.9133 2.9492 

  5 4.4091 4.3398 4.1743 4.3264 4.3478 

  2 14.5322 14.3006 13.6031 14.1953 14.1156 

  1 50.3330 49.5395 46.9738 49.1105 48.6876 

 2 10 2.7424 2.5122 2.3304 2.4736 2.5334 

  5 4.2710 3.9809 3.6481 3.9136 3.9462 

  2 14.9337 14.2237 12.8394 13.9579 13.8016 

  1 52.5524 50.3312 45.2630 49.3662 48.5680 
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3.3.4 Analysis of FGP microplates 

3.3.4.1 Analysis of FG microplates using MCT 

In order to verify the accuracy of the present theory for vibration analysis 

 2 / /c ca h E   , Table 3.22 displays non-dimensional deterministic 

fundamental frequencies of 2 3/Al Al O  : Al2O3 ( 380cE  GPa, 3800c   

kg/m3, 0.3c  ), Al ( 70mE  GPa, 2702m   kg/m3, 0.3m  ) microplates with 

SSSS and CCCC BCs. Various values of p , /h l  and /a h  are considered.  

Table 3.22: Non-dimensional natural frequency of the FG square microplates  

BCs /a h
 

p  Theory /h l      

  5 2.5 1.25 1 

SSSS 20 1 Present 4.5218   4.9612 6.0813 9.3027 11.1206 

RPT [188] 4.5228  4.9568  6.0756  9.2887  11.1042  

RPT [189] 4.5228 4.9556 6.0714 9.2768 11.0882 

2 Present 4.1098 4.4980 5.5114 8.4121 10.0595 

RPT [188] 4.1100  4.5006  5.5082  8.4062  10.0450  

5 Present 3.8921 4.2000 5.0188 7.4385 8.8270 

RPT [188] 3.8884  4.2005  5.0199  7.4397  8.8286  

10 Present 3.7631 4.0302 4.7433 6.9005 8.1468 

RPT [188] 3.7622 4.0323 4.7488 6.9013 8.1494 

 10 1 Present 4.4209 4.8572 5.9865 9.1997 11.0105 

RPT [188] 4.4192 4.8526  5.9664  9.1537  10.9511  

2 Present 4.0104 4.4022 5.4165 8.3166 9.9495 

RPT [188] 4.0090  4.4006  5.4071  8.2863  9.9101  

5 Present 3.7681 4.0828 4.9083 7.3331 8.7203 

RPT [188] 3.7682  4.0876  4.9169  7.3338  8.7135  

10 Present 3.6387 3.9112 4.6331 6.7911 8.0442 

RPT [188] 3.6368 3.9162 4.6464 6.8030 8.0448 

CCCC 5 1 Present 6.4417 7.9096 11.0832 19.0090 23.2057 

   IGA [190] 6.3868 - - - - 

  2 Present 5.7789 7.1127 9.9861 17.1343 20.8920 

   IGA [190] 5.7292 - - - - 

  5 Present 5.1524 6.2984 8.7539 14.9050 18.1416 

   IGA [190] 5.1082 - - - - 

  10 Present 4.8661 5.8924 8.1005 13.6879 16.6596 

   IGA [190] 4.8214 - - - - 

 10 1 Present 7.6557 8.9348 11.9381 19.7962 24.0526 

   IGA [190] 7.6251 - - - - 

  2 Present 6.9136 8.0861 10.7890 17.8776 21.7236 

   IGA [190] 6.8944 - - - - 

  5 Present 6.3989 7.3509 9.6103 15.6233 18.9125 

   IGA [190] 6.3722 - - - - 

  10 Present 6.1521 6.9730 8.9756 14.3803 17.3596 

   IGA [190]  6.1039 - - - - 
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The obtained solutions are compared with those reported by refined plate theory 

(RPT) by Thai and Kim [188] using Navier solution and Nguyen et al. [189] based 

on isogeometric analysis (IGA-RPT), and  by Thai et al. [190] using IGA-TSDT. It 

can be seen that there are good agreements among the models. 

Table 3.23 illustrates the non-dimensional deterministic critical buckling loads 

 2 3/crr cr mN N a h E  of 2 3Al / Al O  plates with SSSS and CCCC BCs for various p  

and /a h . The obtained results are validated with those reported by Thai et al. [190] 

and Thai et al. [191]. An excellent agreement with previous ones can be observed. 

Table 3.23: Non-dimensional critical buckling loads of the FG square plates  

 BCs /a h  Theory p  

 1 2 5 10 

Axial compression  0 0 0

1 2 12, , 1,0,0N N N   

SSSS 5 Present 8.2250 6.3433 5.0517 4.4807 

 IGA [190] 8.2245 6.3432 5.0531 4.4807 

 IGA-TSDT [191] 8.2245 6.3432 5.0531 4.4807 

 10 Present 9.3395 7.2635 6.0352 5.4537 

 IGA [190] 9.3391 7.2631 6.0353 5.4528 

 IGA-TSDT [191] 9.3391 7.2631 6.0353 5.4529 

CCCC 10 Present 21.0950 16.2860 13.0276 11.5736 

  IGA [190] 20.9471 16.1682 12.9218 11.4711 

Biaxial compression  0 0 0

1 2 12, , 1,1,0N N N   

SSSS 5 Present 4.1125 3.1717 2.5259 2.2404 

 IGA [190] 4.1122 3.1716 2.5265 2.2403 

 IGA-TSDT [191] 4.1123 3.1716 2.5265 2.2403 

 10 Present 4.6697 3.6317 3.0176 2.7268 

 IGA [190] 4.6696 3.6315 3.0177 2.7264 

 IGA-TSDT [191] 4.6696 3.6315 3.0177 2.7264 

CCCC 10 Present 11.4214 8.8376 7.1420 6.3759 

  IGA [190] 11.3805 8.8028 7.1165 6.3518 

 

 In order to further verify the proposed method, the deterministic critical buckling 

loads of SSSS FG microplates with material properties: 14.4cE   GPa, 0.38c  , 
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1.44mE  GPa, 0.38m   under biaxial loads are also calculated. The results are 

compared with those from Thai et al.  [190] (IGA-TSDT) and by Nguyen et al. 

[189] (IGA-RPT). It can be seen in Table 3.24 that the results predicted by proposed 

model are in good agreement with those from previous ones.  

Table 3.24: Non-dimensional critical buckling loads of SSSS FG square 

microplates with biaxial compression 

/a h
 

p  Theory /h l      

  5 2.5 1.25 1 

10 0 Present 18.0854 20.9253 29.4718 63.6538 88.2866 

IGA [190] 18.0754 20.9026 29.3735 63.1958 88.5417 

  RPT [189] 18.0756 20.8497 29.1700 62.4358 87.3775 

 1 Present 7.8281 9.3962 14.1003 32.9144 47.0226 

  IGA- [190] 7.8276 9.3767 14.0232 32.6037 46.5372 

  RPT [189] 7.8277 9.3581 13.9459 32.2693 45.9981 

 10 Present 3.4988 4.0175 5.5737 11.7984 16.4669 

  IGA- [190] 3.4969 4.0513 5.6631 11.9349 16.6033 

  RPT [189] 3.4982 4.0246 5.5925 11.8036 16.4431 

20 0 Present 18.9254 21.7833 30.3569 64.6505 90.3698 

  IGA [190] 18.9243 21.7771 30.3324 64.5348 90.1804 

  RPT [189] 18.9244 21.7628 30.2773 64.3321 89.8715 

 1 Present 8.1147 9.6868 14.4033 33.2685 47.4168 

  IGA [190] 8.1142 9.6815 14.3832 33.1882 47.2914 

  RPT [189] 8.1143 9.6766 14.3626 33.0999 47.1494 

 10 Present 3.7475 4.2674 5.8270 12.0655 16.7444 

  IGA [190] 3.7450 4.2752 5.8505 12.1011 16.7793 

  RPT [189] 3.7454 4.2677 5.8312 12.0666 16.7376 

 

3.3.4.2 Analysis of FGP microplates using MCT 

In this section [192], numerical examples are performed to investigate vibration and 

buckling responses of FGP microplates with three kinds of boundary conditions 

(SSSS, CSCS, CCCC), in which the shear function 

   1 3 3

3 3 3cot / 16 /15x h x x h     ([141])) is used. The FGP microplates are 
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supposed to be composed of a mixture of ceramic and metal materials whose mean 

properties are: Al2O3 ( 380cE  GPa, 3800c  kg/m3, 0.3c  ), Al ( 70mE  GPa, 

2702m  kg/m3, 0.3m  ). For simplicity, the following normalized response 

parameters are used in the numerical examples:  

  2 / /c ca h E   ; 2 3/cr cr mN N a h E  (3.53) 

Table 3.25: Convergence study of the series solution of Al/Al2O3 FGP microplates 

with different boundary conditions ( / 10a h  , 10p  , 0.1  , / 1h l  ) 

Solution Number of series 1 2n n n   

 2 4 6 8 10 12 

Normalized fundamental frequency 

SSSS 7.6675 7.5748 7.5508 7.5531 7.5523 7.5529 

CSCS 11.8257 11.4713 11.4652 11.4652 11.4652 11.4652 

CCCC 16.4080 16.3353 16.3332 16.3281 16.3285 16.3283 

Normalized critical buckling load with axial compression  0 0 0

1 2 12, , 1,0,0N N N   

SSSS 21.3756 21.1557 20.9383 20.8252 20.8263 20.8258 

CSCS 42.7373 40.1757 39.0022 38.8722 38.8720 38.8721 

CCCC 75.9027 74.8932 72.6642 72.4134 72.4140 72.4135 

In order to study the convergence of present solutions, Table 3.25 shows non-

dimensional deterministic critical buckling loads crN  and fundamental frequencies 

  of the Al/Al2O3 square FGP microplates with / 10a h  , 10p  , / 1h l  and 

0.1  . The results are calculated for  three types of BCs (SSSS, CSCS and 

CCCC) and the same number of series type-solution in 1x  and 2x  direction 

( 1 2 )n n n  . The responses show a rapid convergence for a number of series 

8n  , hence this number will be used for the numerical examples. 

3.3.4.2.1 Vibration analysis 

In order to verify the accuracy of the present theory in predicting vibration 

behaviors, Table 3.26 displays normalized deterministic fundamental frequencies of 

Al/Al2O3 FGP microplates with simply supported boundary condition in which the 
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results are computed with side-to-thickness ratio / 20a h  , power-law index 

1,2,5,10p  , porosity parameter 0,0.2  , and material length scale 

/ ,10,5,2,1h l   . The obtained solutions are compared with those from Farzam et 

al. [48] using a refined HSDT (RPT) and isogeometric approach (IGA). It can be 

observed that there are good agreements between the two models for all cases. 

Therefore, the present model shows to be reliable to predict the dynamic behaviors 

of FGP microplates.  

Table 3.26: Normalized fundamental frequencies of simply supported FGP 

microplates with / 20a h   

  /h l  Theory p  

   1 2 5 10 

0   Present 4.5218 4.1098 3.8921 3.7631 

  IGA [48] 4.5228 4.1101 3.8884 3.7622 

 10 Present 4.6387 4.2122 3.9707 3.8305 

  IGA [48] 4.6351 4.2111 3.9688 3.8316 

 5 Present 4.9612 4.4980 4.2000 4.0302 

  IGA [48] 4.9568 4.5006 4.2005 4.0324 

 2 Present 6.7964 6.1561 5.5531 5.2202 

  IGA [48] 6.7948 6.1565 5.5551 5.2212 

 1 Present 11.1206 10.0595 8.8270 8.1468 

  IGA [48] 11.1043 10.0451 8.8287 8.1496 

0.2   Present 4.2063 3.4877 3.0203 2.9228 

  IGA [48] 4.2068 3.4871 3.0179 2.9184 

 10 Present 4.3259 3.6089 3.1042 2.9862 

  IGA [48] 4.3331 3.6038 3.1056 2.9849 

 5 Present 4.6960 3.9324 3.3551 3.1733 

  IGA [48] 4.6914 3.9330 3.3550 3.1752 

 2 Present 6.6954 5.7322 4.7415 4.2613 

  IGA [48] 6.6819 5.7303 4.7440 4.2686 

 1 Present 11.2241 9.7475 7.9145 6.8643 

  IGA [48] 11.2026 9.7395 7.9132 6.8669 

 

3.3.4.2.2 Buckling analysis 

The accuracy study of present theory in predicting buckling behaviors is carried out 

in Table 3.27, which illustrates non-dimensional deterministic critical buckling 

loads with biaxial compression of Al/Al2O3 FGP microplates with clamped 
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boundary conditions on its edges. The results are reported with the side-to-thickness 

ratio / 20a h  , various values of the power-law index 1,2,5,10p  , two porous 

parameters 0   and 0.2, and compared to those derived from Farzam et al. [48]. It 

is observed that there are no significant differences between the models, it shows 

that the present theory is reliable in predicting buckling behaviors of FGP 

microplates. 

Table 3.27: Normalized critical buckling loads of FGP plates with biaxial 

compression, / 20a h   and CCCC boundary condition 

  Theory p  

  1 2 5 10 

0 Present 12.5415 9.7627 8.1499 7.3803 

 IGA [48] 12.5747 9.7903 8.1821 7.4115 

0.2 Present 8.7149 5.5752 3.8308 3.4123 

 IGA [48] 8.7341 5.5870 3.8437 3.4270 

 

3.3.4.3 Analysis of FGP microplates using MST 

In this section[193], numerical examples with the shear function  

  3 2

3 3 34 / 3f x x x h   ([194])  are performed to explore the deterministic and 

stochastic responses of FGP microplates with various BCs. The FGP microplates 

are expected to be made of a combination of ceramic and metal materials with mean 

properties as follows: Al2O3 ( 380cE  GPa, 3800c  kg/m3, 

67.4 10c
  1/C, 0.3c  ),Al ( 70mE  GPa, 2702m  kg/m3, 

61023m
  1/C, 0.3m  ). For simplification purpose, all three length scale 

parameters are considered to have the same value, i.e. 1 2 3l l l l   . In practice, 

these material length scale values should be derived mainly via experimental data. 

Unless special mention, square FGP microplates with three BCs (SSSS, SCSC, 

CCCC) are considered in numerical examples, and for convenience, the following 

normalized parameters are used in the computations: 
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For convergence study of the present solution, Fig. 3.8 shows the normalized 

critical buckling temperatures crT  of Al/Al2O3 FGP microplates under biaxial 

compression with / 20a h  , 5p  , 0.1   and / 5h l  . The results are calculated 

with three types of BCs (SSSS, SCSC, CCCC) and the same number of series in 

1x  and 2x  direction ( 1 2 )n n n  .  It is observed from Fig. 3.8 that the results 

converge quickly for a small number of series in which the CCCC and SCSC 

boundary conditions having more kinematic constraints converge lower than the 

SSSS one. Obviously, the number of series 8n   can be ensure the stability and 

convergence of the present solution, hence this value will be used for following 

numerical computations. 

Figure 3.8: Convergence study of series solution of Al/Al2O3 FGP microplates with 

different BCs ( / 20a h , 5p  , 0.1  , / 5h l  ) 

3.4.2.2.1 Static analysis 

In order to verify the accuracy of the present FGP microplate model in predicting 

static behaviors, the first example is performed on the simply supported FG square 
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microplates subjected to sinusoidally distributed loads without porosity effect 

 0  .  

Table 3.28: Normalized transverse center displacements of FGP microplates under 

sinusoidal load ( 0  , SSSS)  

/a h
 

p   Theory /h l   

0 20 10 5 2 1 

5 0.5 Present 0.5177 0.4957 0.4411 0.3065 0.1011 0.0292 

  MST [191] 0.5176 0.4965 0.4426 0.3098 0.1018 0.0303 

  RPT [195] 0.5198 0.4983 0.4435 0.3086 0.0997 0.0293 

 IGA  [190] 0.5177 0.4975 0.4457 0.3153 0.1045 0.0310 

 1 Present 0.6688   0.6387 0.5625 0.3860 0.1226 0.0353 

 MST [191] 0.6688 0.6399 0.5670 0.3908 0.1252 0.0369 

 RPT[195] 0.6688 0.6396 0.5658 0.3879 0.1223 0.0357 

 IGA[190] 0.6688 0.6412 0.5709 0.3977 0.1286 0.0378 

 2 Present 0.8672 0.8261 0.7256 0.5021 0.1521 0.0442 

 MST  [191] 0.8671 0.8292 0.7332 0.5021 0.1580 0.0460 

 RPT [195] 0.8671 0.8286 0.7313 0.4980 0.1544 0.0447 

 IGA[190] 0.8671 0.8307 0.7379 0.5107 0.1627 0.0475 

 4 Present 1.0411 0.9899 0.8681 0.6024 0.1898 0.0552 

 MST  [191] 1.0409 0.9977 0.8875 0.6159 0.1964 0.0573 

 RPT[195] 1.0408 0.9967 0.8843 0.6095 0.1921 0.0558 

 IGA[190] 1.0409 0.9994 0.8927 0.6263 0.2034 0.0597 

 10 Present 1.2279 1.1681 1.0282 0.7443 0.2455 0.0728 

 MST [191]  1.2276 1.1811 1.0609 0.7548 0.2510 0.0743 

 RPT[195] 1.2269 1.1790 1.0557 0.7455 0.2454 0.0724 

 IGA[190] 1.2276 1.1829 1.0668 0.7678 0.2614 0.0781 

10 0.5 Present 0.4538 0.4361 0.3884 0.2747 0.0895 0.0263 

 MST[191] 0.4537 0.4355 0.3887 0.2723 0.0884 0.0260 

 1 Present 0.5890 0.5646 0.5003 0.3479 0.1106 0.0322 

 MST[191] 0.5890 0.5640 0.5004 0.3453 0.1095 0.0320 

 2 Present 0.7572 0.7258 0.6426 0.4463 0.1418 0.0412 

 MST[191] 0.7573 0.7253 0.6439 0.4446 0.1407 0.0409 

 4 Present 0.8814 0.8475 0.7588 0.5404 0.1797 0.0531 

 MST[191] 0.8815 0.8480 0.7614 0.5405 0.1784 0.0526 

 10 Present 1.0086 0.9739 0.8808 0.6497 0.2325 0.0707 

 MST [191] 1.0087 0.9755 0.8879 0.6535 0.2298 0.0694 

Various values of the power-law index p , length-to-thickness ratio /a h , and 

thickness-to-MLSP ratio /h l  are considered for static responses of Al/Al2O3 FG 

microplates. The obtained results are reported in Tables 3.28 and 3.29, and 

compared with those derived from Thai et al.  [191], Thai et al. [190] using the 
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MST, isogeometric approach and HSDT,  Zhang et al. [195] using the MST, Navier 

method and HSDT. It can be seen that there are good agreement between the models 

for different BCs, material distribution and size effects, which shows the accuracy 

of present approach for static behaviors. 

Table 3.29: Normalized transverse center displacements of FGP microplates under 

sinusoidal load with / 10a h  0   and different boundary conditions 

BCs p  Theory /h l   

0 20 10 5 2 1 

CCCC 0.5 Present 0.1755 0.1677 0.1488 0.1032 0.0331 0.0099 

MST [191] 0.1747 0.1675 0.1492 0.1042 0.0340 0.0100 

IGA [190] 0.1773 - 0.1521 0.1068 0.0349 0.0103 

1 Present 0.2271 0.2165 0.1909 0.1306 0.0412 0.0121 

MST [191] 0.2261 0.2163 0.1951 0.1349 0.0419 0.0123 

IGA [190] 0.2295 - 0.1915 0.1318 0.0430 0.0126 

2 Present 0.2936 0.2794 0.2456 0.1673 0.0529 0.0158 

MST[191]  0.2922 0.2794 0.2472 0.1694 0.0532 0.0155 

IGA [190] 0.2967 - 0.2517 0.1733 0.0547 0.0159 

5 Present 0.3631 0.3452   0.3047 0.2124 0.0706 0.0211 

MST [191]  0.3609 0.3466 0.3100 0.2182 0.0712 0.0209 

IGA [190] 0.3676 - 0.3161 0.2233 0.0734 0.0216 

10 Present 0.4068 0.3873 0.3436 0.2437 0.0838 0.0252 

MST [191] 0.4041 0.3893 0.3582 0.2523 0.0854 0.0254 

IGA[190] 0.4121 - 0.3510 0.2584 0.0884 0.0265 

SCSC 0.5 Present 0.2585 0.2477 0.2198 0.1514 0.0477 0.0139 

 IGA [190] 0.2472 - 0.2122 0.1492 0.0488 0.0144 

1 Present 0.3349 0.3200 0.2823 0.1917 0.0591 0.0171 

 IGA [190] 0.3201 - 0.2724 0.1886 0.0602 0.0176 

2 Present 0.4318 0.4126 0.3643 0.2480 0.0769 0.0221 

 IGA [190] 0.4133 - 0.3513 0.2425 0.0768 0.0223 

5 Present 0.5256 0.5055 0.4540 0.3218 0.1059 0.0311 

 IGA [190] 0.5086 - 0.4389 0.3118 0.1035 0.0306 

10 Present 0.5849 0.5646 0.5118 0.3720 0.1280 0.0382 

 IGA [190] 0.5685 - 0.4961 0.3604 0.1246 0.0375 
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Table 3.30: Normalized transverse center displacements of FGP square microplates 

under sinusoidal load with different boundary conditions 

BCs /a h     p  /h l  

    10 5 2 1 

SSSS 10 0.1 0.5 0.5111 0.4342 0.3025 0.0962 0.0280 

   1 0.6947 0.5831 0.3964 0.1218 0.0351 

  2 0.9578 0.7987 0.5365 0.1622 0.0464 

  5 1.2183 1.0372 0.7244 0.2345 0.0687 

  10 1.3565 1.1739 0.8523 0.2968 0.0891 

  0.2 0.5 0.5822 0.4903 0.3356 0.1043 0.0301 

   1 0.8456 0.6983 0.4610 0.1361 0.0387 

  2 1.3214 1.0690 0.6800 0.1909 0.0536 

  5 1.9318 1.5884   1.0391 0.3052 0.0870 

  10 2.1828 1.8440 1.2843 0.4187 0.1231 

SCSC 10 0.1 0.5 0.2906 0.2449 0.1662 0.0512 0.0149 

   1 0.3939 0.3278 0.2177 0.0653 0.0187 

   2 0.5436 0.4503 0.2971 0.0882 0.0249 

   5 0.7016 0.5956 0.4110 0.1301 0.0373 

   10 0.7870 0.6844 0.4904 0.1641 0.0483 

  0.2 0.5 0.3305 0.2758 0.1841 0.0552 0.0159 

   1 0.4781 0.3909 0.2525 0.0729 0.0206 

  2 0.7462 0.5979 0.3749 0.1033 0.0288 

  5 1.1042 0.9064 0.5905 0.1675 0.0476 

  10 1.2676 1.0785 0.7459 0.2348 0.0674 

CCCC 10 0.1 0.5 0.1969 0.1640 0.1100 0.0335 0.0101 

   1 0.2663 0.2191 0.1439 0.0426 0.0128 

   2 0.3682 0.3012 0.1962 0.0573 0.0164 

   5 0.4827 0.4036 0.2735 0.0844 0.0244   

   10 0.5480 0.4671 0.3281 0.1070 0.0315 

  0.2 0.5 0.2233 0.1842 0.1216 0.0362 0.0104 

   1 0.3219 0.2603 0.1664 0.0475 0.0135 

   2 0.5018 0.3975 0.2462 0.0676 0.0210 

   5 0.7550 0.6090 0.3888 0.1106 0.0313 

   10 0.8832 0.7357 0.4969 0.1526 0.0440 

Moreover, in order to investigate effects of porosity  , material parameter p , side-

to-thickness ratio /a h , size effects /h l  and boundary conditions on the static 

responses of FGP microplates, Table 3.30 present their center transverse 

displacements with various configurations.  The variations of   center deflections 

with respect to /a h  and /h l  are also plotted in Fig. 3.9. It can be seen  that the 

transverse displacements increase with increase of the p and /h l . The graph in Fig. 
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3.9b reveals that the deflections vary gradually for / 10h l   and from / 25h l   the 

curves become flatter and the results tend to be closed to those obtained from the 

classical theory  /h l   , which explains that the size effects on deflections of 

FGP microplates are not significant from / 25h l  . 

 

(a) SSSS (b) 5p   

Figure 3.9: Variation of normalized center deflection with respect the power index 

p  and thickness-to-length scale /h l  of FGP microplates ( 0.2  , / 10a h  )  

3.4.2.2.2 Free vibration analysis 

In order to study the accuracy of present solutions in predicting vibration responses, 

Tables 3.31-3.33 provide the fundamental frequencies of Al/Al2O3 FGP microplates 

without porosity effects  0   in which the solutions are computed for various 

configurations. The obtained results are compared with those derived from Thai et 

al. [191] and Thai et al. [190] based on the MST, IGA and HSDT,  Zhang et al. 

[195] based on the MST and Navier procedure and a refined HSDT. It can be seen 

that there is no discrepancy between models. The fundamental frequencies decrease 

with the increase of p  as expected. The effect of p  on the natural frequencies of 

Al/Al2O3 FGP microplates is also plotted in Fig. 3.10a for / 1,2,5,10,20h l  , 

/ 10a h   and 0.2  . There exist large deviations of these curves, which indicate 
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significant size effects. Moreover, the variations of fundamental frequencies with 

respect to /h l  are displayed in Fig. 3.10b. It is observed that the results decrease 

with the increase of /h l  up to / 10h l   and then the curves become flatter which 

indicates the size effects can be neglected.  

Table 3.31: Normalized fundamental frequencies /c ch E    of Al/Al2O3 FGP 

square microplates ( 0  , / 10a h  , SSSS) 

p  Theory /h l   

  10 5 2 1 

0 Present 0.0577 0.0615 0.0726 0.1250 0.2283 

MST [191]  0.0577 0.0619 0.0729 0.1254 0.2297 

RPT [195] 0.0577 0.0619 0.0730 0.1258 0.2309 

IGA[190] 0.0577 0.0617 0.0725 0.1240 0.2268 

0.5 Present 0.0490 0.0529 0.0626 0.1099 0.2035 

MST [191]  0.0490 0.0529 0.0633 0.1110 0.2047 

RPT [195] 0.0489 0.0529 0.0632 0.1113 0.2057 

IGA[190] 0.0490 0.0528 0.0629 0.1098 0.2023 

1 Present 0.0441 0.0475 0.0574 0.1014 0.1884 

MST [191]  0.0442 0.0479 0.0577 0.1024 0.1896 

RPT [195] 0.0442 0.0480 0.0578 0.1028 0.1907 

IGA[190] 0.0442 0.0478 0.0573 0.1013 0.1873 

2 Present 0.0401 0.0431 0.0520 0.0926 0.1722 

MST [191]  0.0401 0.0435 0.0523 0.0930 0.1722 

RPT [195] 0.0401 0.0435 0.0524 0.0933 0.1731 

IGA[190] 0.0401 0.0434 0.0520 0.0918 0.1698 

5 Present 0.0377 0.0403 0.0476 0.0809 0.1489 

MST [191]  0.0377 0.0404 0.0477 0.0822 0.1508 

RPT [195] 0.0377 0.0405 0.0478 0.0825 0.1514 

IGA[190] 0.0377 0.0403 0.0474 0.0810 0.1482 

10 Present 0.0364 0.0388 0.0452 0.0757 0.1360 

MST [191]  0.0363 0.0387 0.0451 0.0761 0.1384 

RPT [195] 0.0364 0.0388 0.0453 0.0764 0.1390 

IGA[190] 0.0364 0.0387 0.0449 0.0750 0.1359 
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Table 3.32: Normalized fundamental frequencies of Al/Al2O3 FGP square 

microplates ( 0  , / 10a h  , CCCC and SCSC) 

BCs p  Theory /h l   

  20 10 5 2 1 

CCCC 0.5 Present 8.4735 8.6614 9.1920 11.0307 18.9020 35.1640 

IGA [190] 8.4405 - 9.1227 10.8954 19.0701 35.1215 

1 Present 7.6782 7.8132 8.3908 10.0530 17.6636 32.3192 

IGA [190] 7.6251 - 8.2766 9.9597 17.6422 32.6292 

2 Present 6.9176 7.1106 7.5746 9.0783 15.9206 28.8231 

IGA [190] 6.8944 - 7.4923 9.0367 16.0977 29.8609 

5 Present 6.4231 6.5519 6.9710 8.3300 13.9971 25.9460 

IGA [190] 6.3722 - 6.8823 8.2026 14.3324 26.4157 

10 Present 6.1199 6.2784 6.6505 7.8617 13.0441 23.9971 

IGA [190] 6.1039 - 6.5602 7.7407 13.2706 24.2754 

SCSC 0.5 Present 6.7197 6.8676 7.2931 8.7900 15.6599 29.0008 

 IGA[190] 6.9031 - 7.4556 8.8961 15.5600 28.6567 

1 Present 6.0650 6.2057 6.6094 8.0210 14.4368 26.8247 

 IGA[190] 6.2329 - 6.7605 8.1283 14.3915 26.6161 

2 Present 5.4955 5.6222 5.9858 7.2578 13.0467 24.2396 

 IGA[190] 5.6405 - 6.1230 7.3744 13.1146 24.3082 

5 Present 5.1361 5.2381 5.5323 6.5758 11.4606 21.0871 

 IGA[190] 5.2361 - 5.6429 6.7021 11.6480 21.4179 

10 Present 4.9452 5.0338 5.2903 6.2080 10.5865 19.3316 

 IGA[190] 5.0254 - 5.3868 6.3288 10.7777 19.6645 

 

In order to study further the size effects of vibration problems, Fig. 3.11 illustrates 

the ratio of fundamental frequencies computed from the MST over the MCT, which 

is expressed with respect to  /h l , 5p  , 0.2  , / 10a h   and different boundary 

conditions. It can be observed that the MST with three MLSPs produces frequencies 

larger than the MCT with one MLSP, especially when the microplate thickness is 

close to the MLSP. It emphasizes the importance of the consideration of three 

components e.g. the dilatation, deviatoric stretch and symmetric part of rotation 
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gradient tensor in the MST rather than only the symmetric part of rotation gradient 

tensor in the MCT when dealing with microplates. As expected, by increasing the 

size scale, the difference between the theories is decreased. 

Table 3.33: Normalized fundamental frequencies of Al/Al2O3 FGP square microplates 

BCs /a h     p  /h l  

    10 5 2 1 

SSSS 10 0.1 0.5 4.8469 5.2465 6.2753 11.1444 20.5884 

   1 4.2815 4.6668 5.6497 10.2161 19.0334 

  2 3.7640 4.1238 4.9947 9.1029 16.9999 

  5 3.4574 3.6783 4.4653 7.8075 14.4907 

  10 3.3327 3.5350 4.1840 7.0993 12.8651 

  0.2 0.5 4.7972 5.2009 6.1126 11.1001 20.1158 

   1 4.1121 4.5268 5.5541 10.0543 19.0057 

  2 3.4064 3.7713 4.7471 8.9419 16.8823 

  5 2.9323 3.2158 3.9832 7.3159 13.7288 

  10 2.8148 3.0352 3.6550 6.4101 11.7388 

SCSC 10 0.1 0.5 6.6598 7.2591 8.7147 15.3799 28.4118 

   1 5.8920 6.4631 7.9308 14.1016 26.1753 

   2 5.1741 5.6891 7.0084 12.5850 23.7134 

   5 4.7171 5.1198 6.1693 10.9865 20.3606 

   10 4.5305 4.8659 5.7523 9.9342 18.2235 

  0.2 0.5 6.5990 7.1277 8.5988 15.1299 28.1844 

   1 5.6709 6.2750 7.7094 14.0535 26.0222 

  2 4.6990 5.2527 6.6405 12.5620 23.6336 

  5 4.0124 4.4345 5.5079 10.2385 19.2228 

  10 3.8229 4.1489 4.9977 8.8931 16.4769 

CCCC 10 0.1 0.5 8.3865 9.1064 11.0009 18.7157 35.0700 

   1 7.4713 8.1995 9.9376 17.5254 32.1417 

   2 6.5451 7.2033 8.8372 15.7657 28.6778 

   5 5.8837 6.1920 7.8150 13.3725 23.7300 

   10 5.6264 6.1831 7.3008 12.0451 21.4739 

  0.2 0.5 8.3202 9.1037 11.0001 18.6797 34.9638 

   1 7.1684 7.9717 9.7343 17.3071 32.1207 

   2 5.9501 6.6362 8.3403 15.2109 28.4556 

   5 5.0257 5.6144 6.9379 11.9968 20.3562 

   10 4.7414 5.2673 6.3223 10.5215 19.6228 
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(a) SSSS (b) 5p   

Figure 3.10: Variation of normalized fundamental frequencies with respect the 

power index p  and thickness-to-MLSP ratio /h l  ( / 10a h  , 0.2  )  

(a) 5p   (b) SSSS 

Figure 3.11: Size effect of the MCT and MST for the normalized fundamental 

frequencies with respect to the length scale-to-thickness ratio /h l  ( 0.2  , 5p  , 

/ 10a h  ) 

3.4.2.2.3 Buckling analysis 

In order to verify the accuracy of present theory in predicting buckling behaviors 

with deterministic material properties, Table 3.34 presents normalized critical 

buckling loads of simply supported FGM microplates under mechanical loads in 

which the responses are calculated with both axial compression  
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      1 2 12, , 1,0,0
m m m

N N N   and biaxial compression        1 2 12, , 1,1,0
m m m

N N N  , 

different values of /h l   , 10, 5, 2, 1, and no porosity effect is accounted  0  .  

Table 3.34: Normalized critical buckling load   2 3/m

cr cr mN N a h E  of Al/Al2O3 

FGP square microplates ( 0  , / 10a h  , SSSS)  

p  Theory /h l  

  10 5 2 1 

Axial compression 
      1 2 12, , 1,0,0
m m m

N N N     

0.5 Present 12.1593 14.1562 20.1595 62.2324 212.5038 

 MST [191] 12.1236 14.1490 20.1999 62.1669 211.1461 

 RPT [195] 12.1213 14.1543 20.2387 62.6144 213.5682 

 IGA [190] 12.1230 14.0850 19.9551 60.8187 206.3342 

1 Present 9.3724 11.0035 15.9002 50.1979 172.6696 

 MST [191] 9.3391 10.9906 15.9260 50.1870 171.9637 

 RPT [195] 9.3391 10.9968 15.9590 50.5419 173.7865 

 IGA [190] 9.3391 10.9375 15.7204 49.0315 167.6943 

2 Present 7.2889 8.5648 12.3864 39.0974 134.4300 

 MST [191] 7.2631 8.5419 12.3708 39.0731 134.2383 

 RPT [195] 7.2631 8.5479 12.4000 39.3331 135.4673 

5 Present 6.0563 7.0017 9.7751 28.8861 96.9485 

 MST [191] 6.0353 6.9468 9.6789 28.7840 96.9802 

 RPT [195] 6.0353 6.9549 9.7100 28.9617 97.6728 

 IGA [190] 6.0353 6.9131 9.5425 27.9155 93.4952 

10 Present 5.4723 6.2570 8.5295 24.0504 79.2548 

 MST [191] 5.4529 6.1945 8.4150 23.9178 79.2302 

 RPT [195] 5.4528 6.2026 8.4445 24.0660 79.7717 

 IGA [190] 5.4528 6.1674 8.3032 23.1847 76.2541 

Biaxial compression 
      1 2 12, , 1,1,0
m m m

N N N    

0.5 Present 6.0800 7.0780 10.0781 31.1022 106.1940 

 MST[191] 6.0618 7.0745 10.1000 31.0834 105.6232 

 RPT[195] 6.0606 7.0772 10.1193 31.3072 106.7841 

 IGA[190] 6.0615 7.0425 9.9775 30.4094 103.1673 

1 Present 4.6865 5.5017 7.9490 25.0897 86.2975 

 MST[191] 4.6696 5.4953 7.9630 25.0935 85.9820 

 RPT[195] 4.6695 5.4984 7.9795 25.2710 86.8932 

 IGA[190] 4.6696 5.4688 7.8602 24.5158 83.8473 

2 Present 3.6447 4.2824 6.1925 19.5433 67.1946 

 MST[191] 3.6315 4.2710 6.1854 19.5365 67.1192 

 RPT[195] 3.6315 4.2740 6.2000 19.6665 67.7337 

10 Present 2.7363 3.1284 4.2640 12.0217 39.6153 

 MST[191] 2.7264 3.0972 4.2075 11.9589 39.6151 

 RPT[195] 2.7264 3.1013 4.2222 12.0330 39.8858 

 IGA[190] 2.7264 3.0837 4.1516 11.5924 38.1271 
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These results are then compared with those reported by Thai et al.  [191], Thai et al. 

[190], and Zhang et al. [195].  It can be seen from Table 1 that there are good 

agreements among models, the effects of thickness-to-MLSP ratio impacted 

importantly on critical buckling loads of FGM microplates. Similarly, the accuracy 

of the present model in predicting buckling behaviors is also verified as expected in 

Table 3.35 for SCSC and CCCC boundary conditions of FGM microplates.  

Table 3.35: Normalized critical buckling load   2 3/m

cr cr mN N a h E  of Al/Al2O3 

FGP square microplates  with axial compression 
      1 2 12, , 1,0,0
m m m

N N N  , 0  , 

/ 10a h  , SCSC and CCCC boundary conditions 

p  Theory /h l  

  10 5 2 1 

SCSC   

0.5 Present 20.4079 23.9355 34.5293 106.2774 360.4446 

 IGA [190] 20.7870 24.2336 34.4511 104.9240 355.0073 

1 Present 15.7470 18.6220 27.2586 87.4220 300.6437 

 IGA [190] 16.0781 18.9077 27.2924 85.1205 290.3734 

2 Present 12.2120 14.4381 21.1388 68.0160 234.9042 

 IGA  [190] 12.4183 14.6427 21.2445 67.0440 230.0893 

5 Present 10.0014 11.5889 16.3775 50.0462 170.4489 

 IGA [190] 9.9661 11.6057 16.4530 50.0703 169.7890 

10 Present 8.9785 10.2705 14.1665 41.5532 139.4981 

 IGA  [190] 8.8672 10.2203 14.1983 41.6312 139.1741 

CCCC       

0.5 Present 27.2737 31.9314 45.8300 140.3232 477.7048 

 IGA[190] 27.0706 31.6036 45.0313 137.6734 466.5827 

1 Present 21.0949 24.8790 36.1457 114.3872 391.8628 

 IGA [190] 20.9471 24.6676 35.6870 111.7391 381.8401 

2 Present 16.2844 19.2023 27.8882 88.3252 302.6476 

 IGA [190] 16.1682 19.0964 27.7817 88.0910 302.9154 

5 Present 13.0268 15.1511 21.4006 64.5835 219.5999 

 IGA [190] 12.9218 15.0971 21.5034 65.8642 223.8079 

10 Present 11.5736 13.3378 18.4901 53.8684 179.6851 

 IGA [190] 11.4711 13.2770 18.5512 54.7761 183.4780 

 

Moreover, in order to investigate the effects of porosity, material distribution and 

boundary conditions, and size effects in mechanical buckling responses further, 

Table 3.36 introduces new numerical results of critical buckling loads for the FGP 

microplates under uniaxial compression with porous parameter 0.1   and 0.2, 

side-to-thickness ratio / 10a h  , different power indices 0.5,1,2,5,10p  , various 
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values of /h l   , 10, 5, 2, 1, and three boundary conditions (SSSS, SCSC, 

CCCC).  

Table 3.36: Normalized critical buckling load   2 3/m

cr cr mN N a h E  of Al/Al2O3 

FGP square microplates ( / 10a h  , SSSS), 
      1 2 12, , 1,0,0
m m m

N N N    

   p  Theory /h l  

  10 5 2 1 

SSSS  

0.1 0.5 Present 10.7948 12.6701 18.3088 57.8304 198.9871 

 1 Present 7.9448 9.4448 13.9488 45.4984 158.1497 

2 Present 5.7630 6.8953 10.2914 34.0529 118.8672 

5 Present 4.5302 5.3182 7.6301 23.5858 80.4325 

10 Present 4.0691 4.6990 6.5045 18.7935 62.4979 

0.2 0.5 Present 9.4762 11.2247 16.4823 53.3286 184.9203 

 1 Present 6.5272 7.8908 11.9841 40.6488 142.9793 

2 Present 4.1773 5.1601 8.1107 28.7696 102.5064 

5 Present 2.8570 3.4750 5.2956 17.9166 62.9178 

10 Present 2.5287 2.9923 4.2978 13.1640 44.7111 

SCSC  

0.1 0.5 Present 18.1615 21.4830 31.4557 100.8126 346.1531 

 1 Present 13.3906 16.0431 24.0094 79.4346 275.5905 

 2 Present 9.6990 11.6851 17.6630 59.4432 208.0289 

 5 Present 7.5049 8.8335 12.8445 41.0540 141.9227 

 10 Present 6.6698 7.6989 10.8027 32.6080 110.5416 

0.2 0.5 Present 15.9821 19.0868 28.4059 93.1467 321.8675 

 1 Present 11.0405 13.4593 20.7214 71.1660 249.3802 

 2 Present 7.0742 8.8085 14.0286 50.4483 179.7521 

 5 Present 4.7670 5.8212 9.0096 31.4459 111.6549 

 10 Present 4.1405 4.8922 7.1593 23.0534 79.7902 

CCCC        

0.1 0.5 Present 24.3601 28.7527 41.8178 132.4741 453.8002 

 1 Present 18.0333 21.5132 31.8839 103.7666 358.2498 

 2 Present 13.0317 15.6155 23.3124 76.7932 264.9759 

 5 Present 9.8266 11.5830 16.7471 52.3538 179.5735 

 10 Present 8.5850 9.9884 14.0572 41.8132 123.2950 

0.2 0.5 Present 21.5197 25.6169 37.8204 122.3423 421.5245 

 1 Present 14.9569 18.1229 27.5534 92.7331 322.8644 

 2 Present 9.6040 11.8409 18.4980 64.5556 221.4257 

 5 Present 6.3170 7.6725 11.6563 38.6637 132.2340 

 10 Present 5.3232 6.3350 9.2270 26.8966 92.8254 

 

The variation of normalized critical buckling loads with respect to p  and  /h l  is 

also plotted in Figs. 3.12 and 3.13.  It is observed that the critical buckling loads 
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decrease with an increase of the power-law index p , porosity parameter   and 

thickness-to-MLSP ratio /h l . This phenomena can be explained by the fact that the 

increase of p ,   and /h l  leads to the decrease of stiffness of the FGP microplates. 

It is interesting to see that the size effects of FGP microplates are importantly 

significant from / 20h l   for both FGM microplates  0   and FGP microplates 

 0.1,0.2  . Fig. 3.13 also shows that the porosity effect does not impact 

significantly on the size effects of FGP microplates. 

(a) SSSS 

 (b) 5p   

Figure 3.12: Variation of normalized critical buckling load for axial compression 

with respect the power index p  and length scale-to-thickness ratio /h l  ( / 10a h  , 

0.1  ) 
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Figure 3.13: Size effect of the MST for the normalized critical buckling load with 

respect to the length scale-to-thickness ratio /h l  under simply supported and axial 

compression, / 10a h , and power – law index 1p   

In order to examine the size effects of FGP microplates further, Figs. 3.14 and 3.15 

provide the variation of the proportion of critical buckling loads derived from the 

MST and MCT with respect to /h l . The results are computed for FGP microplates 

with / 10a h  , 0.2  , 1p   and different boundary conditions. Three curved are 

observed in which the highest and lowest curves correspond to the SSSS and CCCC 

boundary conditions, respectively. It is clear from these graphs that the MST with 

three MLSPs generates the critical buckling loads much larger than the MCT with 

one MLSP, especially when the MLSP is close to the microplate thickness. As seen 

in Figs 3.14 and 3.15, for / 1h l   and SSSS boundary condition, the critical 

buckling loads obtained from the MST is greater three times than those from the 

MCT. The difference between these theories are sharply decreased up to / 20h l   

from which the size effects can be neglected. It underlines how crucial it is to take 

into account three MLSPs while dealing with microplate problems.  
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(a)  0   

(b)  0.2   

Figure 3.14: Size effect of the MCT and MST for the normalised critical buckling 

load with respect to the length scale-to-thickness ratio /h l  under simply supported 

and axial compression, / 10a h  
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 Figure 3.15: The normalized critical buckling under impacting size effect of the 

MST and MCT with axial compression, / 10a h , 0.2  , 1p  

The next example is to consider deterministic critical buckling temperatures.  

Tables 3.37 - 3.39 present  normalized critical buckling temperatures of FGP 

microplates with three types of temperature distribution (UTR, LTR, NLTR), 

/ 20a h  , 0,1,5,10p   and /h l   , 10, 5, 2, 1. For verification purpose, the 

obtained critical buckling temperatures for FGM plates without porous parameters 

( 0  ) and size effect are compared to those provided by Zenkour et al. ([196]) , 

Yaghoobi et al. [197]. It is seen that there are good agreements among the models. 

The porosity and size effects on critical buckling temperatures reporting new 

numerical results are presented in Tables 3.37 – 3.39 and will be used as 

benchmarks for future researches. Figs. 3.16- 3.18 also display the variation of the 

critical buckling temperature with respect to the power-law index p , porosity 

parameter  , different temperature distributions (UTR, LTR, NLTR) and boundary 

conditions. It is interesting to observe from these graphs that the critical buckling 

temperatures increase with the porosity parameter  , this can be explained by the 

fact that an increase of the porous parameter led to the increase of the thermal 

conductivity coefficient and therefore it requires a higher critical buckling load.  
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Table 3.37: Normalized thermal critical buckling load crT  of Al/Al2O3 FGP square 

microplates with biaxial compression 
      1 2 12, , 1,1,0
tr tr tr

N N N   and / 20a h   under 

uniform distribution 
BCs p  Theory /h l   

  10 5 2 1 

SSSS   

0   0 Present 0.4218 0.4835 0.6691 1.9704 6.6189   

  HSDT [196] 0.4215 - - - - 

 1 Present 0.1964 0.2303 0.3324 1.0482 3.6054 

  HSDT [196] 0.1962 - - - - 

 5 Present 0.1786 0.2046 0.2823 0.8242 2.7581 

  HSDT [196] 0.1785 - - - - 

 10 Present 0.1834 0.2073 0.2784 0.7736 2.5401 

  HSDT [196] 0.1831 - - - - 

0.1   0 Present 0.5437 0.6265 0.8758 2.6239 8.8690 

 1 Present 0.2206 0.2622 0.3871 1.2629 4.3917 

 5 Present 0.1930 0.2244 0.3182 0.9728 3.3096 

 10 Present 0.2067 0.2354 0.3207 0.9130 3.0261 

0.2   0 Present 0.7513 0.8705  1.2289 3.7427 12.7232 

 1 Present 0.2494 0.3015 0.4583 1.5576 5.4844 

 5 Present 0.1924 0.2318 0.3496 1.1726 4.1113 

 10 Present 0.2235 0.2596 0.3663 1.1071 3.7505 

SCSC        

0   0 Present 0.6778 0.7785 1.0805 3.1951 10.7448 

 1 Present 0.3161 0.3716 0.5381 1.7036 5.8633 

 5 Present 0.2865 0.3282 0.4532 1.3291 4.4592 

 10 Present 0.2936 0.3317 0.4458 1.2450 4.1022 

0.1   0 Present 0.8743 1.0093 1.4151 4.2562 14.4002 

 1 Present 0.3554 0.4233 0.6271 2.0541 7.1462 

 5 Present 0.3098 0.3601 0.5112 1.5695 5.3516 

 10 Present 0.3310 0.3764 0.5129 1.4686 4.8856 

0.2   0 Present 1.2081 1.4029 1.9864 6.0725 20.6616 

 1 Present 0.4020 0.4873 0.7434 2.5356 8.9306 

 5 Present 0.3092 0.3726 0.5627 1.8936 6.6505 

 10 Present 0.3577 0.4146 0.5853 1.7804 6.0543 

CCCC        

0.0   0 Present 1.0893 1.2534 1.7454 5.1862 17.4462 

 1 Present 0.5092 0.5997 0.8710 2.7683 9.5260 

 5 Present 0.4587 0.5266 0.7303 2.1551 7.2379 

 10 Present 0.4691 0.5310 0.7169 2.0168 6.6553 

0.1   0 Present 1.4057 1.6260 2.2871 6.9105 23.3840 

 1 Present 0.5731 0.6839 1.0162 3.3393 11.6128 

 5 Present 0.4965 0.5786 0.8248 2.5465 8.6892 

 10 Present 0.5285 0.6026 0.8249 2.3793 7.9270 

0.2   0 Present 1.9443 2.2614 3.2123 9.8621 33.5549 

 1 Present 0.6491 0.7883 1.2057 4.1243 14.5162 

 5 Present 0.4969 0.6002 0.9100 3.0767 10.8067 

 10 Present 0.5710 0.6638 0.9419 2.8862 9.8272 
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Table 3.38: Normalized thermal critical buckling load crT  of Al/Al2O3 FGP square 

microplates with biaxial compression 
      1 2 12, , 1,1,0
tr tr tr

N N N   and / 20a h   under 

linear temperature distribution 
BCs p  Theory /h l   

  10 5 2 1 

SSSS   

0   0 Present 0.8325 0.9543 1.3206 3.8889 13.0637 

  HSDT  [196] 0.8330 - - - - 

 1 Present 0.3638 0.4266 0.6157 1.9416 6.6783 

  HSDT  [196] 0.3587 - - - - 

 5 Present 0.3040 0.3483 0.4804 1.4026 4.6940 

  HSDT  [196] 0.2987 - - - - 

 10 Present 0.3213 0.3632 0.4879 1.3556 4.4515 

  HSDT  [196] 0.3156 - - - - 

0.1   0 Present 1.0730 1.2366 1.7286 5.1788 17.5047 

 1 Present 0.4050 0.4813 0.7106 2.3183 8.0619 

 5 Present 0.3141 0.3652 0.5178 1.5831 5.3857 

 10 Present 0.3468 0.3949 0.5379 1.5314 5.0761 

0.2   0 Present 1.4829 1.7181 2.4255 7.3868 25.1115 

 1 Present 0.4521 0.5467 0.8310 2.8240 9.9438   

 5 Present 0.3095 0.3488 0.5261 1.7647 6.1874 

 10 Present 0.3436 0.3992 0.5633 1.7023 5.7669 

SCSC        

0   0 Present 1.3378   1.5366 2.1325 6.3061 21.2068 

 1 Present 0.5856 0.6883 0.9967 3.1556 10.8606 

 5 Present 0.4876 0.5585 0.7713 2.2619 7.5890 

 10 Present 0.5146 0.5812 0.7812 2.1818 7.1888 

0.1   0 Present 1.7258 1.9921 2.7929 8.4005 28.4214 

 1 Present 0.6524 0.7771 1.1513 3.7707 13.1183 

 5 Present 0.5041 0.5860 0.8319 2.5540 8.7086 

 10 Present 0.5552 0.6315 0.8604 2.4634 8.1952 

0.2   0 Present 2.3846 2.7688 3.9205 11.9852 40.7795 

 1 Present 0.7289 0.8836 1.3478 4.5974 16.1921 

 5 Present 0.4953 0.5607 0.8468 2.8499 10.0089 

 10 Present 0.5501 0.6375 0.9000 2.7376 9.3093 

CCCC        

0.0   0 Present 2.1500 2.4738 3.4449 10.2358 34.4334 

 1 Present 0.9432 1.1108 1.6134 5.1277 17.6450 

 5 Present 0.7806 0.8962 1.2429 3.6677 12.3179 

 10 Present 0.8220 0.9306 1.2564 3.5343 11.6630 

0.1   0 Present 2.7744 3.2092 4.5141 13.6392 46.1527 

 1 Present 1.0521 1.2554 1.8654 6.1301 21.3176 

 5 Present 0.8079 0.9416 1.3422 4.1440 14.1401 

 10 Present 0.8865 1.0109 1.3838 3.9911 13.2970 

0.2   0 Present 3.8373 4.4632 6.3400 19.4646 66.2268 

 1 Present 1.1769 1.4292 2.1860 7.4777 26.3194 

 5 Present 0.7878 0.9033 1.3695 4.6303 16.2639 

 10 Present 0.8779 1.0207 1.4484 4.4380 15.1107 
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Table 3.39: Normalized thermal critical buckling load crT  of Al/Al2O3 FGP square 

microplates with biaxial compression 
      1 2 12, , 1,1,0
tr tr tr

N N N   and / 20a h   under 

nonlinear temperature distribution 

BCs p  Theory /h l   

  10 5 2 1 

SSSS   

0   0 Present 0.8436 0.9670 1.3382 3.9407 13.2379 

  FSDT  [197] 0.8330 - - - - 

 1 Present 0.6554 0.7687 1.1094 3.4982 12.0321 

 5 Present 0.4326 0.4955 0.6836 1.9956 6.6784 

  FSDT  [197] 0.3746 - - - - 

 10 Present 0.4042 0.4569 0.6137 1.7051 5.5989 

  FSDT  [197] 0.3660 - - - - 

0.1   0 Present 1.0873 1.2531 1.7517 5.2479 17.7381 

 1 Present 0.7327 0.8706 1.2855 4.1939 14.5842 

 5 Present 0.4449 0.5173   0.7335 2.2425 7.6292 

 10 Present 0.4347 0.4951 0.6744 1.9199 6.3640 

0.2   0 Present 1.5027 1.7410 2.4579 7.4853 25.4463 

 1 Present 0.8232 0.9954 1.5131 5.1421 18.1060 

 5 Present 0.4372 0.4907 0.7401 2.4824 8.7039 

 10 Present 0.4283 0.4976 0.7020 2.1216 7.1875 

SCSC        

0   0 Present 1.3557 1.5569 2.1610 6.3902 21.4896 

 1 Present 1.0550 1.2402 1.7957 5.6854 19.5674 

 5 Present 0.6937 0.7946 1.0974 3.2182 10.7974 

 10 Present 0.6473 0.7311 0.9826 2.7443 9.0419 

0.1   0 Present 1.7486 2.0186 2.8301 8.5125 28.8004 

 1 Present 1.1802 1.4058 2.0827 6.8214 23.7315 

 5 Present 0.7141 0.8301 1.1785 3.6179 12.3362 

 10 Present 0.6960 0.7917 1.0787 3.0884 10.2745 

0.2   0 Present 2.4162 2.8058 3.9728 12.1451 41.3232 

 1 Present 1.3272 1.6089 2.4541 8.3710 29.4832 

 5 Present 0.6976 0.7987 1.1912 4.0090 14.0796 

 10 Present 0.6856 0.7946 1.1217 3.4120 11.6025 

CCCC        

0.0   0 Present 2.1787 2.5067 3.4908 10.3723 34.8925 

 1 Present 1.6994 2.0013 2.9068 9.2386 31.7907 

 5 Present 1.1107 1.2751 1.7684 5.2183 17.5254 

 10 Present 1.0341 1.1705 1.5802 4.4453 14.6694 

0.1   0 Present 2.8114 3.2520 4.5743 13.8211 46.7680 

 1 Present 1.9033 2.2712 3.3745 11.0895 38.5645 

 5 Present 1.1445 1.3338 1.9013 5.8702 20.0301 

 10 Present 1.1114 1.2674 1.7348 5.0036 16.6705 

0.2   0 Present 3.8886 4.5227 6.4246 19.7241 67.1098 

 1 Present 1.2290 2.6023 3.9804 13.6157 47.9233 

 5 Present 1.1218 1.2907 1.9265 6.5135 22.8785 

 10 Present 1.0944 1.2722 1.8052 5.5312 18.8330 
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(a) SSSS, 0.5p   (b) SCSC, 0.5p   (c) CCCC, 0.5p   

(d) SSSS, 1p   (e) SCSC, 1p   (f) CCCC, 1p   

(g) SSSS, 2p   (h) SCSC, 2p   (i) CCCC, 2p   

Figure 3.16: Variation of normalized thermal buckling load with respect the length 

scale-to-thickness ratio /h l  ( / 20a h  ) with biaxial compression under uniform 

distribution 
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(a) SSSS, 0p   (b) SCSC, 0p   (c) CCCC, 0p   

(d) SSSS, 0.5p   (e) SCSC, 0.5p   (f) CCCC, 0.5p   

(g) SSSS, 1p   (h) SCSC, 1p   (i) CCCC, 1p   

 

Figure 3.17: Variation of normalized thermal buckling load with respect the length 

scale-to-thickness ratio /h l  ( / 20a h  ) with biaxial compression under linear 

distribution 
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(a) SSSS, 0p   (b) SCSC, 0p   (c) CCCC, 0p   

(d) SSSS, 0.5p   (e) SCSC, 0.5p   (f) CCCC, 0.5p   

(g) SSSS, 1p   (h) SCSC, 1p   (i) CCCC, 1p   

Figure 3.18: Variation of normalized thermal buckling load with respect the length 

scale-to-thickness ratio /h l  ( / 20a h  ) with biaxial compression under nonlinear 

distribution 

3.4 Conclusions 

This chapter introduces novel approximation functions for the Ritz method to 

analyze the behaviors of FG, FG sandwich, FGP, and PMF microplates. A unified 

higher-order shear deformation theory (HSDT) is formulated to approximate the 
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displacement field accurately. To capture size-dependent effects in microplates, the 

modified strain gradient theory (MST) is employed. The governing equations of 

motion are derived using Hamilton’s principle. Convergence and validation studies 

are performed to verify the accuracy and reliability of the proposed solutions. The 

influence of the porosity parameters, shape functions, and boundary conditions on 

the microplates' frequency, buckling, and static responses have been examined. 

Some findings are followed: 

 The chapter proposed new computational algorithms, which combined the 

Ritz method with novels OP, unified HSDT, MCT, and MST theory for 

analysis of microplates.  Based on the findings of this study, the OP-Ritz 

shape functions proposed in this chapter are suitable for the behaviors 

analysis of microplates. 

 The increase of the porosity coefficient and thickness-to-MLSP ratio leads 

to the reduction of the stiffness, natural frequencies and critical buckling 

loads of the porous microplates. 

 The size effects are significant when the thickness-to-MLSP ratio is smaller 

than 20, the porosity does not impact importantly on the size effects of 

porous microplates. 

 

Moreover, the theoretical formulation and novel hybrid shape functions of the 

computational method proposed in this chapter will be used in the subsequent 

chapters. 

 

 

 



130 

 

CHAPTER 4 

INTELLIGENT COMPUTATIONAL ALGORITHMS 

FOR STOCHASTIC ANALYSIS OF FUNCTIONALLY 

GRADED MICROPLATES WITH UNCERTAINTIES 

OF MATERIAL PROPERTIES 

 

This chapter use the theoretical formulation of chapter three for stochastic behaviors 

analysis of the microplates. The governing equations of motions are derived from 

Hamilton’s principle. The solutions are approximated by bi-directional series in 

which hybrid shape functions are proposed, then the stiffness and mass matrix are 

explicitly derived. In order to investigate the stochastic responses of the 

microplates by using the polynomial chaos expansion (PCE), stochastic collocation 

method (SC) and Monte Carlo method under uncertainty of material properties. 

Besides, this chapter also proposes intelligent computational methods using the 

neural network systems (ANN, DNN) integrated with a balance composite motion 

optimization (BCMO) algorithm and an improved BMCO algorithm (iBCMO) to 

formulate a so-called BCMO-ANN and iBCMO-DNN for stochastic responses of 

microplates. The DNN with the long short-term memory model is used as a 

surrogate method to replace the time-consuming computational model, while the 

iBCMO is used to search the set of optimal solutions. The obtained numerical 

results for various configurations of boundary conditions, uncertainty parameters, 

three types of temperature distribution indicated that the model presents its 

accuracy and effectiveness in predicting stochastic free vibration, critical buckling, 

and thermal buckling of the microplates.  
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4.1 Introduction  

In practice, the material properties of microplates could be uncertain due to 

manufacture processing or other unexpected phenomena, it led to changes of 

behaviors of the microplates and therefore required advanced computational 

methods to quantify the solution field. Literature review [198] shows that majority 

studies of the microplates focused on deterministic analysis, which provides only 

mean responses and neglects the deviation caused by the random their material 

properties. 

Practically, in order to predict stochastic responses of structures, Monte Carlo 

Simulation (MCS) method is the simplest one to solve this complicated problem. 

Nonetheless, this approach is infeasible in different cases due to its expensive 

computational cost, especially when a complicated physical model is considered. 

Another approach is to use polynomial chaos expansion (PCE) which speeds up the 

computing process while still maintains the accuracy. Stochastic collocation (SC) is 

known as one of stochastic expansion method similar to the popular PCE. It method 

allows for the efficient and accurate computation of statistics and solutions of 

mathematical models that involve stochastic input parameters. It is particularly 

useful in the field of uncertainty quantification, where it can be used to estimate the 

propagation of uncertainties in physical systems or to quantify the sensitivity of 

system response to uncertain parameters.  It derives the Lagrange interpolation 

polynomials for a set of collocation points and reproduces the model responses at 

these collocation points as of expansion coefficients. 

In addition, there has been significant scholarly interest in the optimal design of 

plates. Optimization algorithms can be classified into two primary categories: 

gradient-based methods such as sequential quadratic programming, optimality 

criterion, force method, and non-gradient-based methods. Algorithms in the first 

group quickly find the best solutions. However, a common limitation of these 

algorithms is their tendency to become stuck at local optimal solutions. 

Furthermore, it is imperative to conduct sensitivity analyses on both the fitness and 
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constraint functions, as they play a crucial role in the optimization process. 

However, it is worth noting that performing these analyses can be intricate and 

resource-intensive. In order to mitigate these limitations, a variety of by natural 

phenomena simulation algorithms have been devised. Owing to its advantages, 

these optimization algorithms have been applied for the optimization of structures 

([199-201]),  In practice, the algorithms require dependent parameters and high 

computational costs. In order to overcome this adverse, the Balancing Composite 

Motion Optimization algorithm (BCMO) [107] has been recently developed, in 

which no dependent parameters are required. This method is inspired by the fact 

that the solution space is assumed to be in Cartesian coordinates and the searching 

movements of candidate solutions are compositely equalized in both global and 

local ones. In fact, a candidate solution can move closer to better ones to exploit the 

local regions, and move further to explore the search space. Thus, the best-ranked 

individual in each generation can jump immediately from space to space or 

intensify its current local space. Furthermore, the machine learning, which involves 

an artificial neural network (ANN), has been used to predict the behaviors of 

materials ([202-204]). Besides, the combination between the BCMO algorithm and 

ANN (BCMO-ANN) to determine optimal responses for microplates with 

uncertainties of material properties has not been developed yet, this interesting topic 

needs to be investigated. Moreover, size effects of microplates have been a 

challenging topic which needs to be studied further. Moreover, a novel intelligent 

computation algorithm iBCMO-DNN for solving the stochastic thermal buckling 

problems of microplates will propose with the aims of reducing the computational 

time in dealing with stochastic problems. 

The main objective of this chapter is to develop a stochastic model for behaviors 

analysis of the microplates using various advanced algorithms such as Monte Carlo 

simulation with 10,000 samples, polynomial chaos expansion, stochastic 

collocation, BCMO-ANN and iBCMO-DNN algorithms. The governing equations 

of motions are derived from Hamilton’s principle and then bi-directional series-type 
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solutions with hybrid shape functions. The deterministic responses of microplates 

are derived from Ritz-based solver based on a general HSDT and modified couple 

stress (MCT) and modified strain gradient (MST). Numerical results are displaced 

for various configurations of boundary conditions, uncertainty parameters, bending, 

free vibration, buckling load, and temperature distribution on the critical buckling 

temperature of microplates. 

4.2 Polynomial chaos expansion  

The key idea of this approach is to approximate the stochastic outputs as a series in 

an orthogonal space including the basis functions and their appropriate coefficients. 

The PCE of real value random variables is investigated by starting from a univariate 

case and passing to a multivariate one. The first step of PCE is to approximate the 

responses, û , which is a quantity of interest (QoI). In this study, û  is fundamental 

frequency or critical buckling load of the FG microplates in terms of a truncated 

orthogonal series as follows ([148, 149]): 

    
1

0

ˆ ˆ
P

PCE i i

i

u u c He r




  x q   (4.1) 

where ˆ
PCEu  is the response of interest obtained from the PCE; q  is a vector of 

independent random variables in PCE space mapped to physical random parameters 

x ; iHe  are multivariate orthogonal basis functions; ic  are coefficients to be 

determined so that the residual r  is minimized; P  is the permutation of the 

qualified order of the polynomial n , and the number of random variable d , which 

is given  by Askey’s scheme ([148]): 

 
 !

! !

n d
P

n d


   (4.2) 

The second step is to estimate all associated coefficients. This task can be easily 

obtained by forcing the residual minimum resulting in the inner product of the 

residual and each basis function iHe becomes zero. By taking the inner product of 

both sides of Eq. (4.1) with respect to jHe : 
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1

0

ˆ, ,
P

j i i j

i

u He c He He




   (4.3) 

then enforcing the orthogonality of jHe , Eq. (4.3) becomes: 

  
ˆ, 1

ˆ
, ,

i

i i Q

i i i i

u He
c uHe d

He He He He
   q q    (4.4) 

where iHe  is Hermite polynomial, and the “truth” response û  is unknown, thus 

Gauss-Hermite quadrature approach is implemented for computing ic  as follows: 

      
1

1 1 1

1

1 1 1

1 1

1
ˆ... ... ,..., ,...,

d
gp gp

d d d

d

N N

d d d

i j j j j i j j

j ji

c w w u q q He q q
  

         (4.5) 

where ,i i iHe He   can be analytically computed; i

gpN  is the number of 

quadrature point; i

jq  and i

jw  are the set of quadrature points and their weights, 

respectively for the random variable thi . For convenience, i

gpN  for each variable is 

chosen equally such that: 

 1 2 ... d

gp gp gp gpN N N N      (4.6) 

where 1gpN n   and the total number of Gauss points is at least  1
d

n  . Note that 

in Eq. (4.6),  
1

1ˆ ,...,
d

d

j ju q q  is the “exact” response obtained from the “truth” 

computational model by solving characteristic equations of motion microplates. It 

means that in order to estimate all polynomial coefficients ic ,  1
d

n   microplate 

models need to be run for û . For the third-order PCE model of four random 

variables, for instance,  
4

3 1 256  “truth” samples which is considered as the 

total computational cost of deriving PCE model, are needed.  

Another advantage of PCE is that the mean and variance of the response can be 

analytical estimated from its coefficients as: 

  ˆ 0
ˆ

u PCEE u c   ;  
1 1

22 2 2

ˆ ˆ

1 1

ˆ ,
P P

u PCE u i i i i i

i i

E u c He He c  
 

 

    
      (4.7) 
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Moreover, Sobol’ sensitivity indices can be also estimated directly from the PCE 

coefficients in which kS is the first-order main effect, 
T

kS is the total sensitivity index 

of a random variable kX  defined as follows ([205]): 

 
2

ˆ

k
k

u

D
S


 ;

2

ˆ

T
T k
k

u

D
S


   (4.8) 

where    2 ,
k

k j j j

j

D c He He


  q q  and    2 ,
T
k

T

k j j j

j

D c He He


  q q ; k  

includes all j such that the multivariate function  jHe q  only includes the variable 

kq (i.e,    j j kHe He qq ), while 
T

k  includes all j such that   jHe q  must include 

the variable kq (i.e,    1... ...j j k dHe He q q qq ).  
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Figure 4.1: Flowchart of stochastic free vibration and buckling analysis of the 

microplates using PCE and MCS 
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4.3 Stochastic collocation 

For 1-D problem (i.e., one random input X ) and in  interpolation points, it 

approximates the stochastic response u  by forming the Lagrange functions and 

estimating the model response at interpolation points  iu q as follows ([150, 151]): 

       
1

ˆ
in

i i

i

u X u X u q L q


    (4.9) 

 where q  is a standard variable mapping to the physical variable X  and for 

maximizing performance of this approach iq  are defined as appropriate Gauss 

quadrature points corresponding to the distribution of q . More specifically, q  could 

be normal, uniform or exponential variable, and iq  are probabilistic Gauss-

Hermite, Gauss-Legendre or Gauss-Laguerre quadrature points, respectively. The 1-

D Lagrange interpolation  iL q  is defined as: 

   
1

in
j

i
j i j
j i

q q
L q

q q






   (4.10) 

A tensor product of 1-D functions is applied to expand the SC approximation to the 

multi-dimensional space. Particularly, the expansion of d -variable and 

kn collocation points for the thk variable can be expressed as:  

      
1

1 1

1

1 1

1 1

ˆ ... ,..., ...
d

d d

d

nn
d d

j j j j

j j

u u q q L L
 

    q  (4.11) 

where 1 2, ,...,
T

dq q q   q  is a vector of random inputs and 
1

k

k

k
k

k kn
k s
j k k

s j s
s j

q q
L

q q






  in 

which 
k

sq  is a collocation point of the variable 
kq . Note that in this paper, 

kq is the 

standard normal variable and 
k

sq  is Gauss-Hermite quadrature point.  For 

convenience, the number of quadrature points for each variable is chosen equally 

such that: 
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1 2 ... d gpn n n N      (4.12) 

The total number of Gauss point for the full tensor product is  
d

gpN . Note that in 

Eq. (4.11),  
1

1 ,...,
d

d

j ju q q  is the “correct” response achieved from the “right” model 

by solving characteristic equations of motion microplates. When the SC model is 

constructed, MCS can perform directly from Eq. (4.11) to facilitate the probabilistic 

characteristics of the output, . The cost for evaluating the approximate  using Eq. 

(4.11) is considerably lower than that for the original model in characteristic 

equations of motion microplates ; hence, the total cost when using the SC model 

may be thought of as simply the cost of  
d

gpN truth model runs. To assess the 

accuracy of the proposed SC model, 10.000 samples of MCS drawn from the 

original computational model represented in characteristic equations of motion are 

also generated. To distinguish between MCS carried out on the SC model (Eq. 

(4.11)) and MCS performed with the model in characteristic equations of motion of 

microplates, the former is referred to simply as the SC method. It is demonstrated in 

the following section that to achieve sufficient accuracy, the computational cost of 

the SC model is much lower than that of MCS (i.e., 10,000d

gp
N  ). It is also noted 

that for high-dimensional problems (i.e., the number of random variable,  is large), 

SC method is also expensive compared to MCS, then alternative surrogate models 

with or without dimension reduction techniques should be adopted.  

4.4 Intelligent stochastic computational algorithms based on optimization and 

machine learning methods 

4.4.1 Balancing composite motion optimization: BCMO 

The balancing composite motion optimization is a meta-heuristic algorithm 

technique was initially developed by Le-Duc et al. [107] in which the key idea of 

this approach is to balance the individual composite motion features within the 

global optimum. Balancing global and local search via a probabilistic decision 

model creates a mechanism of mobility for each individual.  
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Initialization: As follows, a random initialization is used to create the population 

distribution: 

    1,L U L

i j i jx x rand d x x                                              (4.13)         

where 
L

ix  is the lower bound and 
U

ix  is the upper bound of the thi  individual; 

number of items is d . Based on the input in Eq. (4.13), the population objective 

function values  f x  are then evaluated, and all individuals are sorted based on the 

sorting  f x  as follows: 

   argx sort f x   (4.14) 

Best individual and instant global point: The instant global point 
t

Oinx  is 

determined as the prior best of 
1

1

tx 
 with regard to a trial 1

tu , where 1

tu  is calculated 

using population information from the current generation as follows: 

 1 1/ 2 2/1/ 2t t t

k k ku LB UB v v                                (4.15) 

where 1/ 2

t

k kv   is the relative motions of the individual 1

thk  with respect to the 

individual 2

thk ; 2/1

t

kv  is the relative motions  of the individual 2

thk  with respect to the 

previous best one. 1/ 2

t

k kv and 2/1

t

kv   are determined as follows: 

  /i j ij j iv dv x x      (4.16) 

where ijdv  is a vector that could be computed using the trial number jTV : 
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where   is the probability threshold in selecting the mutation and crossover phases. 

The value of 0.5   has been chosen for balance of global and local search phases 

as well as mutation and crossover mechanisms for solving general optimization 

problems ([107]).  

Instant global point is defined: 
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
                                       (4.18) 
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Individuals' composite mobility in the solution space: In BCMO, jv  represents 

the global search motion, which is governed by: 

    j GS j Oin jv L dv x x                                  (4.19) 

where  
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       (4.20) 

where NP  is the population size. 

The distance from the 
thj individual to in  call jr  is calculated by: 

      j j Oinr x x                                   (4.21) 

These ikv  instances have equal probability and can be calculated as follows: 

            2

/ik i j jP v P v P v       with 1,...,4k         (4.22) 

The thi  individual's position is updated as follows: 

      1

/

t t

i i i j jx x v v                                          (4.23) 

It is noted that in the original BCMO, the function rand  is a random number which 

is uniformly distributed in the range  0,1 , the present iBCMO tries to enhance 

convergence speed while guarantees the solution accuracy by defining a subset 

   1 1, 0,1a b   which gives the most optimal values. Moreover, it is worthy to 

noticing that the probabilistic threshold  for choosing its mutation and crossover 

phases might be changed with different problems, therefore which will be selected 

throughout numerical simulations.  

4.4.2 Artificial neural network (ANN) and BMCO algorithm: BCMO-ANN 

The Artificial Neural Network (ANN) system shown in Fig. 4.2 contains three kinds 

of layers, namely, input layer, hidden layer, output layer in which each layer 

consists of neurons that are connected to each other in the previous layer.  
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Figure 4.2:  An artificial neural network structure 

The input data from the outside are multiplied by the weights before they reach the 

nodes. Each node in the next layer will get a sum of the output values of the 

previous nodes multiplied with respective weights. The output data of the activation 

function for the sum is expressed as follows:  

  
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1 1

1

n

n

lm
n n n n

i i ij j i

j

y x w y b 


 
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                (4.24) 

where  
n

iy and 
n

ix  are data pair output and input of activation function of node i , 

respectively; 1n

ijw   is the weight between the output node i  and input node j ; 
n

ib  is 

the bias of node j ;   is the activation function. Moreover, it is known that the 

activation function plays an important role in defining the output signal of each 

neuron in each layer of a neural network. Different activation functions have been, 

therefore, developed in the literature ([156]). For the present study, the activation 

function used to update weight and bias values is based on the Levenberg - 

Marquardt optimization ([206, 207]).  
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Furthermore, a loss function is required to evaluate the performance of the 

prediction model. The objective of loss function is to measure the difference 

between target values and predicted ones, from which during the training process, 

the difference between the model outputs and the target values are converged to 

zeros. The loss functions are hence constructed to deal with different kinds of 

optimization problems. In practice, the mean square error (MSE) [158] is commonly 

used to evaluate the accuracy of the prediction model. It is also considered as a loss 

function during training process of the ANN. The statement of MSE is illustrated as 

follows: 

  
21 lm

i i

i

MSE y y
lm

   (4.25) 

where lm  is the number of training samples; iy  is the actual output data; iy  is the 

predicted value of the thi  sample. 

4.4.3 Deep neural network (DNN) and improved BMCO algorithm: iBCMO-

DNN 

The present section proposes a novel intelligent computational iBCMO-DNN 

algorithm which enables to capture uncertain responses of the FGP microplates. A 

deep feedforward neural network is shown in Fig. 4.3 in which the input data of the 

neural network is passed through the input layer, hidden layers and output layer.  

 

 

Figure 4.3: Deep neural network 



143 

 

Before reaching the nodes, the input data from the outside is multiplied by the 

weights. Each node in the succeeding layers will get the total of the preceding 

nodes' output values multiplied by their respective weights, and the activation 

function's output data for the sum is supplied as follows ([155]): 

  
1

1 1

1

n

n

L
n n n n

i i ij j i

j

y x w y b 


 



 
    

 
                (4.26) 

where a data pair with output and input of activation function of node i  which are 

n

iy and 
n

ix , respectively; 
n

ib is the bias of node j ; 1n

ijw  is the weight between the 

output node i  and input node j ;   is the activation function. Many kinds of 

activation functions are available in the literature ([208]), in the present manuscript, 

the long short-term memory network (LSTM) [209] will be applied in which the 

tanh activation function is used for nodes of the input layer and hidden layers, and 

the sigmoid activation function for the output nodes.  

The flowchart of iBCMO-DNN algorithm is presented in Fig. 4.4. It is noted that 

the input and associated output of a data pair is namely a training data. A goal value 

will be estimated from the corresponding input data in the training data, this goal 

value is compared with the corresponding output one in order to estimate the error 

value of the loss function. Moreover, in the present study, the mean square error 

(MSE) [158] will be used for the process of training as follows: 

  
21 L

i i

i

MSE y y
L

   (4.27) 

where L  is number of samples; iy  is output data; iy  is goal data to be predicted. 

Furthermore, the adaptive moment estimation (Adam) [162] to adjust weights and 

bias for minimizing the cost function is determined by the gradient of the loss 

function.  The batch gradient descent (BGD) calculates gradients using the whole 

data set in the dataset and updates them only after all training data has been 

assessed. As a result, various deficiencies in memory, training speed, and stability 
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appear. Hence, in the current task, mini-batch gradient descent (mBGD) ([163]) was 

used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The flowchart of the stochastic response of FGP microplates 
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4.5 Numerical results 

4.5.1 Stochastic vibration analysis of FG microplates using polynomial chaos 

expansion 

The FG microplates are supposed to be made of a mixture of ceramic and metal 

whose mean material properties are given as follows: 

 MAT 1:  Al2O3 ( 380cE  GPa, 3800c   kg/m3, 0.3c  ), Al ( 70mE  GPa, 

2702m   kg/m3, 0.3m  ).  

In order to investigate of the stochastic responses of the FG microplates, the 

material properties ( cE , mE , and c , m ) are assumed to be randomly distributed 

via the lognormal distributions and the coefficient of variation (COV) for all 

random variables is set to equal 10%. The MCS with 10,000 samples is considered 

as the exact solutions for comparison purpose. For convenience, the following non-

dimensional parameters are used in the numerical examples:  

  2 / /c ca h E    (4.28) 

Next, stochastic vibration analysis employs four random variables ( , , ,m c m cE E p p ) 

with the mean values of MAT 1. The MCS with 10,000 samples is analyzed for 

comparison purpose and used to investigate the performance of the proposed PCE 

model. It should be noted that only 256 samples are needed for third-order PCE 

model. The first four statistical moments of the fundamental frequency, namely the 

mean, standard deviation (SD), skewness and kurtosis obtained from the MCS and 

PCE models, for various values of p  and /a h  are compared in Tables 4.1 and 4.2.  
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(a) Probability density function (PDF) 

(b) Probability of exceedance (PoE) 

Figure 4.5: PDF and PoE of MCS and PCE methods for the fundamental frequency 

(Hz) of the FG microplates with SSSS BC ( 5p  , / 1h l  , / 10a h  ) 
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Table 4.1: Comparison study between MCS (10.000 samples) and PCE (256 

samples) for the mean, standard deviation (SD), Kurtosis and Skewness for the 

fundamental frequency of the FG plates ( / 5a h  , MAT 1) 

BCs p  Theory mean SD Kurtosis Skewness COV(%) Time(s) Determined 

SSSS 1 PCE 4.0790 0.2114 2.5845 0.0262 5.2 14.06 4.0782 

MCS 4.0787 0.2114 2.5844 0.0264 5.2 536.56 

2 PCE 3.6839 0.2875 2.6374 0.1295 7.8 12.32 3.6811 

MCS 3.6849 0.2870 2.6377 0.1299 7.8 568.27 

5 PCE 3.3997 0.3535 2.6737 0.2114 10.4 13.14 3.3950 

MCS 3.3988 0.3537 2.6734 0.2117 10.4 526.38 

10 PCE 3.2601 0.3738 2.6984 0.2509 11.5 13.65 3.2511 

MCS 3.2577 0.3734 2.6983 0.2512 11.5 525.58 

CSCS 1 PCE 5.2247 0.2664 2.5709 0.0156 5.1 15 5.2238 

MCS 5.2272 0.2664 2.5707 0.0151 5.1 523.46 

2 PCE 4.7038 0.3599 2.6277 0.1248 7.7 25 4.6999 

MCS 4.7045 0.3596 2.6278 0.1249 7.7 549.55 

5 PCE 4.2712 0.4427 2.6774 0.2147 10.4 16 4.2627 

MCS 4.2687 0.4429 2.6775 0.2146 10.4 580.37 

10 PCE 4.0666 0.4718 2.7066 0.2578 11.6 31 4.0550 

MCS 4.0656 0.4720 2.7064 0.2577 11.6 592.43 

CCCC 1 PCE 6.4425 0.3222 2.5557 0.0034 5.0 16.00 6.4417 

  MCS 6.4429 0.3218 2.5550 0.0039 5.0 533.16  

 2 PCE 5.7829 0.4327 2.6171 0.1170 7.5 14.87 5.7789 

  MCS 5.7815 0.4324 2.6179 0.1164 7.5 529.85  

 5 PCE 5.1638 0.5327 2.6805 0.2195 10.3 15.28 5.1524 

  MCS 5.1649 0.5332 2.6811 0.2189 10.3 574.46  

 10 PCE 4.8807 0.5726 2.7155 0.2652 11.7 15.57 4.8661 

  MCS 4.8811 0.5727 2.7150 0.2659 11.7 581.27  
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Table 4.2: Comparison study between MCS (10.000 samples) and PCE (256 

samples) for the mean, standard deviation (SD), Kurtosis and Skewness for the 

fundamental frequency of the FG microplates ( / 10a h  , MAT 1) 

BCs p  Theory Mean SD Kurtosis 

 

Skewness 

 

COV 

(%) 

Time(s) Present 

 

/ 1h l    

SSSS 1 PCE 11.0107 0.5087 2.4628 -0.0532 4.6 17.02 11.0105 

MCS 11.0100 0.5087 2.4633 -0.0531 4.6 814.11 

5 PCE 8.7431 0.8313 2.6301 0.1966 9.5 18.12 8.7203 

MCS 8.7456 0.8317 2.6308 0.1962 9.5 815.30 

10 PCE 8.0719 0.8990 2.6953 0.2624 11.1 18.47 8.0442 

MCS 8.0747 0.8986 2.6949 0.2629 11.1 817.04 

CCCC 1 PCE 24.0519 1.1046 2.4451 -0.0594 4.6 17.68 24.0526 

 MCS 24.0482 1.1041 2.4547 -0.0596 4.6 818.84  

5 PCE 18.9599 1.7906 2.6265 0.1961 9.4 17.82 18.9125 

 MCS 18.9631 1.7912 2.6260 0.1962 9.4 817.73  

10 PCE 17.4222 1.9411 2.7025 0.2651 11.1 18.44 17.3596 

 MCS 17.4209 1.9406 2.7031 0.2645 11.1 818.42  

/ 5h l   

SSSS 1 PCE 4.8590 0.2458 2.5788 0.0199 5.1 17.65 4.8572 

 MCS 4.8565 0.2453 2.5779 0.0197 5.1 811.69 

5 PCE 4.0912 0.4163 2.6649 0.2053 10.2 18.20 4.0828 

 MCS 4.0913 0.4164 2.6648 0.2049 10.2 815.24 

10 PCE 3.9210 0.4402 2.6852 0.2476 11.2 17.95 3.9112 

MCS 3.9213 0.4406 2.6855 0.2480 11.2 817.51 

CCCC 1 PCE 8.9385 0.4421 2.5478 0.0197 4.9 17.10 8.9348 

 MCS 8.9356 0.4426 2.5481 0.0199 4.9 816.86  

5 PCE 7.3712 0.7425 2.6682 0.2108 10.1 17.66 7.3509 

 MCS 7.3723 0.7429 2.6675 0.2106 10.1 820.08  

10 PCE 6.9934 0.7913 2.6981 0.2564 11.3 17.90 6.9730 

 MCS 6.9955 0.7917 2.6987 0.2568 11.3 818.79  

/ 10h l    

SSSS 1 PCE 4.5341 0.2337 2.5998 0.0357 5.2 17.82 4.5338 

 MCS 4.5330 0.2339 2.5995 0.0352 5.2 819.66  

5 PCE 3.8564 0.3966 2.6671 0.2078 10.3 18.05 3.8502 

 MCS 3.8580 0.3970 2.6675 0.2877 10.3 817.34  

10 PCE 3.7169 0.4179 2.6889 0.2474 11.2 18.25 3.7072 

 MCS 3.7199 0.4183 2.6891 0.2476 11.2 818.59  

CCCC 1 PCE 8.0048 0.4076 2.5525 0.0165 5.1 17.30 8.0090 

 MCS 8.0032 0.4071 2.5520 0.0164 5.1 816.72  

5 PCE 6.6760 0.6844 2.6616 0.2069 10.3 17.53 6.6562 

 MCS 6.6778 0.6849 2.6611 0.2071 10.3 819.33  

10 PCE 6.3784 0.7261 2.6906 0.2524 11.4 17.87 6.3648 

 MCS 6.3783 0.7261 2.6905 0.2525 11.4 817.85  
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 a) SSSS  

  b) CSCS  

 c) CCCC 

Probability density function (PDF) Probability of exceedance (PoE) 

Figure 4.6: PDF and PoE of MCS and PCE methods for the fundamental frequency 

(Hz) of the FG microplates with SSSS, CSCS, CCCC BCs ( 5p  , / 1h l  , / 10a h  ) 

It can be observed that all statistical moments obtained from MCS and PCE show 

good agreement in all cases. The required computational time of the present 

approach is about 1/47 compared with direct MCS method. The mean values of 

fundamental frequencies for both PCE and MCS are close to the deterministic ones 
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for all BCs and different values of  p . Interestingly, although the COV of input 

random variables are kept the same, the COV of fundamental frequency increases 

with the increase of p . 

Figs. 4.6-4.9 compare the probability density function (PDF) and probability of 

exceedance (PoE) of MCS and PCE for the vibration and buckling analysis of the 

FG plates and microplates with various BCs. It can be observed again that the 

results of MCS are in good agreement with PCE.  

 

a) / 1h l   b) / 5h l   

c) /h l    

 

Figure 4.7: Probability density function (PDF) for the natural frequencies and 

critical buckling loads of SSSS FG microplates ( / 10a h  ) with various power-law 

index p (PCE order-3) 
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 It is consistent with what is observed from the comparison of the COV of these 

stochastic responses shown in Fig. 4.11. 

a) / 1h l   

b) / 5h l   

c) /h l    

Figure 4.8: Coefficient of variation (COV) with respect the power-law index p  of 

the FG microplates ( / 10a h  ) with various BCs and /h l  
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The linear quantile-quantile plots shown in Fig. 4.9 further confirm the matching 

statistical distribution of the fundamental frequencies computed from MCS and 

PCE. Thus, the PCE method gives an affordable alternative solution to predict the 

stochastic analysis of the FG microplates with multiple uncertain material 

properties.  

 

a) SSSS b) CSCS 

c) CCCC 

Figure 4.9: Quantile-quantile plot of PCE and MCS method for the fundamental 

frequencies of the FG microplates with various BCs ( 5p  , / 1h l  , / 10a h  ) 

Figs. 4.10 and 4.11 compares the sensitivity indices based on the first-order and 

total Sobol indices for the vibration analysis using MCS and PCE. It is seen that the 

Sobol indices computed from the PCE are closely matched with those calculated 

from MCS. It is observed that the sensitivity indices of mass densities  ,c m   are 

higher than those of Young’s modulus ( ,c mE E ) for all cases.  
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a) / 1h l   b) / 5h l   

c) /h l    

Figure 4.10: First Sobol index of the random input variables with respect to the 

fundamental frequencies of SSSS FG microplates ( 5p  , / 10a h  )  
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a) / 1h l   b) / 5h l   

c) /h l    

Figure 4.11: Total Sobol index of the random input variables with respect to the 

fundamental frequencies of the CCCC FG microplates ( / 10a h  ) 
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4.5.2 Stochastic thermal buckling analysis of FG sandwich microplates using 

stochastic collocation 

They are made from a ceramic and metal whose mean material properties are given 

by: 

 MAT 3: ZrO2 ( 244.27cE  GPa,
612.766 10c
  1/C, 0.3c  ),  

Ti – Al6 – 4V  ( 66.2mE  GPa,
610.3 10m
   1/C, 0.3m  ).  

 MAT 4:  Al2O3 ( 380cE  GPa, 3800c   kg/m3,
67.4 10c
  1/C, 0.3c  ), 

Al ( 70mE  GPa, 2702m   kg/m3, 
61023m
  1/C, 0.3m  ).  

The following normalized parameters are used: 

 
310cr crT T     (4.30) 

The material properties ( cE , mE , and  c , m ) with MAT 3 mean values  are taken 

to be used at random using the lognormal distributions with their coefficient of 

variation (COV) of 10% as a case-study. The proposed method can work for any 

continuous probability distributions with different values of COV. It should be 

mentioned that these distributions must be calibrated using experimental data for 

real application. The assumptions of lognormal distributions are appropriate for 

non-negative values. For comparison, 10,000 samples of the MCS are utilized. 

For the SC model with the Gauss quadrature point 4gpN  , only 256 samples are 

needed. Table 4.3 list the results of the FG sandwich microplates with / 1h l   and 

/ 5h l   for two types of BCs, /a h  and p . The statistical moments derived from 

SC and MCS exhibit strong concordance.  It is noted that this case's computing time 

is around 1/10 of the time required by the direct MCS technique. Again, for both SC 

and MCS, the mean values of the critical buckling temperature are quite similar to 

the corresponding deterministic responses. 
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Table 4.3: The standard deviation (SD), mean, Skewness,  Kurtosis for the biaxial 

thermal buckling of FG sandwich microplates (MAT 3, / 10a h  )  under linear 

distribution of SC (256 samples) and MCS (10.000 samples), 25o

bT C  

BCs p  Theory Mean SD Kurtosis 

 

Skewness 

 

COV 

(%) 

Time 

(s) 

Present 

 

1-1-1          

/ 1h l    

SSSS 0.5 SC 10.0239 0.8972 3.7410 0.5955 8.9 30 9.9421 

MCS 10.0179 0.8962 3.7306 0.5927 8.9 325 

2 SC 9.8862 0.8221 3.4865 0.5257 8.3 33 9.8221 

MCS 9.9028 0.8225 3.4923 0.5270 8.3 330 

CCCC 0.5 SC 37.4986 3.3337 3.4160 0.5005 9.0 40 37.1999 

 MCS 37.4981 3.3363 3.4145 0.4994 9.0 342  

2 SC 37.4604 3.1073 3.4426 0.4919 8.3 41 37.2542 

 MCS 37.4520 3.1061 3.4461 0.4912 8.3 340  

/ 5h l   

SSSS 0.5 SC 1.9025 0.1750 3.5750 0.5379 9.2 31 1.8857 

MCS 1.8990 0.1741 3.5568 0.5388 9.2 331 

2 SC 1.6121 0.1451 3.4563 0.4883 9.0 32 1.5977 

MCS 1.6120 0.1459 3.4534 0.4870 9.0 343 

CCCC 0.5 SC 5.2057 0.4802 3.7467 0.5627 9.2 35 5.1644 

 MCS 5.2083 0.4811 3.7479 0.5611 9.2 339 

2 SC 4.5258 0.4083 3.5553 0.5651 9.0 33 4.5257 

 MCS 4.5315 0.4093 3.5512 0.5664 9.0 342  

2-1-2          

/ 1h l    

SSSS 0.5 SC 10.1009 0.8765 3.6702 0.5612 8.7 36 10.0190 

 MCS 10.1144 0.8751 3.6789 0.5680 8.7 336  

2 SC 10.0814 0.7879 3.6023 0.4996 7.8 32 10.0084 

 MCS 10.0814 0.7875 3.6088 0.4978 7.8 340  

CCCC 0.5 SC 37.8308 3.2790 3.4421 0.4947 8.7 38 37.5191 

 MCS 37.7803 3.2773 3.4489 0.4940 8.7 345  

2 SC 38.1656 2.9707 3.3935 0.4623 7.8 35 37.9774 

 MCS 38.0900 2.9685 3.3911 0.4637 7.8 339  

/ 5h l          

SSSS 0.5 SC 1.9006 0.1756 3.6637 0.5696 9.2 32 1.8853 

 MCS 1.8996 0.1749 3.6758 0.5677 9.2 330  

2 SC 1.6355 0.1449 3.4050 0.4536 8.9 31 1.6221 

 MCS 1.6344 0.1459 3.4225 0.4503 8.9 342  

CCCC 0.5 SC 5.2082 0.4516 3.6203 0.5790 8.7 37 5.1741 

  MCS 5.2046 0.4527 3.6243 0.5781 8.7 336  

 2 SC 4.6453 0.3921 3.2125 0.3540 8.4 33 4.6020 

  MCS 4.6464 0.3925 3.2137 0.3433 8.4 335  
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Figs. 4.12–4.13 compare the linear quantile–quantile, probability of exceeding 

(PoE), and probability density function (PDF) of SC and MCS for the thermal 

buckling of the FG sandwich microplates with various BCs. It is clear that the SC 

method offers a feasible alternative approach for simulating the uncertainties of 

various material characteristics. 

(a) / 1h l  , SSSS  (b)  / 1h l  , SSSS (c)  / 1h l  , SSSS  

(d) / 5h l  , SSSS  (e)  / 5h l  , SSSS (f)  / 5h l  , SSSS  

(g) / 1h l  , CCCC  (h)  / 1h l  , CCCC  (i)  / 1h l  , CCCC  

Figure 4.12: Quantile-quantile, PDF and PoE of MCS and  SC for the critical 

buckling temperature of the (1-1-1) FG sandwich microplates under uniform 

distribution with SSSS, CCCC BCs (MAT 1, 0.5p  , / 10a h  ) 
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(a) / 1h l  , SSSS  (b)  / 1h l  , SSSS (c)  / 1h l  , SSSS  

(d) / 5h l  , SSSS  (e)  / 5h l  , SSSS (f)  / 5h l  , SSSS  

(g) / 1h l  , CCCC  (h)  / 1h l  , CCCC  (i)  / 1h l  , CCCC  

(j)  / 5h l  , CCCC  (k)  / 5h l  , CCCC (l)  / 5h l  , CCCC  

Figure 4.13: Quantile-quantile, PDF and PoE of MCS and SC for the critical 

buckling temperature of the (2-1-2) FG sandwich microplates under linear 

distribution with SSSS, CCCC BCs (MAT 1, 2p  , / 10a h  ) 
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A decrease in critical buckling temperature is observed with an increase in the 

material length scale parameter with /h l    being the minimal value (Fig. 4.14). 

(a) CCCC, MAT 1 (b) SSSS, MAT 1 

Figure 4.14: Probability density function (PDF) for the critical buckling 

temperature and free vibration of  (1-2-1) FG sandwich microplates under uniform 

distribution with various ratio thickness to material /h l ,( / 10a h  , 0.5p  ) 

Additionally, this graph interestingly shows that a decrease of /h l  leads to the 

uncertainty expansion of the critical buckling temperature. It is interesting to see in 

Fig. 4.15 that when p decreases, the thermal buckling uncertainty appears to 

expand.  It is similar when comparing the COV of these stochastic responses in Fig. 

4.16. It is worth noting that even when maintaining a constant COV of the input 

random variables, the thermal buckling COV drops as p  increases.  
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(a)  / 5h l  , SSSS, MAT 1 
(b)  / 10h l  , SSSS, MAT 1 

(c) / 5h l  , CCCC, MAT 1 
(d)  / 10h l  , CCCC, MAT 1  

Figure 4.15: Probability density function (PDF) for the natural frequencies and 

critical buckling temperature of (1-2-1) FG sandwich microplates under uniform 

distribution with various power-law index p ( / 10a h  )  

 

(a) / 1h l  , Buckling temperature (b) / 5h l  , Buckling temperature 

Figure 4.16: Coefficient of variation (COV) of  critical buckling temperature (MAT 

1) with respect to the power-law index p  of the FG sandwich microplates (1-2-1) 

with various BCs and /h l , / 10a h   under uniform distribution 
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4.5.3 Stochastic vibration analysis of FGP microplates using BCMO-ANN 

algorithm 

In this section [192], numerical examples are performed to investigate stochastic 

vibration and buckling responses of FGP microplates with three kinds of boundary 

conditions (SSSS, CSCS, CCCC), in which the shear function 

   1 3 3

3 3 3cot / 16 /15x h x x h     ([141])) is used. The FGP microplates are 

supposed to be composed of a mixture of ceramic and metal materials whose mean 

properties are: Al2O3 ( 380cE  GPa, 3800c  kg/m3, 0.3c  ), Al ( 70mE  GPa, 

2702m  kg/m3, 0.3m  ), whereas for stochastic analysis, Young’s moduli and 

mass densities are assumed to be randomly distributed via a uniform distribution. 

For simplicity, the following normalized response parameters are used in the 

numerical examples:  

  2 / /c ca h E    (4.31) 

Moreover, in order to investigate stochastic behaviors of FGP microplates, four 

random variables of material properties ( , , , ,, , ,m i c i m i c iE E p p ) are employed with the 

population size 500NP  . It is noted that the weight and bias values are 

automatically updated according to Levenberg - Marquardt optimization, the 

number of nodes in each hidden layer is 21. The dataset, which consists of input-

output pairs and training samples are randomly generated through iterations in the 

ANN training process. In addition, in the prediction process, training samples in the 

dataset are divided into two groups, in which 80% pairs in data is used for the 

training set and 20% for the test set. Tables 4.4-4.6 present the mean and standard 

deviation (SD) of normalized fundamental frequencies of Al/Al2O3 FGP 

microplates with different boundary conditions for both Ritz–BCMO and BCMO-

ANN models.  
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Table 4.4: Mean and standard deviation (SD) of normalized fundamental 

frequencies for FGP microplates with / 10a h   and SSSS boundary condition 

  p  /h l  Theory Mean SD Time(s) Present 

0.1 1 10 Ritz-BCMO 4.4049 0.0496 615 4.4073 

   BCMO-ANN 4.4090 0.0491 10  

  1 Ritz-BCMO 11.0692 0.1051 617 11.0673 

   BCMO-ANN 11.0745 0.1059 11  

 10 10 Ritz-BCMO 3.3994 0.0953 625 3.4012 

   BCMO-ANN 3.4040 0.0961 10  

  5 Ritz-BCMO 3.5922 0.0997 623 3.6001 

   BCMO-ANN 3.6037 0.0993 12  

  1 Ritz-BCMO 7.5662 0.1991 627 7.5531 

   BCMO-ANN 7.5376 0.1983 10  

0.2 1 10 Ritz-BCMO 4.2436 0.0509 630 4.2482 

   BCMO-ANN 4.2456 0.0512 11  

  5 Ritz-BCMO 4.6082 0.0522 624 4.6121 

   BCMO-ANN 4.6074 0.0530 11  

  1 Ritz-BCMO 11.1087 0.1075 628 11.1145 

   BCMO-ANN 11.1292 0.1066 12  

 10 10 Ritz-BCMO 2.8681 0.1277 631 2.8822 

   BCMO-ANN 2.8645 0.1274 12  

  5 Ritz-BCMO 3.0547 0.1323 630 3.0723 

   BCMO-ANN 3.0676 0.1309 10  

  1 Ritz-BCMO 6.7642 0.2269 628 6.7687 

   BCMO-ANN 6.7623 0.2270 11  

The solutions are computed with porous parameter 0.1   and 0.2, side-to-

thickness ratio / 10a h  , two values of the power-law index 1p   and 10p  ,  

length scale parameter / 10h l  , 5, 1. It can be seen that the statistical moments of 

normalized fundamental frequencies obtained from the Ritz–BCMO and BCMO-

ANN show great agreements in all cases. The mean values of non-dimensional 

fundamental frequencies for both Ritz-BCMO and BCMO-ANN are close to the 
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deterministic result for all BCs, different power-law index p  and porosity 

parameter  . As expected, the natural frequencies decrease with an increase of the 

porosity density, power-law index and length scale parameter. Regarding the 

computational cost, it can be observed that the computational time required by the 

present Ritz-BCMO method is about 55 times larger than that by the present 

BCMO-ANN method.  

Table 4.5: Mean and standard deviation (SD) of normalized fundamental 

frequencies for FG microplates with / 10a h   and CSCS boundary condition 

BCs   p  /h l  Theory mean SD Time(s) Present 

CSCS 0.1 1 10 Ritz-BCMO 5.9709 0.0661 629 5.9773 

    BCMO-ANN 5.9776 0.0666 11  

   5 Ritz-BCMO 6.5932 0.0697 628 6.5935 

    BCMO-ANN 6.6068 0.0703 12  

   1 Ritz-BCMO 16.9205 0.1596 630 16.9323 

    BCMO-ANN 16.9302 0.1595 11  

  10 10 Ritz-BCMO 4.5456 0.1275 628 4.5427 

    Ritz-MCS 4.5391 0.1287 11  

   5 Ritz-BCMO 4.8913 0.1382 631 4.9086 

    BCMO-ANN 4.9023 0.1370 10  

   1 Ritz-BCMO 11.4432 0.3015 630 11.4652 

    BCMO-ANN 11.4558 0.3012 11  

 0.2 1 10 Ritz-BCMO 5.7790 0.0689 620 5.7776 

    BCMO-ANN 5.7884 0.0683 11  

   5 Ritz-BCMO 6.4178 0.0737 625 6.4255 

    BCMO-ANN 6.4172 0.0736 10  

   1 Ritz-BCMO 17.0373 0.1633 623 17.0376 

    BCMO-ANN 17.0405 0.1631 10  

  10 10 Ritz-BCMO 3.8388 0.1654 619 3.8509 

    BCMO-ANN 3.8154 0.1669 10  

   5 Ritz-BCMO 4.2145 0.1769 621 4.2046 

    BCMO-ANN 4.2134 0.1762 12  

   1 Ritz-BCMO 10.3099 0.3396 623 10.3087 

    BCMO-ANN 10.2909 0.3409 11  
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Table 4.6: Mean and standard deviation (SD) of normalized fundamental 

frequencies for FG microplates with / 10a h   and CCCC boundary condition 

BCs   p  /h l  Theory Mean SD Time(s) Present 

CCCC 0.1 1 10 Ritz-BCMO 7.8171 0.0853 626 7.8053 

    BCMO-ANN 7.8213 0.0848 11  

   5 Ritz-BCMO 8.7926 0.0918 628 8.7911 

    BCMO-ANN 8.8009 0.0916 11  

   1 Ritz-BCMO 24.2602 0.2261 622 24.2394 

    BCMO-ANN 24.2660 0.2246 10  

  10 10 Ritz-BCMO 5.8450 0.1658 629 5.8401 

    Ritz-MCS 5.8386 0.1659 11  

   5 Ritz-BCMO 6.4137 0.1806 624 6.4284 

    BCMO-ANN 6.4515 0.1806 12  

   1 Ritz-BCMO 16.3403 0.4260 630 16.3281 

    BCMO-ANN 16.3219 0.4286 12  

 0.2 1 10 Ritz-BCMO 7.5722 0.0897 623 7.5793 

    BCMO-ANN 7.5727 0.0884 10  

   5 Ritz-BCMO 8.5922 0.0947 625 8.6040 

    BCMO-ANN 8.5938 0.0946 10  

   1 Ritz-BCMO 24.4008 0.2330 619 24.4211 

    BCMO-ANN 24.3982 0.2328 12  

  10 10 Ritz-BCMO 4.9445 0.2153 631 4.9617 

    BCMO-ANN 4.9350 0.2156 12  

   5 Ritz-BCMO 5.5006 0.2257 630 5.5266 

    BCMO-ANN 5.4974 0.2265 12  

   1 Ritz-BCMO 14.6568 0.4808 628 14.7174 

    BCMO-ANN 14.6502 0.4800 11  

 

In order to demonstrate the performance of present model further, Figs. 4.17 and 

4.18 present the scatter plots and probability density function of the Ritz-BCMO 

model with BCMO-ANN one of the normalized fundamental frequencies for FG 

microplates with different boundary conditions, 1p  , / 10a h  , / 1h l   and 

/ 10h l  , respectively. These graphs indicates that the present BCMO-ANN model 

can effectively substitute the Ritz-BCMO for stochastic analysis with accuracy and 

significant saving of computational time. Additionally, Figs. 4.19 and 4.20 show the 

loss function and linear regression of normalized fundamental frequencies of FGP 

microplates with 10p  , / 10a h  , 0.1   and 0.2. Obviously, MSE is smaller 

than 410  for both the training set and test set.  
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 (a) SSSS, 0.1    (b) SSSS, 0.2   

(c) CSCS, 0.1   (d) CSCS, 0.2   

(e) CCCC, 0.1   (f) CCCC, 0.2   

Figure 4.17: Scatter plot of the Ritz-BCMO model with ANN-BCMO one on the 

normalized fundamental frequencies for FGP microplates with different boundary 

conditions, 1p  , / 10a h   and / 1h l   
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 (a) SSSS, 0.1    (b) SSSS, 0.2   

(c) CSCS, 0.1   
(d) CSCS, 0.2   

(e) CCCC, 0.1   (f) CCCC, 0.2   

Figure 4.18: Probability density function (PDF) of Ritz-BCMO and BCMO-ANN 

methods for normalized fundamental frequencies of FGP microplates with different 

boundary conditions, 1p  , / 10a h   and / 10h l   
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(a) SSSS, 0.1   (b) SSSS, 0.2   

(c) CSCS, 0.1   (d)  CSCS, 0.2   

(e)  CCCC, 0.1   (f)  CCCC, 0.2   

Figure 4.19: Loss function of the normalized fundamental frequencies for FGP 

microplates with different boundary conditions, 10p  , / 10a h   and / 5h l   
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(a) / 10h l  , 0.1   (b) / 10h l  , 0.2   

(c) / 5h l  , 0.1   (d) / 5h l  , 0.2   

(e) / 1h l   , 0.1   (f) / 1h l  , 0.2   

Figure 4.20: Regression of the normalized fundamental frequencies with log 

transfer function  for FGP microplates with full clamped boundary condition, 

10p   and / 10a h   
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4.5.4 Stochastic thermal buckling analysis of FGP microplates using iBCMO-

DNN algorithm 

In this section[193], numerical examples with the shear function  

  3 2

3 3 34 / 3f x x x h   ([194])  are performed to explore the deterministic and 

stochastic responses of FGP microplates with various BCs. The FGP microplates 

are expected to be made of a combination of ceramic and metal materials with mean 

properties as follows: Al2O3 ( 380cE  GPa, 3800c  kg/m3, 

67.4 10c
  1/C, 0.3c  ),Al ( 70mE  GPa, 2702m  kg/m3, 

61023m
  1/C, 0.3m  ). For simplification purpose, all three length scale 

parameters are considered to have the same value, i.e. 1 2 3l l l l   . In practice, 

these material length scale values should be derived mainly via experimental data. 

Unless special mention, square FGP microplates with three BCs (SSSS, SCSC, 

CCCC) are considered in numerical examples, and for convenience, the following 

normalized parameters are used in the computations: 

 
310cr crT T     (4.32) 

For stochastic analysis, the material characteristics ( , , , ,m c c mE E p  ) are assumed 

to be distributed randomly using uniform distributions, and the coefficient of 

variation (COV) is set at 10% for all random variables.  

The objective of this example is to examine the optimal random range  1 1,a b  and 

probability threshold   serving for studying stochastic critical buckling 

temperatures of FGP microplates. As explained in the introduction section, the 

BCMO is a meta-heuristic algorithm which enables to optimize responses and save 

the computational costs ([107]). However, in practice, the original BCMO 

algorithm will take a long time to tackle complicated problems such as stochastic 

size effects. Alternatively, by narrowing the random range in    1 1, 0,1a b   and 

changing the probabilistic threshold   in the optimization process of solution field, 
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and using the DNN for learning behaviors, the present iBCMO-DNN provides a 

novel intelligent computational algorithm for solving stochastic problems. In order 

to determine the optimal random range  1 1,a b , Table 4.7 presents the comparison 

of the normalized critical buckling temperature  crT  of simply supported Al/Al2 O3 

FGP square microplates under uniform temperature distribution.  

Table 4.7: Comparison of the rand  coefficient of the Ritz-iBCMO algorithm for 

the normalized critical buckling temperature crT  of Al/Al2O3 FGP square 

microplates with / 20a h  , 0.1  , 1p  , / 10h l  with biaxial compression 

      1 2 12, , 1,1,0
tr tr tr

N N N  under uniform temperature distribution and simply 

supported 

Theory Mean SD Time(s) Present 

 0,1rand  0.2630 0.0124 3611 0.2622 

 0.1,0.9rand  0.2628 0.0099 2156  

 0.2,0.8rand  0.2624 0.0073 2116  

 0.3,0.7rand  0.2624 0.0051 2107  

 0.4,0.6rand  0.2623 0.0026 2066  

 0.4,0.7rand  0.2589 0.0036 1952  

 0.4,0.9rand  0.2523 0.0056 1999  

The results are computed with different random ranges  1 1,a b , length to thickness 

ratio / 20a h  ,  porous coefficient 0.1  , power-index 1p  , material length 

scale parameter / 10h l  , biaxial compression       1 2 12, , 1,1,0
tr tr tr

N N N  , and 

probability threshold 0.6  . It can be seen that as the random range steadily 

narrows, the standard deviation (SD) and computational time decreases. In 

comparison, the symmetry cases with  0.2,0.8rand ,  0.3,0.7rand  and 

 0.4,0.6rand  show the rationality on the mean value and computational cost.  
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(a) Probability density function (PDF) 

(b) Probability of exceedance (PoE) 

Figure 4.21: Comparson of the efficiency of the rand  coefficient differences for 

iBCMO algorithm of normalized thermal buckling load with biaxial compression, 

simply supported , / 20a h  , 1p  , / 10h l  , 0.1   under uniform distribution 

Moreover, in order to investigate the random range further, Fig. 4.21 displays the 

probability density function (PDF) and probability of exceedance (PoE) of 

normalized critical buckling temperature with various values of the random ranges. 

It is observed that the asymmetric ranges (0.4,0.7) and (0.4,0.9) provide significant 

deviations of the mean values with the exact value, therefore, the asymmetric ranges 

are not suitable for the present stochastic analysis. For the symmetric cases, it 

appears that the ranges of (0.3,0.7) and (0.4,0.6) present uneven graphs, while the 
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random range (0.2,0.8) is found to be appropriate for stochastic responses, therefore 

the random range    1 1, 0.2,0.8a b   will be selected for the following numerical 

examples.  Furthermore, Fig. 4.22 plots the probability density function of critical 

buckling loads of FGP microplates for different values of probabilistic threshold. It 

can be observed that the probability threshold coefficient 0.6    has the most 

uniform data density, that numerically confirms the correctness of this coefficient in 

the computations. 

 

Figure 4.22: Comparison of the efficiency of the probabilistic threshold (TV) 

differences for iBCMO algorithm of normalized thermal buckling load with biaxial 

compression, simply supported , / 20a h  , 1p  , / 10h l  , 0.1   under uniform 

distribution 

In order to demonstrate the performance of the present theory in predicting 

stochastic buckling temperatures of FGP microplates further, Table 4.8 introduces 

the comparison of both BCMO and iBCMO algorithm for normalized critical 

buckling temperature crT  of FGP microplates with / 20a h  , 0.1  , 1p   under 

uniform temperature distribution. It can be seen that the computational cost from the 
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iBCMO is lower about 1.7 times than that of the BCMO for different boundary 

conditions, with same mean values, the standard deviation from the iBCMO is 

much smaller than that from the BCMO.  

Table 4.8: Comparison between BCMO and iBCMO algorithms for the normalized 

critical buckling temperature crT  of Al/Al2O3 FGP square microplates with 

/ 20a h  , 0.1  , 1p   with biaxial compression under uniform temperature 

distribution 

BCs /h l  Theory Mean SD Time(s) Present 

SSSS 10 Ritz-BCMO 0.2634 0.0120 3611 0.2622 

  Ritz-iBCMO 0.2624 0.0073 2116  

 1 Ritz-BCMO 4.4061 0.1996 3618 4.3917 

  Ritz-iBCMO 4.3999 0.1169 2124  

SCSC 10 Ritz-BCMO 0.4250 0.0195 3683 0.4233 

  Ritz-iBCMO 0.4243 0.0117 2127  

 1 Ritz-BCMO 7.1609 0.3134 3651 7.1462 

  Ritz-iBCMO 7.1610 0.1900 2133  

CCCC 10 Ritz-BCMO 0.6860 0.0312 3653 0.6839 

  Ritz-iBCMO 0.6850 0.0195 2123  

 1 Ritz-BCMO 11.6378 0.5202 3652 11.6128 

  Ritz-iBCMO 11.6345 0.3095 2119  

 

This is also verified in Fig. 4.23 which displays the probability density function of 

thermal buckling loads of FGP microplates with / 20a h  , 1p   and / 10h l   

under uniform distribution.  
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(a) SSSS, 0.1   (b) SSSS, 0.3   

(c) SCSC, 0.1   (d) SCSC, 0.3   

(e) CCCC, 0.1   
(f) CCCC, 0.3   

Figure 4.23: Comparison of the efficiency of iBCMO with the BCMO algorithm of 

normalized thermal buckling load , / 20a h  , 1p  , / 10h l   with biaxial 

compression under uniform distribution 
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In order to investigate stochastic critical buckling temperatures of FGP microplates, 

it is noted that five random variables of material properties ( , , , ,, , , ,m i c i t i m iE E    ) 

are  designed to be randomly distributed with the same population size 2000NP  . 

Additionally, the data training was generated from the earlier analysis of Ritz-

iBCMO solution. These values will be evaluated for the accuracy through the 

training process using the long short time memory model of the deep learning 

network. The initial normalization of the critical buckling temperatures is used as 

the output data for training samples, and these design factors are taken into 

consideration as the input data. Input-output pairs and randomly generated training 

samples are included in the data set, which is used to train the DNN. It is worthy to 

noticing that the DNN processing involves 500 iterations with one epoch between 

each one, the DNN structure is 110-110-4. The data were divided into two groups 

with 80% for the training set and 20% for the test set. The type of DNN is the long 

short time memory with tanh function for hidden layers and sigmoid function for 

output layer. 

For Al/Al2O3 FGP microplates with three boundary conditions, the mean and 

standard deviation of normalized critical buckling temperatures from the Ritz-

iBCMO and iBCMO-DNN models are shown in Tables 4.9–4.11. The critical 

buckling temperature responses are computed for the side-to-thickness ratio 

/ 20a h  , porous parameter 0.1  and 0.3, power-law index 0.5p  and 2, length 

scale parameter / 1h l   and 10. Obviously, the statistical moments of the critical 

buckling temperatures derived from the Ritz-iBCMO and iBCMO-DNN show good 

agreements for all cases. For all BCs, varied power-law indexes p , and porosity 

parameters  , the mean values of the critical buckling temperatures for the Ritz-

iBCMO and iBCMO-DNN are close to the deterministic responses. As expected, 

the critical buckling temperatures rise with the increase of   and /h l . In 

comparison of the computational time between the theories, the iBCMO-DNN 

approach takes less computational times than the Ritz-iBCMO method. The 
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computational time of the iBCMO-DNN method is about 2/5 that of the Ritz-

iBCMO method.  

Table 4.9: Mean and standard deviation (SD) of normalized critical buckling 

temperature for FGP microplates with biaxial compression, / 20a h  , SSSS under 

uniform temperature distribution 

  p  /h l  Theory Mean SD Time(s) Present 

0.1 0.5 10 Ritz-iBCMO 0.3291 0.0089 2123 0.3284 

   iBCMO-DNN 0.3307 0.0091 845  

  1 Ritz-iBCMO 5.1633 0.1343 2125 5.1596 

   iBCMO-DNN 5.1688 0.1347 844  

 2 10 Ritz-iBCMO 0.2239 0.0066 2124 0.2236 

   iBCMO-DNN 0.2259 0.0071 845  

  1 Ritz-iBCMO 3.8358 0.1084 2123 3.8278 

   iBCMO-DNN 3.8315 0.1082 846  

0.3 0.5 10 Ritz-iBCMO 0.4960 0.0152 2121 0.4952 

   iBCMO-DNN 0.4995 0.0151 840  

  1 Ritz-iBCMO 8.6618 0.2454 2126 8.6440 

   iBCMO-DNN 8.6669 0.2460 841  

 2 10 Ritz-iBCMO 0.2373 0.0122 2127 0.2370 

   iBCMO-DNN 0.2389 0.0124 842  

  1 Ritz-iBCMO 6.2104 0.1712 2123 6.2009 

   iBCMO-DNN 6.2155 0.1718 843  
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Table 4.10: Mean and standard deviation (SD) of normalized critical buckling for 

FGP microplates with biaxial compression, / 20a h  , SCSC under uniform 

temperature distribution 

  p  /h l  Theory Mean SD Time(s) Present 

0.1 0.5 10 Ritz-iBCMO 0.5307 0.0147 2129 0.5299 

   iBCMO-DNN 0.5311 0.0146 841  

  1 Ritz-iBCMO 8.4103 0.2165 2127 8.3968 

   iBCMO-DNN 8.4133 0.2173 845  

 2 10 Ritz-iBCMO 0.3614 0.0106 2124 0.3607 

   iBCMO-DNN 0.3658 0.0108 843  

  1 Ritz-iBCMO 6.2261 0.1744 2122 6.2152 

   iBCMO-DNN 6.2249 0.1740 840  

0.3 0.5 10 Ritz-iBCMO 0.8008 0.0243 2133 0.7999 

   iBCMO-DNN 0.8014 0.0244 842  

  1 Ritz-iBCMO 14.1140 0.3999 2128 14.0821 

   iBCMO-DNN 14.1184 0.4009 844  

 2 10 Ritz-iBCMO 0.3843 0.0195 2127 0.3839 

   iBCMO-DNN 0.3849 0.0197 843  

  1 Ritz-iBCMO 10.1095 0.2818 2124 10.0882 

   iBCMO-DNN 10.1109 0.2826 841  
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Table 4.11: Mean and standard deviation (SD) of normalized critical buckling for 

FGP microplates with biaxial compression,  / 20a h  , CCCC under uniform 

temperature distribution 

  p  /h l  Theory Mean SD Time(s) Present 

0.1 0.5 10 Ritz-iBCMO 0.8568 0.0229 2122 0.8555 

   iBCMO-DNN 0.8575 0.0231 840  

  1 Ritz-iBCMO 13.6636 0.3535 2125 13.6417 

   iBCMO-DNN 13.6659 0.3541 841  

 2 10 Ritz-iBCMO 0.5831 0.0170 2124 0.5825 

   iBCMO-DNN 0.5838 0.0172 840  

  1 Ritz-iBCMO 10.1182 0.2835 2124 10.1004 

   iBCMO-DNN 10.1197 0.2842 843  

0.3 0.5 10 Ritz-iBCMO 1.2957 0.0395 2119 1.2936 

   iBCMO-DNN 1.2967 0.0398 844  

  1 Ritz-iBCMO 22.9234 0.6409 2121 22.8856 

   iBCMO-DNN 22.9287 0.6413 843  

 2 10 Ritz-iBCMO 0.6249 0.0316 2127 0.6233 

   iBCMO-DNN 0.6255 0.0318 842  

  1 Ritz-iBCMO 16.4441 0.4720 2126 16.4167 

   iBCMO-DNN 16.4458 0.4726 844  

 

Additionally, the performance of the current iBCMO-DNN algorithm in predicting 

buckling temperature responses is also shown in Figs. 4.24–4.26 in which the mean 

square error is almost nil for both training and test sets. Fig. 4.25 describes the 

probability density function of the critical buckling temperatures generated from the 

Ritz-iBCMO and iBCMO-DNN analysis. It can be seen again that the results of 

iBCMO-DNN are in good agreement with Ritz-iBCMO. This proves that the 

present model in capturing size effects with uncertainty of material properties based 

on the unified HSDT, Ritz solution and iBCMO-DNN is completely reliable. 
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(a) SSSS, 0.1   (b) SCSC, 0.1   (c) CCCC, 0.1   

(d) SSSS, 0.2   (e) SCSC, 0.2   (f) CCCC, 0.2   

(g) SSSS, 0.3   (h) SCSC, 0.3   (i) CCCC, 0.3   

(j) SSSS, 0.5   (k) SCSC, 0.5   
(l) CCCC, 0.5   

Figure 4.24: Quantile-quantile plot of the Ritz-iBCMO model with DNN-iBCMO, 

/ 20a h  , 1p  , / 5h l  , biaxial compression under uniform distribution 
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(a) SSSS, 0.1   (b) SCSC, 0.1   (c) CCCC, 0.1   

(d) SSSS, 0.2   (e) SCSC, 0.2   (f) CCCC, 0.2   

(g) SSSS, 0.3   (h) SCSC, 0.3   (i) CCCC, 0.3   

(j) SSSS, 0.5   (k) SCSC, 0.5   (l) CCCC, 0.5   

Figure 4.25:  Probability density function (PDF) of Ritz-iBCMO and iBCMO-DNN 

methods the normalized thermal buckling with / 20a h  , 1p  , / 5h l  , biaxial 

compression under uniform distribution 
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(a) SSSS 

(b) SCSC 

(c) CCCC 

Figure 4.26:  Loss function of the normalized critical buckling temperature with 

/ 20a h  , / 5h l  , 0.3   
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4.6. Conclusions 

In order to investigate the stochastic responses of microplates under uncertainty in 

material properties, the Polynomial Chaos Expansion (PCE), Stochastic 

Collocation (SC) method, and Monte Carlo method are employed. Moreover, this 

research proposed a novel intelligent computational algorithm, iBCMO-DNN, for 

stochastic buckling temperature analysis of microplates with uncertainty of 

material properties. A combination of BCMO-ANN has been proposed to predict 

stochastic vibration behaviors of microplates subjected to uncertainties of material 

properties. The DNN with the long short-term memory model has been employed 

as a surrogate method to replace the time-consuming computational model, while 

the iBCMO for searching the set of optimal solutions. The deterministic responses 

of the microplates are obtained from a unified HSDT, MST and Ritz-type series 

approximation. The Ritz-BCMO, BCMO-ANN, the Ritz-iBCMO and iBCMO-

DNN algorithms are developed for investigation of the impacts of material 

distribution, material length scale parameters, porosity density, temperature 

variations and boundary conditions on the static, natural frequencies, critical 

buckling loads and the critical buckling temperatures of microplates. The obtained 

numerical results showed the accuracy and efficiency of the present model in 

predicting stochastic behaviors of microplates. The following significant points 

might be deduced as follows: 

 The proposed unified size dependent plate model presents the accuracy and 

efficiency in predicting stochastic vibration and buckling behaviors of the 

microplates. 

 By applying the polynomial chaos expansion, only 256 and 16 samples are 

needed to compute stochastic fundamental frequency which is much less 

than the sample size of 10,000 of the Monte Carlo Simulation. 

 In contrast to the Monte Carlo Simulation, which requires 10,000 samples, 

the stochastic collocation approach requires just 256 samples to calculate 

stochastic thermal buckling.  
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 Proposed BCMO-ANN algorithm allows to significantly save computational 

costs. The computational time of natural frequencies required by the 

BCMO-ANN method is about 1/55 times that of the Ritz-BCMO method. 

 The computational cost of the proposed iBCMO algorithm is lower 1.7 

times than that of the BCMO. 

 The proposed iBCMO-DNN algorith provides for substantial cost savings in 

computing. The computational time of critical buckling temperatures from 

the iBCMO-DNN approach requires approximately 2/5 that from the Ritz-

iBCMO method. 

 

Furthermore, metaheuristic optimization methods have recently such as BCMO and 

SGA been recognized as robust and reliable approaches for solving a wide range of 

complex optimization problems, attracting significant attention from the research 

community. Accordingly, in the following chapter, recent novel metaheuristic 

optimization techniques will be employed to optimize the fiber orientation of 

laminated composite plates. This will be carried out using the unified higher-order 

shear deformation theory in conjunction with the hybrid shape function proposed in 

Chapter three. 
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CHAPTER 5 

META-HEURISTIC OPTIMIZATION ALGORITHMS 

FOR VIBRATION AND BUCKLING ANALYSIS OF 

LAMINATED COMPOSITE PLATES 

 

This chapter applies meta-heuristic optimization algorithms for vibration and 

buckling analysis of laminated composite (LC) plates. It is a combination of 

unified higher-order shear deformation (HSDT) theory, Ritz method, and three 

optimization algorithms, namely shrimp and goby association search algorithm 

(SGA), balancing composite motion optimization (BCMO) and differential 

evolution (DE). The Ritz method with hybrid shape functions is utilized to solve 

the optimization problems by employing the Gram-Schmidt process to construct 

the approximation functions. The SGA and BCMO are employed for the first time 

to ascertain the optimal buckling loads and frequencies of laminated composite 

plates. Numerical examples are conducted to investigate the influence of fiber 

angle, modulus ratio, and different boundary conditions on the optimal results. It 

indicates that the BCMO and SGA are efficient and robust algorithms for 

addressing the optimization problems of laminated composite plates. 

5.1. Introduction 

Laminated composite plates have found extensive applications in engineering fields 

such as mechanical engineering, aerospace, construction, and more ([210-214]). 

Among the critical factors influencing their mechanical properties, the 

customization of fiber orientation is a pivotal element in shaping structural stiffness. 

In practice, achieving optimal fiber orientation demands a complex computational 

process, which has drawn the interest of numerous researchers employing various 

computational approaches. 
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In order to optimize responses of the laminated composite structures, meta-heuristic 

optimization methods have been recently considered as robust and reliable 

approaches for a wide range of complicated optimization problems. The core 

components of metaheuristic algorithms are exploration and exploitation. 

Exploration involves thoroughly searching the entire solution space to generate a 

variety of potential solutions, while exploitation focuses on refining the search 

within specific regions to identify the best solutions based on the knowledge gained 

from previous candidates. Randomization plays a crucial role in exploration, 

helping to avoid getting stuck in local optima. By such a way, metaheuristic 

optimization algorithms could approach to global optimization solutions. In general, 

meta-heuristic optimization algorithms [215] could be divided in three popular 

categories. The first category is inspired by the phenomenon of evolution observed 

in the natural world in which the algorithms are generally derived from the 

principles of Charles Darwin. Based on this approach, a number of optimization 

algorithms have been developed such as Differential Evolution (DE) [101], Genetic 

Algorithms (GA) [102]. In general, they directly utilize the objective function and 

constraints to seek optimal solutions. The selection of an optimal candidate for the 

next generation necessitates consideration of their capacity to adapt and thrive 

within their ecological surroundings. Some representative earlier works are herein 

cited for optimization of LC plates. Karakaya et al. [216] compared the optimal 

buckling results of GA method with the generalized pattern search algorithm. Ho et 

al. [217] employed the DE method and the smoothed FEM to analyze optimal 

buckling responses, taking into account fiber angle and layer thickness as design 

variables. By using the NSGA-II and GA algorithms, Kalantari et al. [218] 

investigated the minimum flexural strength of LC plates with design variables being 

fiber angle and fiber volume fraction. Drosopoulos et al. [219] used NSGA-II and 

FEM to scrutinize the maximum frequency of LC plate with layer thickness, fiber 

distribution, and fiber  angles as design variables. Moreover, the second type of 

meta-heuristic optimization algorithms encompasses swarm-based approaches, from 
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which a number of optimization algorithms have been developed such as Ant 

colony optimization (ACO) [220], shrimp and goby association search algorithm 

(SGA)[110], dragonfly algorithm (DA) [221], particle swarm optimization (PSO) 

[222], salp swarm algorithm (SSA)[223]. The SGA is developed without depending 

on input parameters. Its concept is inspired by the symbiotic relationship between 

shrimp and goby fishes in their natural habitat. In this ecosystem, the goby uses the 

shrimp's burrow as a haven during the day and a regular resting place at night. 

Essentially, the security level of the shelter is contingent upon the shrimp's capacity 

to allure the gobiid fish. It is noted that the efficacy of these algorithms relies on the 

synchronization of a collective of particles, which impedes the ability to discern and 

independently assess individual particles. Instead, particles participate in collective 

communication to determine their subsequent course of action. A collective of 

agents engaged in continuous movement and interaction across several activities is 

often known as a particle swarm.  The use of these algorithms for optimization of 

laminated composite plates could be mentioned in the following earlier works. By 

using a HSDT, isogeometric method (IGA) and the PSO algorithm, Shafei et al. 

[224] investigated the minimum frequency of LC plates. Based on the HSDT, FEM 

and PSO, Vosoughi et al. ([225, 226]) studied the optimal buckling loads of LC 

plates with design variables as fiber orientations. Finally, the third set of meta-

heuristic optimization algorithms comprises those influenced by physical principles. 

In order to direct the movement of particles throughout the optimization process, 

these algorithms take their cues from the most fundamental scientific laws. Some 

examples of these types of algorithms are the balancing composite motion 

optimization (BCMO) [107], the curved space optimization (CSO) [227], and the 

water wave optimization (WWO) [228]. These principles include the dynamics of 

magnetic fields, the gravitational interactions among celestial bodies, electron 

charge transfers, chemical processes. More importantly, these algorithms typically 

necessitate interrelated parameters and involve substantial computational expenses. 

Besides, it can be observed that the recent development of the BCMO eliminates the 
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need for interdependent parameters to address this challenge. This approach draws 

inspiration from assuming the solution space operates within Cartesian coordinates, 

balancing the global and local search movements of potential solutions. Indeed, a 

potential solution can approach superior solutions to exploit local areas and extend 

further to explore the search landscape. Consequently, the highest-ranked individual 

in each generation can swiftly transition between spaces or enhance its existing 

local exploration.  

A brief literature survey indicates that the BCMO and SGA algorithms are 

recognized as efficient methods for structural optimization. However, no research 

has been identified that specifically employs these algorithms for solving 

optimization problems related to laminated composite plates. This study aims to 

address this gap by proposing meta-heuristic optimization algorithms to determine 

the critical buckling loads and fundamental frequencies of laminated composite 

plates. Additionally, a new hybrid shape function for the Ritz method is also 

presented in this study. The theoretical framework incorporates a unified HSDT, 

Ritz method, BCMO, and SGA. To address the problems, the series-type solution 

employs OP generated through the Gram-Schmidt process. SGA and BCMO are 

employed to optimize the stiffness of LC plates, and their performance will be 

compared with the DE algorithm. Numerical examples of LC plates explore the 

impact of fiber angle, modulus ratio, and various BCs on the optimum results. 

5.2. Theoretical formulation 

The unified HSDT for LC plates in Fig. 5.1 is referenced by ([229]):  

          0 0

1 1 2 3 1 1 2 2 3 3,1 1 3 1 1 2, , , , ,u x x x t x x x u x u x x      (5.1a) 

          0 0

2 1 2 3 2 1 2 2 3 3,2 1 3 2 1 2, , , , ,u x x x t x x x u x u x x      (5.1b) 

    0

3 1 2 3 3 1 2, , , ,u x x x t u x x  (5.1c) 
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where        2 3 3 1 3 3 3,s sx H x x H x x       ; sH  is the transverse shear 

stiffness;  
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f f
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h
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 
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Figure 5.1: The geometric of laminated composite plates 

The components of strains  11 22 12 13 23

T     ε  are found as follows: 
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The relationship between the strains and stresses for the k  layer is expressed as: 
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where  

          4 4 2 2

11 22 11 66 12sin cos 2 2 cos sin
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(5.5a) 

            4 4 2 2

12 12 11 66 22cos sin 4 cos sin
k k k k k

Q Q Q Q Q          (5.5b) 

          2 2 4 4

22 66 12 11 222 2 cos sin sin cos
k k k k k

Q Q Q Q Q         (5.5c) 
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with   is the fiber angle in each layer, 
 k

ijQ  of the orthotropic composite plates in 

the local coordinate system are given by: 
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   (5.6a) 

( ) ( ) ( )

66 12 44 23 55 13, ,k k kQ G Q G Q G     (5.6b) 

To obtain the equations of motion, Hamilton's principle is employed: 

  
2

1

0

t

SE V K

t

dt          (5.7) 

The variation of the strain energy SE  is given by: 
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where the stress resultants can be derived based on the strains and their gradients 

using the following expressions: 
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where the stiffness components are given: 
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The change in the work done V  due to compressive membrane loads 

(
0 0 0 0

1 2 12N N N N   ) is expressed as: 
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The variation of kinetic energy K  is calculated by: 
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 (5.13) 

where 2 2 1 2 1 0, , , , ,K J J I I I  are mass components of the laminated composite plate 

which are determined as: 
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5.3. Ritz method  

The membrane and transverse displacements, as well as rotations  0 0 0

1 2 3 1 2, , , ,u u u    

can be represented through a series of shape functions in 1x  , 2x   direction 

(  1iX x  and  2jY x  ) and five unknowns variables ( 1 2 3, , , ,ij ij ij ij iju u u x y ), expressed 

as follows: 
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The shape functions are pivotal in dictating the convergence rates, accuracy, and 

susceptibility to numerical instabilities within the Ritz solution. Next, the 

admissible functions known as orthogonal polynomials (OP) which are constructed 

using the GS method [137]. These functions exhibit a rapid convergence rate, 

although they encounter challenges in determining the initial function. Using the GS 

approach is defined as follows: 

              1 1 0 1 2, k k k k kx x A x x x A x D x            (5.16a) 
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   (5.16b) 

where  w x  being the weighting function. The orthogonality is satisfied by the 

polynomials  k x  as below: 

      
0d

k l

klc

if k l
w x x x

a if k l
 


 


   (5.17) 

 with   1w x  ;  0 2 1x x   , and    , 1,1c d   . The first five orthogonal 

polynomials are shown in Fig. 5.2. The shape functions  1iX x  and  2jY x  are 

made to satisfy the BCs in which clamped (C) and the simply-supported (S) edges 

are as follows: 

 Clamped (C): 
0 0 0

1 2 1 2 3 0u u u       at 1 0,x a  and 2 0,x b  

 Simply supported (S):
0 0

2 2 3 0u u     at 1 0,x a  and at 

0 0

1 3 1 0u u    2 0,x b  
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Figure 5.2: The first five orthogonal polynomials 

The laminated composite plate's edge conditions, a mix of simply-supported and 

clamped boundaries (SSSS, CSCS, CCCC), are pivotal in numerical analyses 

(Table 5.1).  

Table 5.1: Approximation functions of series-type solution 

BCs  1jX x   2jY x  

SSSS  1 1 jx a x    2 2 jx b x   

CSCS  2

1 1 jx a x    2

2 2 jx b x   

CCCC  
22

1 1 jx a x    
22

2 2 jx b x   

By incorporating Eq. (5.15) into Eqs. (5.8), (5.12), and (5.13), and the subsequent 

outcomes into Eq. (5.7), the characteristic motion equations are derived via the 

displacement vector d, stiffness matrix K and mass matrix M  as follows:  

  0 gN K K d Md 0=     (5.18) 

where  

  1 2 3

T
d u u u x y   (5.19a) 
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33 11 00 00 1133    with g gg

ijkl ik jl ik jlK H S H S

 
 
 
   
 
 
  

0 0 0 0 0

0 0 0 0 0

K 0 0 K 0 0

0 0 0 0 0

0 0 0 0 0

    (5.19c)  

The components of K  is formulated as:  

 
11 22 00 12 10 11 11

11 16 662ijkl ik jl ik jl ik jlK A T S A T S A T S      

 
12 02 20 21 01 10 12 11 11

12 16 26 66ijkl ik jl ik jl ik jl ik jlK A T S A T S A T S A T S      

 
13 22 00 02 20 21 01 10 12 11 11

11 12 16 26 662 2ijkl ik jl ik jl ik jl ik jl ik jlK B T S B T S B T S B T S B T S      

 
14 22 00 21 01 11 11

11 16 662ijkl s ik jl s ik jl s ik jlK B T S B T S B T S    

 
15 02 20 21 01 10 12 11 11

12 16 26 66ijkl s ik jl s ik jl s ik jl s ik jlK B T S B T S B T S B T S     

 
22 00 22 01 21 11 11

22 16 662ijkl ik jl ik jl ik jlK A T S A T S A T S    

 
23 20 02 00 22 10 12 21 01 11 11

12 22 16 26 662 2ijkl ik jl ik jl ik jl ik jl ik jlK B T S B T S B T S B T S B T S      

 
24 20 02 10 12 21 01 11 11

12 16 26 66ijkl s ik jl s ik jl s ik jl s ik jlK B T S B T S B T S B T S      

 
25 00 22 10 12 11 11

22 16 662ijkl s ik jl s ik jl s ik jlK B T S B T S B T S    
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44 22 00 11 11 21 01 11 00

11 66 16 552ijkl s ik jl s ik jl s ik jl s ik jlK H T S H T S H T S A T S     

 
45 02 20 21 01 01 21 11 11 10 01

12 16 26 66 45ijkl s ik jl s ik jl s ik jl s ik jl s ik jlK H T S H T S H T S H T S A T S       

 
55 00 22 11 11 10 12 00 11

22 66 16 442ijkl s ik jl s ik jl s ik jl s ik jlK H T S H T S H T S A T S     (5.20) 

where 

 1 2

1 1 2 20 0

,

ra br s s
jrs rsi k l

ik jlr s r s

PR R P
T dx S dx

x x x x

  
 

      (5.21) 

The components of M  are expressed as follows: 

 
11 11 00 13 11 00 14 11 00

0 1 1, ,ijkl ik jl ijkl ik jl ijkl ik jlM I T S M I T S M J T S    

 
22 00 11 23 00 11 25 00 11

0 1 1, ,ijkl ik jl ijkl ik jl ijkl ik jlM I T S M I T S M J T S    

  33 00 11 11 00 00 00

2 0ijkl ik jl ik jl ik jlM I T S T S I T S    

 
35 00 11 34 11 00

2 2,ijkl ik jl ijkl ik jlM J T S M J T S  , 
55 00 11 44 11 00

2 2,ijkl ik jl ijkl ik jlM K T S M K T S   (5.22) 

Based on Eq. (5.18), the critical buckling loads crN  of the microplate can be 

obtained by disregarding the mass inertia components, damping ratio and solving 

the characteristic equation  0 gN K K d 0 . For free vibration analysis, it is 

supposed that 0 0N   and   i tt e d d , where 2 1i    represents the imaginary unit, 

and   denotes the natural frequency of the microplate. By solving the 

equation  2 K M d 0 , the natural frequencies will be determined. 
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5.4. Optimization solution  

In this section, three algorithms are presented to identify the fiber angle   that 

maximize the critical buckling loads and frequencies of laminated composite plates, 

with the following objective functions.  

Maximum  d

if   or  d

cr iN f   

Subjected to 90 90o d o

i       (5.23) 

with d  is the number of layers. 

Three algorithms including differential evolution (DE), shrimp and goby association 

search algorithm (SGA) and balancing composite motion optimization (BCMO) are 

used to solve the above optimization problem. More details about the DE, SGA, 

BCMO algorithms can be found in title 2.7.  

5.5. Numerical examples 

Several numerical examples are conducted to explore vibration and buckling 

behaviors of laminated composite plates. Convergence and verification are carried 

out first and then DE, SGA and BCMO algorithms are employed to determine their 

optimal frequencies and buckling loads. The analysis involves employing the shear 

function        1 3 3

3 3 3cot / 16 / 15x h x x h    ([230]). The material properties are 

given as: 12 13 20.6G G E  , 23 20.5G E , 12 0.25v  , 1   ([231]). For simplicity, 

the following normalized parameters are used: 

 
2

2

a

h E

 
  ;   

2

3

2

cr
cr

N a
N

h E
  (5.39) 
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Table 5.2: Convergence study for 0 / 90 / 90 / 0o o o o    plates with different BCs  

( / 10a h  , 1 2/ 40E E  ) 

BCs/Solution Number of series 1 2n n n   

 2 4 6 7 8 9 

Normalized fundamental frequency 

SSSS 16.2797 15.5288 15.1192 15.1191 15.1192 15.1191 

CSCS 21.1622 19.5302 19.2501 19.2502 19.2501 19.2501 

CCCC 23.4273 22.3269 22.0249 22.0247 22.0248 22.0249 

Normalized critical buckling load under uniaxial compression  0 0 0

1 2 12, , 1,0,0N N N   

SSSS 27.1409 25.1061 23.7876 23.3042 23.3043 23.3042 

CSCS 36.5583 34.8010 34.6724 34.5755 34.5757 34.5755 

CCCC 46.4065 44.3619 44.1133 44.0404 44.0403 44.0404 

 

To examine the convergence of current solutions, Table 5.2 displays the results of 

the square 0 / 90 / 90 / 0o o o o    plates with / 10a h   and 1 240E E . The outcomes 

are computed for three BCs  (SSSS, CSCS and CCCC) with equal series-type 

solutions in the 1x  and 2x  directions ( 1 2 )n n n  . The results indicate swift 

convergences, observed at 6n   for fundamental frequencies and 7n   for 

buckling loads. Therefore, these values will be utilized in the numerical examples.  

5.5.1. Verification study 

Tables 5.3-5.5 provide the fundamental frequencies of 0 / 90 / 90 / 0o o o o   , 

0 / 90 / 0o o o    and 0 / 90o o    square plates with various BCs. For SSSS plates, the 

obtained solutions in Table 6.3 are compared with those who used the third-order 

shear deformation theory (TSDT) ([231], [232]) with / 10a h   and Thai et al. 

[233] using HSDT and FEM with NS-DSG3 element with / 20a h   and 25.  
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Table 5.3: The normalize fundamental frequencies of 0 / 90 / 90 / 0o o o o    plates 

BCs /a h  Theory 
1 2/E E      

   3 10 20 30 40 

SSSS 10 TSDT [232] 7.240 9.847 12.225 13.987 15.112 

  TSDT [231] 7.247 9.853 12.238 13.892 15.143 

  Present 7.2137 9.8325 12.2395 13.8917 15.1192 

 20 HSDT  [233] - - - - 17.6620 

  Present 7.4397 10.4096 13.4353 15.7603 17.6695 

 25 HSDT  [233] - - - - 18.0875 

  Present 7.4825 10.5176 13.6504 16.0987 18.1445 

CSCS 10 Present 9.8392 13.6002 16.4517 18.1279 19.2501 

 20 Present 10.3734 15.1558 19.6100 22.7754 25.1996 

CCCC 10 Present 12.7654 17.1590 19.8039 21.1663 22.0249 

 20 Present 13.8842 20.5707 26.0621 29.5058 31.8833 

 

For CCCC plates, the present results in Table 5.4 are compared with those 

previously reports by Thai et al.[233], Zhen and Wanji [234], Ferreira and 

Fasshauer [235],  Ferreira et al. [236] for case 1 2/ 40E E  . The results listed in 

Table 5.5 are compared with those published by Noor [237] using 3D elasticity 

theory with / 5a h   and Thai et al. [238] using a refined plate theory (RPT) with 

/ 5a h  , 10 and 20. It's evident that the present solutions exhibit strong agreement 

across all cases, with errors consistently below one percentage. Some new results 

are also provided in Tables 5.3-5.5 for other BCs with / 10a h   and 20. It can be 

seen that for all BCs when modulus ratio 1 2/E E  and /a h  increase, the natural 

frequencies increase.  
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Table 5.4: The normalize fundamental frequencies of 0 / 90 / 0o o o    plates 

(      2 2 3

1 2 12 21/ / / / 12 1a h E h v v     ) 

BCs /a h  Theory 
1 2/E E      

   3 10 20 30 40 

CCCC 10 HSDT [234] - - - - 7.484 

  RBF-PS [235] - - - - 7.4727 

  FSDT [236] - - - - 7.4106 

  HSDT  [233] - - - - 7.4224 

  Present 4.4887 5.9410 6.7371 7.1399 7.4022 

 20 HSDT [234] - - - - 11.003 

  RBF-PS [235] - - - - 10.968 

  FSDT [236] - - - - 10.9528 

  HSDT  [233] - - - - 10.9042 

  Present 4.8610 7.1875 9.0084 10.1035 10.8381 

 100 HSDT [234] - - - - 14.601 

  RBF-PS [235] - - - - 14.4305 

  FSDT [236] - - - - 14.4455 

  HSDT  [233] - - - - 14.3626 

  Present 4.9619 7.7474 10.4816 12.6081 14.3997 

CSCS 10 Present 3.5360 4.8438 5.7655 6.2794 6.6146 

 20 Present 3.6949 5.3958 6.9399 8.0117 8.8148 

SSSS 10 Present 2.6389 3.6286 4.4577 4.9853 5.3561 

 20 Present 2.6654 3.7800 4.8782 5.7026 6.3659 
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Table 5.5: The normalize fundamental frequencies of 0 / 90o o    plates  

BCs /a h  Theory 
1 2/E E      

   3 10 20 30 40 

SSSS 5 3D [237] 6.2578 6.9845 7.6745 8.1763 8.5625 

  RPT [238] 6.2167 6.9836 7.8011 8.4646 9.0227 

  Present 6.2170 6.9676 7.7038 8.2126 8.5594 

 10 RPT [238] - - - - 10.5480 

  Present 6.7995 7.7912 8.8723 9.7954 10.6125 

 20 RPT [238] - - - - 11.0997 

  Present 6.9819 8.0413 9.2036 10.2106 11.1161 

CSCS 10 Present 9.2150 10.8820 12.5490 13.8987 15.0435 

 20 Present 9.6325 11.4996 13.4143 15.0219 16.4386 

CCCC 10 Present 11.9659 14.3190 16.4770 18.0981 19.3846 

 20 Present 12.8105 15.6519 18.4309 20.6918 22.6332 

The critical buckling loads of 0 / 90 / 90 / 0o o o o    plates under uniaxial compression 

 0 0 0

1 2 12, , 1,0,0N N N   and 0 / 90 / 0o o o     plates under biaxial compression 

 0 0 0

1 2 12, , 1,1,0N N N  , shear buckling  0 0 0

1 2 12, , 0,0,1N N N   are given in Tables 5.6-5.8 

with different BCs. The numerical findings closely align with those reported in the 

literature for both uniaxial compression ([233, 239, 240]) and biaxial compression 

([239-242]) cases. Hence, the present Ritz method is reliable for optimization 

vibration and buckling analysis of laminated composite plates The first two free 

vibration mode shapes of the square LC plates are displayed for illustration purposes in 

Fig. 5.3. 

Table 5.6: The normalize critical buckling of 0 / 90 / 90 / 0o o o o    plates under 

uniaxial compression  0 0 0

1 2 12, , 1,0,0N N N   

BCs /a h  Theory 1 2/E E      

   3 10 20 30 40 

SSSS 10 HSDT  [233] 5.4418 10.0208 15.4010 19.7810 23.4383 

  TSDT [239] 5.3933 9.9401 15.2945 19.6644 23.3401 

  TSDT [240] 5.3884 9.9303 15.2841 19.6558 23.3152 

  Present 5.3600 9.9008 15.4386 19.8632 23.3042 

 20 TSDT [240] - - - - 31.6975 

  Present 5.6353 11.0146 18.3350 25.2412 31.7690 

CSCS 10 Present 8.4138 16.2424 24.3199 30.1327 34.5755 

 20 Present 9.1960 19.6748 33.1939 45.2623 56.1154 

CCCC 10 Present 13.0602 24.7163 34.3922 40.1873 44.0404 

 20 Present 15.2033 34.0280 56.3164 74.5690 89.8246 
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Table 5.7: The normalize critical buckling of 0 / 90 / 0o o o    plates under biaxial 

compression  0 0 0

1 2 12, , 1,1,0N N N   

BCs /a h  Theory 
1 2/E E   

   3 10 20 30 40 

SSSS 10 HSDT [241] - 4.963 7.516 9.056 10.259 

  TSDT [242] - 4.977 7.544 8.942 10.109 

  TSDT [239] - 4.916 7.448 8.820 9.9755 

  TSDT [240]  4.9130 7.4408 8.7550 9.8795 

  Present 2.7091 4.9492 7.5045 8.8676 10.0343 

 20 TSDT [240] - - - - 13.0239 

  Present 2.8325 5.5194 8.9582 11.0737 13.0866 

CSCS 10 Present 4.3300 7.5574 9.8814 8.9119 12.8231 

 20 Present 4.7207 9.2268 13.2198 16.5097 19.4522 

CCCC 10 Present 6.7537 10.7581 13.1204 14.8401 16.2244 

 20 Present 7.7957 14.2191 19.5382 23.9094 27.6485 

 

Table 5.8: Normalized shear buckling of 0 / 90 / 90 / 0o o o o    plates 

 0 0 0

1 2 12, , 0,0,1N N N  , / 10a h   

BCs 
1 2/E E

 
 

 3 10 20 30 40 

SSSS 11.0219 17.9481 24.2755 28.5083 31.4874 

CSCS 13.4321 21.2794 19.2607 31.1782 33.5337 

CCCC 15.5753 23.7884 29.5902 33.0073 35.3192 

SFSF 0.6950 1.4574 2.5695 3.6911 4.8029 
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(a)  Mode 1 (b) Mode 2 

SSSS 

(c) Mode 1 (d) Mode 2 

CSCS 

(e) Mode 1 (f) Mode 2 

CCCC 

Figure 5.3: Mode shapes of vibration of laminated composite plates / 10a h  , 

1 2/ 40E E  , 0 / 90 / 0o o o   ,      2 2 3

1 2 12 21/ / / / 12 1a h E h v v      

5.5.2. Optimization study 

In this section, the optimum results of the fundamental frequencies and buckling 

loads for uniaxial compression  0 0 0

1 2 12, , 1,0,0N N N   of four-layer square laminated 

composite plates ( / 10a h  , 1 2/ 40E E  ) with different BCs are investigated. 

Tables 5.9-5.11 show the results of three different algorithms (DE, SGA, and 

BCMO) with the population distribution 20NP  . By comparing the results from 
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Tables 5.9 and 5.10, it is evident that the optimal responses obtained in the present 

study are in agreement with those reported by Ho-Huu et al. [217] using FEM-DE 

for symmetric lay-up and by Keshtegar et al. [243] using Kriging-IPSO for arbitrary 

lay-up. For the buckling loads, the optimal fiber angles are 37 39 39/ / / 37o o o o     

for symmetric lay-up and 37 33 36 39/ / /o o o o   for arbitrary ones, corresponding 

to the entire three algorithms (BCMO, SGA and DE). However, the call functions 

are the biggest and smallest for DE and BCMO, respectively.   

Table 5.9: Optimization critical buckling of symmetric SSSS square laminated 

composite plates with four layers ( / 10a h  , 1 2/ 40E E  , 20NP  ) under uniaxial 

compression  0 0 0

1 2 12, , 1,0,0N N N   

Iterations Solution` Max  

values 
 1


 

2  
 3

  
 4

  

Call 

function 

Determinate

0 / 90 / 90 / 0o o o o  
 

SSSS         

500 FEM-DE [244] 30.7692 -39 42 42 -39 840 23.3042 

100 Ritz-BCMO 36.9822 -37 39 39 -37 20  

 Ritz-SGA 36.9822 -37 39 39 -37 27  

 Ritz-DE 36.9822 -37 39 39 -37 50  

SFSF         

100 Ritz-BCMO 17.2807 30 -60 -60 30 20 4.7084 

 Ritz-SGA 17.2807 30 -60 -60 30 27  

 Ritz-SGA 17.2807 30 -60 -60 30 50  

CSCS         

100 Ritz-BCMO 39.5512 31 -48 -48 31 20 34.5755 

 Ritz-SGA 39.5512 31 -48 -48 31 27  

 Ritz-DE 39.5512 31 -48 -48 31 50  

CCCC         

100 Ritz-BCMO 44.4767 -10 85 85 -10 20 44.0404 

 Ritz-SGA 44.4767 -10 85 85 -10 27  

 Ritz-DE 44.4767 -10 85 85 -10 50  
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A comparative analysis related to cost computation (call function) of the 

performance is provided in Tables 5.9-5.11 in order to assess the effectiveness of 

optimization algorithms. Table 5.9 shows that the number of call function of the 

BCMO algorithm is the smallest, with 20 for the symmetric lay-up of buckling 

loads, whereas 27 and 50 are for the SGA and DE algorithms, respectively. Table 

5.11 also shows new optimal fundamental frequencies for laminated composite 

plates with arbitrary lay-up. The optimal fiber angles of a SSSS square laminated 

composite plate are 34 41 / /5 /5 4 3o o o o    , as determined by the BCMO algorithm 

for 5 call functions. The results of the objective function (OF) for the BCMO 

algorithm are better than those of the SGA and DE algorithms. 

Table 5.10: Optimization critical buckling of SSSS square laminated composite 

plates with four layers ( / 10a h  , 1 2/ 40E E  , 20NP  ) under uniaxial 

compression  0 0 0

1 2 12, , 1,0,0N N N    

BCs Iterations Solution Max  

values 

 1
  

2  
 3

  
 4

  

Call function 

SSSS 12 Kriging-IPSO [245] 35.4351 36 -37 36 -36 20 

 20 Ritz-BCMO 36.9569 37 -33 36 -39 7 

  Ritz-SGA  36.9569 37 -33 36 -39 12 

  Ritz-DE 36.9569 37 -33 36 -39 25 

CSCS 20 Ritz-BCMO 39.3736 33 -85 33 -25 7 

  Ritz-SGA 39.3736 33 -85 33 -25 12 

  Ritz-DE 39.3736 33 -85 33 -25 25 

CCCC 20 Ritz-BCMO 44.6772 -20 75 -70 20 7 

  Ritz-SGA 44.6772 -20 75 -70 20 12 

  Ritz-DE 44.6772 -20 75 -70 20 25 

SFSF 20 Ritz-BCMO 17.1737 36 -16 36 -33 7 

  Ritz-SGA 17.1737 36 -16 36 -33 12 

  Ritz-DE 17.1737 36 -16 36 -33 25 
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Table 5.11: Optimization fundamental frequencies of SSSS square laminated 

composite plates with four layers ( / 10a h  , 1 2/ 40E E  , 20NP  ) 

BCs Solution Theory Max  

values 
 1

  
2  

 3
  

 4
  

Call 

function 

SSSS Asymmetric Ritz-DE 19.1344 41 -55 43 -43 20 

  Ritz-SGA 19.1344 41 -55 43 -43 7 

  Ritz-BCMO 19.1344 41 -55 43 -43 5 

 Symmetric Ritz-DE 18.7588 34 -43 -43 34 20 

  Ritz-SGA 18.7588 34 -43 -43 34 7 

  Ritz-BCMO 18.7588 34 -43 -43 34 5 

SFSF Asymmetric Ritz-DE 9.0532 -33 40 -39 33 20 

  Ritz-SGA 9.0532 -33 40 -39 33 7 

  Ritz-BCMO 9.0532 -33 40 -39 33 5 

 Symmetric Ritz-DE 9.9969 30 -37 -37 30 20 

  Ritz-SGA 9.9969 30 -37 -37 30 7 

  Ritz-BCMO 9.9969 30 -37 -37 30 5 

CSCS Asymmetric Ritz-DE 21.1601 -34 77 -35 51 20 

  Ritz-SGA 21.1601 -34 77 -35 51 7 

  Ritz-BCMO 21.1601 -34 77 -35 51 5 

 Symmetric Ritz-DE 21.2345 48 -34 -34 48 20 

  Ritz-SGA 21.2345 48 -34 -34 48 7 

  Ritz-BCMO 21.2345 48 -34 -34 48 5 

CCCC Asymmetric Ritz-DE 22.9067 47 -39 33 -49 20 

  Ritz-SGA 22.9067 47 -39 33 -49 7 

  Ritz-BCMO 22.9067 47 -39 33 -49 5 

 Symmetric Ritz-DE 22.9472 49 -21 -21 49 20 

  Ritz-SGA 22.9472 49 -21 -21 49 7 

  Ritz-BCMO 22.9472 49 -21 -21 49 5 

 

In order to compare the efficacy of various meta-heuristics, Figs. 5.4 and 5.5 show 

the convergence histories of natural frequencies and buckling loads of SSSS plates 

by three different solutions (DE, SGA, and BCMO). It can be seen that the SGA 

and BCMO algorithms converge faster than the DE one. For the same number of 

call functions, BCMO has the fewest iterations (Fig. 5.4a), and for the same number 

of iterations, it also has the fewest call functions (Fig. 5.4b). It should be noted that 

the comparison is not solely based on computational cost but extends to the 

effectiveness of the algorithms in achieving optimal solutions. Interestingly, while 

the call function of BCMO is better than SGA algorithm, their performance varies.  
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a) Symmetric layers b) Arbitrary layers 

Figure 5.4: Comparison the maximum buckling load (uniaxial compression) of 

SSSS square laminated composite plates with size population 20NP   ( 1 2/ 40E E  ) 

 

Figure 5.5: Comparison the maximum fundamental frequencies for SSSS square 

laminated composite plates with size population 20NP  ( 1 2/ 40E E  ) 

The OF convergence histories of three algorithms for different BCs are presented in 

Figs. 5.6-5.8. The change in BCs from SSSS to CCCC impacts plate stiffness and 

subsequently affects frequencies and buckling load values. This variation is 

emphasized in Figs. 5.6 and 5.7, illustrating how these changes impact the 

numerical results produced by the algorithms.  



207 

 

a) The fundamental frequencies b) Biaxial compression 

Figure 5.6: Comparison the minimum results of SSSS square laminated composite 

plates with size population 20NP   ( 1 2/ 40E E  ) 

  

a) SSSS 

 
 

b) CCCC 

Figure 5.7: Comparison the minimum results of SSSS and CCCC square laminated 

composite plates with size population 50NP  ( 1 2/ 40E E  ) 



208 

 

Figure 5.8: Comparison the minimum results for CSCS square laminated composite 

plates  with size population 50NP  ( 1 2/ 40E E  ) 

It is observed that the BCMO consistently attains the optimal solution with notably 

fewer iterations than the SGA and DE in nearly all cases at the maximum iteration. 

These findings contribute to understanding the comparative efficiency of meta-

heuristic algorithms in tackling complex optimization problems in structural 

engineering. 

5.6. Conclusions 

This chapter studies meta-heuristic optimization algorithms for vibration and 

buckling analysis of laminated composite plates. The theoretical framework 

incorporates a unified HSDT, Ritz method, BCMO, and SGA. The obtained 

numerical results showed an efficiency and accuracy of the present theory in 

predicting the responses of laminated composite plates. The numerical findings 

demonstrate that: 

 The novel hybrid shape functions require only the first six series to achieve 

the convergence and numerical stability for free vibration and seven for 

buckling analysis. 

 The increase of side to thickness ratios and Young's modulus 1 2/E E  ratios 

leads to the rising of the natural frequencies and critical buckling loads of 



209 

 

the laminated composite plates.   

 The performance of Ritz-BCMO and Ritz-SGA, which are better than Ritz-

DE when compared with the convergence rate and computation cost. 

 For simply-supported square laminated composite plate, as determined by 

the BCMO algorithm, the optimal lay-up for the maximize fundamental 

frequencies is 34 41 / /5 /5 4 3o o o o     and for the maximize buckling loads 

is 37 33 36 39/ / /o o o o   . 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

The dissertation has developed new approximation functions for the Ritz method; 

developed stochastic models for analysis behaviors of FG, FG sandwich, FGP, PMF 

plates and microplates; developed two novel intelligent computation algorithms for 

solving the stochastic problems of microplates; proposed two optimization methods 

to search the optimal fiber directions of laminated composite plates.  The unified 

higher-order shear deformation theory (HSDT) theory has been formulated to 

approximate of the displacement field. The modified gradient strain theory (MST) 

and the modified couple stress theory (MCT) are employed in the analysis of 

microplates, taking into account their size-dependent behavior. The governing 

equations of motion are obtained using Hamilton's principle. Convergence and 

verification studies are conducted to establish the precision of the proposed 

solution. This study presents numerical results investigating the influence of 

material distribution, material length scale parameters, porosity density, temperature 

variations, and boundary conditions on the natural frequencies, critical buckling 

loads, and deflections of functionally graded microplates. Based on the findings of 

this study, the following conclusions can be drawn: 

 The thesis proposed new computational algorithms, which combined the Ritz 

method with novels OP, unified HSDT, MCT, and MST theory for analysis 

of microplates.  Based on the findings of this study, the OP-Ritz shape 

functions proposed in this thesis are suitable for the behaviors analysis of 

microplates.  

 Advanced computational methods for stochastic analysis behaviors of FG, 

FG sandwich, FGP plate and microplates. The Monte Carlo Simulation 

(MCS) method was also considered as the exact solution and used to 
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investigate the performance of the proposed PCE and SC models. The 

obtained numerical results showed that the PCE and SC give much better 

computation times than the MCS. 

 The dissertation developed two novel intelligent computation algorithms by 

using the neural network systems (artificial neural network (ANN) and deep 

neural network (DNN)) integrated with the balancing composite motion 

optimization (BCMO) and improved BCMO to give the so-called BCMO-

ANN and iBCMO-DNN algorithms for solving stochastic problems. The 

accuracy and efficiency of the proposed BCMO-ANN and iBCMO-DNN 

algorithms are validated through stochastic behaviors of microplates 

subjected to uncertainties in material properties. 

 Thesis proposed meta-heuristic optimization algorithms (BCMO, SGA) for 

behaviors analysis of laminated composite plates. The performance the 

BCMO and SGA algorithms, which are better than a differential evolution 

(DE) algorithm when compared with the convergence rate and computation 

cost. 

While the current shape functions have demonstrated effectiveness on two-

dimensional microplates, their application on three-dimensional plates and 

microplates poses certain challenges. Furthermore, the present thesis fails to 

account for the behavioral characteristics of laminated composite microplates in 

situations where the fiber direction undergoes uncertain variations. The current 

methodology encounters challenges when dealing with plates that have arbitrary 

boundary conditions. 

6.2. Recommendations 

The following are some suggestions for how to proceed with the projected 

expansion of the study in the future: 

 The novel shape functions can be developed to analysis behaviors of 

laminated composite microplates for two-dimensional and three-dimensional. 
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 Analysis of skew composite/FG microplates can be developed by extending 

present methods. 

 A nonlinear model based on large displacements, rotations, and the Ritz 

method should be considered for the analysis of composite and FGP 

microplates under the arbitrary boundary conditions. 

 Address the issue of microplates with periodic boundary conditions. 
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