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A B S T R A C T   

A general higher-order shear deformation theory for buckling and free vibration analysis of laminated thin- 
walled composite I-beams is proposed in this paper. It is based on a unified nonlinear variation of shear 
strains in the wall thickness and then theoretical formulation is derived in the general form which can recover the 
previous conventional theories such as classical and first-order thin-walled beam theory. Series-type solutions 
with hybrid shape functions are developed for different boundary conditions. Numerical examples are performed 
on laminated thin-walled composite I-beams with arbitrary lay-ups. Effects of transverse shear strains, fiber 
angles and slenderness ratio on the critical buckling loads and natural frequencies of the beams are reported.   

1. Introduction 

Laminated composite (LC) thin-walled beams with many advantages 
in weight and strength have been used in many engineering fields such 
as mechanical engineering, aerospace [1], aircrafts [2,3], etc. Such 
structures have attracted a number of researchers with different 
methods and approaches to predict accurately their structural responses, 
only some representative references are herein cited, more details can be 
found in comprehensive review [4]. 

It is known that the classical thin-walled beam theory (CTWBT), 
which neglects shear effects, by Vlasov [5] is the simplest one to analyse 
LC thin-walled beams [6–9]. It underestimates the deflection and 
overestimates the natural frequencies/critical buckling loads. Latalski 
[10] developed a generalised beam theory for the semi-angular cross 
section based on Vlasov’s work but added the effects of cross-section 
distortion. Yu and Hodges [11] developed a generalised Vlasov theory 
for composite beams using the finite element method. In order to ac-
count for effects of transverse shear strains, the first-order thin-walled 
beam theory (FTWBT) with the linear variation of the displacement in 
the wall thickness, which provides more accurate results than the 
CTWBT, has been employed [12–20]. However, this theory requires a 
shear correction factor to rectify the stress-free boundary conditions. To 
solve this problem, the higher-order thin-walled beam theory (HTWBT), 
in which the axial displacement is nonlinearly approximated in the wall 

thickness, is proposed. It should be highlighted the work of Carrera and 
colleagues [21–35], who invented the Carrera Unified Formulation 
(CUF) by using Taylor expansion and Lagrange expansion in displace-
ment fields to obtain any refined theories on the basis of known 
fundamental nuclei. This approach has been successfully employed for 
many problems such as plates [21,23,24,26,28,33,35], shells [22,25] 
and thin-walled composite beams sections such as C, box, I-section and 
wing structures [27,29–32,34]. It should be mentioned that the math-
ematic formulation from CUF is complicated with many variables in 
displacement fields. Chandiramani et al. [36] investigated free, forced 
and geometrically nonlinear vibration responses of LC composite box 
beams based on the assumption of a parabolic distribution of the 
transverse shear strains through the wall thickness. Literature review 
shows that the study on behaviour of thin-walled I-beams based on the 
general HTWBT, which can recover conventional theories such as 
CTWBT and FTWBT, is very limited. This intriguing topic therefore 
needs to be study further. 

The objective of this paper is to develop a general higher-order shear 
deformation theory for buckling and free vibration analysis of LC thin- 
walled beams. The transverse shear strains are assumed to be non-
linearly variation by a shear function, and the axial displacement is 
obtained with a higher-order variation in the wall thickness. A hybrid 
series solution is developed for solving equations of motion with 
different boundary conditions and various theories including CTWBT, 
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Fig. 1. Thin-walled coordinate systems.  

Fig. 2. Geometry of laminated composite thin-walled I-beams.  
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FTWBT and HTWBT. Numerical examples are performed to investigate 
the effects of lay-ups, fiber angle and and shear deformation on the 
natural frequencies and critical buckling loads of the LC thin-walled I- 
section beams. 

2. Theoretical formulation 

In order to investigate theoretical formulation, three coordinate 
systems, namely, Cartesian coordinate system (x, y, z), local plate coor-
dinate system (n, s, z) and contour coordinate s along the profile of the 
section are considered and illustrated in Fig. 1. It is assumed that θ is an 
angle of orientation between (n, s, z) and (x, y, z) coordinate systems, 
the pole P with coordinates (xP, yP) is the shear center of the section. For 
simplicity purpose, the following assumptions are employed: the dis-
placements are small so that the geometrically nonlinear behaviours are 
neglected, the section contour does not deform in its own plane and the 
transverse shear strains vary nonlinearly in the wall thickness. The ge-
ometry of the thin-walled I-beam is shown in Fig. 2 in which b1, b2, b3 
denote the widths and h1, h2, h3 denote the thicknesses of top, bottom 
flange, and web, respectively. 

2.1. Kinematics 

The displacements u(n, s, z, t) and v(n, s, z, t) at any points of the beam 
cross-section under a small rotation ϕ(z, t) about the pole axis can be 
expressed in terms of those at the pole uP(z, t) and vP(z, t) in x − and 

y − directions, respectively, as follows ([37]): 

u(n, s, z, t) = uP(z, t) −
(
y − nx,s − yP

)
ϕ(z, t) = uP(z, t) − (Y − yP)ϕ(z, t)

(1a)  

v(n, s, z, t) = vp(z, t) +
(
x + ny,s − xP

)
ϕ(z, t) = vp(z, t) + (X − xP)ϕ(z, t)

(1b)  

where the comma in the subscript is used to indicate the differentiation 
with respect to the variable that follows; y,s and x,s are the trigonometric 
functions cosθ and − sinθ, respectively (see Fig. 1); X,Y are the co-
ordinates of an arbitrary point along the n axis. It can be seen that the 
displacements in Eq. (1) satisfy the non-deformability conditions of 
cross-section. The displacements in the contour lines un(n, s, z, t), vs(n, s,
z, t) can be hence derived from the displacements in Eq. (1) as follows: 

un(n, s, z, t) = uP(z, t)y,s − vP(z, t)x,s − Rs(n, s)ϕ(z, t) (2a)  

vs(n, s, z, t) = uP(z, t)x,s + vP(z, t)y,s +Rn(n, s)ϕ(z, t) (2b)  

where Rs(n, s) = rs(s), Rn(n, s) = rn(n, s)+n in which rs(s), rn(s) are the 
lengths of the perpendiculars from P to the tangent and normal of the 
profile line center (see Fig. 1). Moreover, the shear strains (γsz, γnz) in the 
contour of thin-walled beams with open sections can be written in terms 

of the transverse shear strains 
(

γxz, γyz

)
and a direct shear strain caused 

by the change rate of twist angle ϕ,z ([2]) as follows: 

γsz(n, s, z, t) = γxz(n, z, t)X,s + γyz(n, z, t)Y,s + 2nϕ,z(z, t)
= vs,z + w,s

(3a)  

γnz(n, s, z, t) = γxz(n, z, t)Y,s − γyz(n, z, t)X,s
= un,z + w,n

(3b)  

where w is the axial displacement at any point of the beam cross-section. 

It is assumed that the transverse shear strains 
(

γxz, γyz

)
vary nonlinearly 

through the wall thickness as follows: 

γxz(n, z, t) = g(n)γ(0)xz (z, t) (4a)  

γyz(n, z, t) = g(n)γ(0)yz (z, t) (4b)  

where γ(0)xz , γ
(0)
yz are mid-surface transverse shear strains; g(n) is a general 

higher-order shear function which satisfies the stress-free boundary 
conditions, i.e. g(n = ±h/2) = 0 where h is the wall thickness. 

γ(0)xz = ψy + uP,z (5a)  

γ(0)yz = ψx + vP,z (5b)  

where ψx,ψy are the rotations of the cross-section with respect to x and 
y, respectively. 

Substituting Eqs. (2) and (4) into Eq. (3) and then integrating the 
subsequent results with respect to s and n lead to the expression of the 
axial displacement as follows: 

w(n, s, z, t) = w0(z, t) + γ(0)xz (z, t)
(
g0x + f y,s

)
+ γ(0)yz (z, t)

(
g0y − f x,s

)

− uP,z(z, t)
(
x + ny,s

)
− vP,z(z, t)

(
y − nx,s

)
− ϕ,z(z, t)(Fω − nrs)

(6)  

where g0 = g(n = 0), g = f,n; Fω(s) is a warping function which is 
defined by: 

Fω(s) =
∫ s

s0

rn(s)ds (7) 

A general higher-order shear deformation kinematics at any points of 
the LC thin-walled beam can be expressed as follows: 

u(n, s, z, t) = uP(z, t) −
(
y − nx,s − yP

)
ϕ(z, t) (8a) 

Table 1 
Shape functions and essential BCs of LC thin-walled I-beams.  

BC φj(z) z = 0 z = L 

SS 
z
L

(
1 −

z
L

)
e
− jz
L 

uP = vP = ϕ = 0 uP = vP = ϕ = 0 

CF 
( z
L

)2
e
− jz
L 

uP = vP = ϕ = 0 
uP,z = vP,z = ϕ,z = 0 

w0 = γ(0)xz = γ(0)yz = 0  
CC 

( z
L

)2 (
1 −

z
L

)2
e
− jz
L 

uP = vP = ϕ = 0 
uP,z = vP,z = ϕ,z = 0 

w0 = γ(0)xz = γ(0)yz = 0 

uP = vP = ϕ = 0 
uP,z = vP,z = ϕ,z = 0 

w0 = γ(0)xz = γ(0)yz = 0  

Table 2 
Material properties of LC thin-walled I-beams.  

Material properties MAT I [39] MAT II [42] MAT III [43] MAT IV [39] 

E1 (GPa)  53.78 144 144 25 
E2(GPa)  17.93 9.65 9.68 1 
G12 = G13(GPa)  8.96 4.14 4.14 0.6 
G23(GPa)  3.45 3.45 3.45 0.6 
ν  0.25 0.3 0.3 0.25 
ρ(kg/m3)  1968.90 1389 – 1  

Table 3 
Convergence of fundamental frequencies (Hz) and critical buckling loads (kN) 
for the LC thin-walled I-beam with different boundary conditions.  

BC m  

2 4 6 8 10 12 

Fundamental frequency (Hz) 
SS 16.7573 16.5382 16.4762 16.4753 16.4753 16.4753 
CC 37.3798 37.2488 37.2435 37.2409 37.2374 37.2272 
CF 5.9567 5.877 5.8723 5.8721 5.8721 5.8722  

Critical buckling load (kN) 
SS 2.7505 2.6880 2.6691 2.6688 2.6688 2.6688 
CC 10.7671 10.6489 10.6281 10.6281 10.6281 10.6281 
CF 0.7060 0.6680 0.6679 0.6679 0.6679 0.6679  
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v(n, s, z, t) = vp(z, t) +
(
x + ny,s − xP

)
ϕ(z, t) (8b)  

w(n, s, z, t) = w0(z, t) + γ(0)xz (z, t)
(
g0x + f y,s

)
+ γ(0)yz (z, t)

(
g0y − f x,s

)

− uP,z(z, t)
(
x + ny,s

)
− vP,z(z, t)

(
y − nx,s

)
− ϕ,z(z, t)(Fω − nrs)

(8c) 

In this paper, f = n − 4n3

3h2 and g = 1 − 4n2

h2 will be selected. It is worth 
noticing that the CTWBT can be found by setting γ(0)xz = 0,γ(0)yz = 0, while 
the FTWBT is recovered by putting g = g0 = 1, f = n. 

2.2. Strains 

The linear non-zero strains related to the displacement in Eq. (8) are 
given by: 

εz(n, s, z, t) = ε(0)z + nε(1)z + f ε(2)z (9a)  

γsz(n, s, z, t) = nγ(1)sz + gγ(2)sz (9b)  

γnz(n, s, z, t) = gγ(0)nz (9c)  

where 

ε(0)z (s, z, t) = w0,z +
(

g0γ(0)xz,z − uP,zz

)
x+

(
g0γ(0)yz,z − vP,zz

)
y − ϕ,zzFω (10a)  

ε(1)z (s, z, t) = vP,zzx,s − uP,zzy,s +ϕ,zzrs (10b)  

ε(2)z (s, z, t) = γ(0)xz,zy,s − γ(0)yz,zx,s (10c)  

γ(1)sz (s, z, t) = 2ϕ,z (10d)  

γ(2)sz (s, z, t) = γ(0)xz x,s + γ(0)yz y,s (10e)  

γ(0)nz (s, z, t) = γ(0)xz y,s − γ(0)yz x,s (10f)  

2.3. Stresses 

For LC thin-walled beams, it is supposed to be constituted by a 
number of orthotropic material layers with the same thickness. The 
reduced constitutive equations at the kth − layer is given by: 
⎧
⎨

⎩

σz
σsz
σnz

⎫
⎬

⎭
=

⎛

⎝
P11 P16 0
P16 P66 0
0 0 P55

⎞

⎠

⎧
⎨

⎩

εz
γsz
γnz

⎫
⎬

⎭
(11)  

where P11 = Q11 −
Q

2
11

Q22
, P16 = Q16 −

Q12Q26
Q22

, P66 = Q66 −
Q

2
26

Q22
, P55 = Q55; Qij 

are the reduced stiffness components of materials (see [38] for more 
details). 

2.4. Variational formulation 

The characteristic equations of the LC thin-walled beams can be 
derived by Hamilton’s equations in which the total energy of the system 
Π is composed of the strain energy ΠS, work done by external force ΠW 
and kinetic energy ΠK as follows: 

Table 4 
Fundamental frequency (Hz) of LC thin-walled I-beams with different boundary conditions and span-to-height ratios.  

BC Reference Lay-up   

[0]4s [15/-15] 4s [30/-30] 4s [45/-45] 4s [60/-60] 4s [75/-75] 4s [90/-90] 4s 

L/b3 = 40         
SS Present (HTWBT)  24.135  22.954  19.794  16.475  14.657  14.068  13.538  

Present (FTWBT)  24.163  22.974  19.805  16.481  14.661  14.072  13.965  
Nguyen et al. [39] (FTWBT)  24.169  22.977  19.806  16.481  14.660  14.071  13.964  
Nguyen et al. [39] (CTWBT)  24.198  23.001  19.820  16.490  14.668  14.079  13.972  
Vo and Lee [16] (FTWBT)  24.150  22.955  19.776  16.446  14.627  14.042  13.937  
Kim et al. [40] (CTWBT)  24.194  22.997  19.816  16.487  14.666  14.077  13.970  

L/b3 = 20         
CF Present (HTWBT)  26.436  25.143  21.685  18.050  16.058  15.413  15.296  

Present (FTWBT)  26.470  25.168  21.698  18.057  16.063  15.418  15.301  
Kim and Lee [41] (FTWBT)  26.460  25.160  21.700  18.060  16.060  15.420  15.300  
Nguyen et al. [39] (FTWBT)  26.479  25.174  21.699  18.057  16.063  15.417  15.299  
Nguyen et al. [39] (CTWBT)  26.514  25.202  21.717  18.069  16.072  15.427  15.309  

L/b3 = 40         
CC Present (HTWBT)  54.198  51.655  44.677  37.237  33.142  31.811  31.568  

Present (FTWBT)  54.499  51.876  44.790  37.302  33.1897  31.856  31.613  

L/b3 = 10         
SS Present (HTWBT)  372.076  356.585  310.809  260.096  231.742  222.431  220.705  

Present (FTWBT)  378.427  361.331  313.311  261.494  232.810  223.457  221.739 
CF Present (HTWBT)  104.813  99.874  86.359  71.977  64.058  61.487  61.018  

Present (FTWBT)  105.351  100.271  86.564  72.090  64.143  61.567  61.099 
CC Present (HTWBT)  745.489  731.822  661.601  564.603  506.049  485.710  481.698  

Present (FTWBT)  798.300  773.783  685.611  578.677  516.922  496.144  492.167  

L/b3 = 5         
SS Present (HTWBT)  1344.158  1312.736  1176.720  999.590  894.553  858.598  851.566  

Present (FTWBT)  1422.882  1374.247  1211.303  1019.590  909.980  873.414  866.491 
CF Present (HTWBT)  405.333  388.894  339.562  284.438  253.531  243.382  241.503  

Present (FTWBT)  413.280  394.858  342.708  286.182  254.845  244.626  242.751 
CC Present (HTWBT)  2200.409  2252.548  2193.488  1964.319  1787.989  1715.788  1698.878  

Present (FTWBT)  2594.384  2600.996  2434.795  2123.285  1915.436  1838.472  1822.071  
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∫ t2

t1
(δΠS + δΠW − δΠK)dt = 0 (12) 

The variation of strain energy ΠS is defined by: 

δΠS =

∫

Ω

(
σzδεz + σszδγsz + σnzδγnz

)
dΩ (13) 

Substituting Eqs. (9) and (11) into Eq. (13) leads to: 

δΠS =

∫ L

0

[
Tzδw0,z + Myδγ(0)xz,z + Mxδγ(0)yz + MyaδuP,zz + MxaδvP,zz

+ Mωδϕ,zz + Qxδδγ(0)xz + Qyδδγ(0)yz + Mzδϕ,z

]
dz

(14)  

where the stress resultants 
(
Tz,My,Mx,Mya,Mxa,Mω,Qx,Qy,Mz

)
are 

defined as follows: 

(
Tz,My,Mx

)
=

∫

A
σz
(
1, g0x + fy,s, g0y − fx,s

)
dsdn (15a)  

(
Mya,Mxa,Mω

)
=

∫

A
σz
[
−
(
x + ny,s

)
, − y + nx,s, − Fω + nrs

]
dsdn (15b)  

Qx =

∫

A
g
(
σszx,s + σnzy,s

)
dsdn (15c)  

Qy =

∫

A
g
(
σszy,s − σnzx,s

)
dsdn (15d)  

Mz =

∫

A
2nσszdsdn (15e) 

These stress resultants are related to the displacement gradients as 
follows: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tz
My
Mx
Qx
Qy
Mya
Mxa
Mω
Mz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L11 L12 L13 L14 L15 L16 L17 L18 L19
L12 L22 L23 L24 L25 L26 L27 L28 L29
L13 L23 L33 L34 L35 L36 L37 L38 L39
L14 L24 L34 L44 L45 L46 L47 L48 L49
L15 L25 L35 L45 L55 L56 L57 L58 L59
L16 L26 L36 L46 L56 L66 L67 L68 L69
L17 L27 L37 L47 L57 L67 L77 L78 L79
L18 L28 L38 L48 L58 L68 L78 L88 L89
L19 L29 L39 L49 L59 L69 L79 L89 L99

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0,z

γ(0)xz,z

γ(0)yz,z

γ(0)xz

γ(0)yz

uP,zz

vP,zz

ϕ,zz

ϕ,z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)  

where the stiffness components of the LC thin-walled beams Lij (i, j = 1,
...,9) are defined by: 

L11 =

∫

s
A11ds, L12 =

∫

s

(
A11g0x + E11y,s

)
ds, L13 =

∫

s

(
A11g0y − E11x,s

)
ds  

L14 =

∫

s
As16x,sds, L15 =

∫

s
As16y,sds, L16 = −

∫

s

(
A11x + B11y,s

)
ds  

L17 =

∫

s

(
− A11y + B11x,s

)
dsL18 =

∫

s
( − A11Fω + B11rs)dsL19 =

∫

s
2B16ds  

Table 5 
Critical buckling load (N) of LC thin-walled I-beams with different boundary conditions and span-to-height ratios.  

BC Reference Lay-up   

[0]4s [15/-15]4s [30/-30]4s [45/-45]4s [60/-60]4s [75/-75]4s [90/-90]4s 

L/b3 = 80         
SS Present (HTWBT)  1437.0  1298.7  964.7  667.9  528.5  486.9  958.6  

Present (FTWBT)  1438.0  1299.4  965.1  668.1  528.7  487.0  959.0  
Nguyen et al. [39] (FTWBT)  1438.1  1299.4  965.0  668.1  528.6  487.0  959.0  
Nguyen et al. [39] (CTWBT)  1438.8  1300.0  965.2  668.2  528.7  487.1  959.3  
Kim et al. [44] (CTWBT)  1438.8  1300.0  965.2  668.2  528.7  487.1  964.4  

L/b3 = 20         
CF Present (HTWBT)  5727.4  5180.3  3852.4  2668.8  2112.1  1945.8  3826.0  

Present (FTWBT)  5740.3  5189.3  3856.4  2670.6  2113.3  1946.9  3831.1  
Nguyen et al. [39] (FTWBT)  5743.3  5191.0  3856.8  2670.6  2113.2  1946.7  3831.4  
Nguyen et al. [39] (CTWBT)  5755.2  5199.7  3861.0  2672.7  2114.7  1948.3  3837.3  
Kim et al. [44] (CTWBT)  5755.2  5199.8  3861.0  2672.7  2114.7  1948.3  3837.8  
Vo and Lee [16] (FTWBT)  5741.5  5189.0  3854.5  2668.4  2111.3  1945.1  3829.8  

L/b3 = 80         
CC Present (HTWBT)  5727.4  5180.3  3852.4  2668.8  2112.1  1945.8  3826.0  

Present (FTWBT)  5740.3  5189.3  3856.4  2670.6  2113.3  1946.9  3831.1  

L/b3 = 10         
SS Present (HTWBT)  85.45  78.50  59.65  41.78  33.17  30.56  58.70  

Present (FTWBT)  88.43  80.63  60.63  42.24  33.48  30.84  59.93 
CF Present (HTWBT)  22.58  20.49  15.31  10.63  8.42  7.75  15.17  

Present (FTWBT)  22.78  20.63  15.37  10.66  8.44  7.77  15.25 
CC Present (HTWBT)  281.03  268.44  216.23  156.26  125.21  115.34  207.48  

Present (FTWBT)  315.97  295.06  229.62  162.83  129.74  119.52  223.67  

L/b3 = 5         
SS Present (HTWBT)  281.05  268.47  216.25  156.28  125.22  115.35  207.49  

Present (FTWBT)  316.00  295.08  229.64  162.85  129.75  119.54  223.69 
CF Present (HTWBT)  85.45  78.49  59.65  41.77  33.16  30.55  58.69  

Present (FTWBT)  88.42  80.62  60.62  42.23  33.47  30.84  59.93 
CC Present (HTWBT)  657.01  679.58  629.11  496.32  408.95  376.70  566.53  

Present (FTWBT)  885.99  880.70  757.62  569.25  461.62  425.24  705.90  
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L22 =

∫

s

[
g0x

(
A11g0x + 2E11y,s

)
+ H11y2

,s

]
ds  

L23 =

∫

s

[
g0x

(
A11g0y − E11x,s

)
+ y,s

(
E11g0y − H11x,s

) ]
ds  

L24 =

∫

s

(
As16xg0 + Ds16y,s

)
x,sds, L25 =

∫

s

(
As16xg0 + Ds16y,s

)
y,sds  

L26 = −

∫

s

[
g0x

(
A11x + B11y,s

)
+ y,s

(
E11x + F11y,s

) ]
ds  

L27 =

∫

s

[
g0x

(
− A11y + B11x,s

)
+ y,s

(
− E11y + F11x,s

) ]
ds  

L28 =

∫

s
g0x( − A11Fω + B11rs) + y,s( − E11Fω + F11rs)ds  

L29 =

∫

s
2
(
B16xg0 + F16y,s

)
ds  

L33 =

∫

s

[
g0y

(
A11g0y − E11x,s

)
− x,s

(
E11g0y − H11x,s

) ]
ds  

L34 =

∫

s

(
As16yg0 − Ds16x,s

)
x,sds, L35 =

∫

s

(
As16yg0 − Ds16x,s

)
y,sds  

L36 = −

∫

s

[
x
(
A11g0y − E11x,s

)
+ y,s

(
B11g0y − F11x,s

) ]
ds  

L37 =

∫

s

[
− y

(
A11g0y − E11x,s

)
+ x,s

(
B11g0y − F11x,s

) ]
ds  

L38 =

∫

s

[
− Fω

(
A11g0y − E11x,s

)
+ rs

(
B11g0y − F11x,s

) ]
ds  

L39 =

∫

s
2
(
B16yg0 − F16x,s

)
ds  

L44 =

∫

s

(
Hs66x2

,s + Hs44y2
,s

)
dsL45 =

∫

s
x,sy,s(Hs66 − Hs44)ds  

L46 = −

∫

s

(
As16x + Bs16y,s

)
x,sds, L47 =

∫

s

(
− As16y + Bs16x,s

)
x,sds  

L48 =

∫

s
( − As16Fω + Bs16rs)x,sds, L49 =

∫

s
2x,sBs66ds  

L55 =

∫

s

(
Hs66y2

,s + Hs44x2
,s

)
ds, L56 = −

∫

s

(
As16x + Bs16y,s

)
y,sds  

L57 =

∫

s

(
− As16y + Bs16x,s

)
y,sds, L58 =

∫

s
( − As16Fω + Bs16rs)y,sds  

L59 =

∫

s
2y,sBs66ds, L66 = −

∫

s

[
x
(
A11x + B11y,s

)
+ y,s

(
B11x + D11y,s

) ]
ds  

L67 =

∫

s

[
− y

(
A11x + B11y,s

)
+ x,s

(
B11x + D11y,s

) ]
ds  

L68 =

∫

s

[
− Fω

(
A11x + B11y,s

)
+ rs

(
B11x + D11y,s

) ]
ds  

L69 =

∫

s
2
(
B16x + D16y,s

)
ds, L77

=

∫

s

[
y
(
A11y − B11x,s

)
+ x,s

(
− B11y + D11x,s

) ]
ds  

L78 =

∫

s

[
Fω

(
A11y − B11x,s

)
+ rs

(
− B11y + D11x,s

) ]
ds  

L79 =

∫

s
2
(
− B16y + D16x,s

)
ds  

L88 =

∫

s
[ − Fω( − FωA11 + B11rs) + rs( − B11Fω + D11rs) ]ds  

L89 =

∫

s
2( − B16Fω + D16rs)ds, L99 =

∫

s
4D66ds  

(
Aij,Bij,Dij,Eij,Fij,Hij,Bsij,Hsij

)
=

∑nl

k=1

(∫ nk+1

nk

(
1, n, n2, f , nf , f 2, ng, g2)Qijdn

)

(17)  

where nl is the number of layers and k is the layer index. 
The variation of potential energy ΠW of the LC thin-walled beams 

subjected to axial compressive load N0 can be expressed as: 

Fig. 3. Variation of the fundamental frequencies (Hz) and critical buckling 
loads of LC thin-walled I-beam with respect to fiber angle change [α0/–α0]4s (CC 
boundary condition, L/b3 = 10). 
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δΠW=

∫

Ω
σ0

z

(
u,zδu,z+v,zδv,z

)
dΩ

=

∫ L

0
N0

[
δuP,z

(
uP,z − JPϕ,z

)
+δvP,z

(
vP,z+IPϕ,z

)
+δϕ,z

(
IPvP,z+KPϕ,z − JPuP,z

)]
dz

(18)  

where σ0
z = N0/A is averaged axial stress; A is the cross-sectional area; 

(IP, JP,KP) are moments of inertia of the cross-section about the centroid 
defined by: 

{IP, JP,KP} =
1
A

∫ h/2

− h/2

∫

s

{
X − xP,Y − yP, (Y − yP)

2
+ (X − xP)

2 }dsdn

(19) 

The variation of kinetic energy ΠK of the LC thin-walled beams is 
given by:  

Table 6 
Torsional frequencies (Hz) of LC thin-walled I-beams with various fibre lay-up and slenderness span-to-height ratios.  

Lay-up b3/L Theory ω1 ω2 ω3 ω4 

[0o/0o/0o/0o ] 0.05 Present (FTWBT)  16.24  63.22  141.08  249.51 
Present (HTWBT)  16.24  63.22  141.09  249.56 
Cortinez and Piovan (CTWBT) [42]  16.24  63.35  141.86  251.76 
Cortinez and Piovan (FTWBT) [42]  15.64  55.00  107.55  165.41 

0.10 Present (FTWBT)  63.22  249.20  552.69  966.04 
Present (HTWBT)  63.22  249.20  552.69  966.01 
Cortinez and Piovan (CTWBT) [42]  63.35  251.76  565.78  1005.4 
Cortinez and Piovan (FTWBT) [42]  55.00  165.41  284.29  401.86 

0.15 Present (FTWBT)  141.08  552.65  1207.87  2070.50 
Present (HTWBT)  141.07  552.65  1207.81  2069.76 
Cortinez and Piovan (CTWBT) [42]  141.86  565.78  1272.31  2261.46 
Cortinez and Piovan (FTWBT) [42]  107.55  284.29  459.86  631.49  

[0o/90o/90o/0o] 0.05 Present (FTWBT)  12.20  46.54  103.44  182.69 
Present (HTWBT)  12.20  46.54  103.44  182.72 
Cortinez and Piovan (CTWBT) [42]  12.19  46.61  103.95  184.21 
Cortinez and Piovan (FTWBT) [42]  11.96  43.02  87.94  140.98 

0.10 Present (FTWBT)  46.54  182.44  404.19  706.08 
Present (HTWBT)  46.54  182.44  404.18  705.98 
Cortinez and Piovan (CTWBT) [42]  46.61  184.21  413.54  734.59 
Cortinez and Piovan (FTWBT) [42]  43.02  140.98  257.02  375.94 

0.15 Present (FTWBT)  103.43  404.18  882.88  1511.93 
Present (HTWBT)  103.43  404.17  882.91  1512.98 
Cortinez and Piovan (CTWBT) [42]  103.95  413.54  929.52  1651.89 
Cortinez and Piovan (FTWBT) [42]  87.94  257.02  435.12  610.43  

[45o/ − 45o

/ − 45o/45o]

0.05 Present (FTWBT)  8.54  24.45  49.80  84.88 
Present (HTWBT)  8.54  24.45  49.80  84.82 
Cortinez and Piovan (CTWBT) [42]  10.98  28.11  54.18  89.99 
Cortinez and Piovan (FTWBT) [42]  10.96  27.98  53.61  88.35 

0.10 Present (FTWBT)  24.45  84.78  182.77  316.11 
Present (HTWBT)  24.45  84.78  182.77  316.10 
Cortinez and Piovan (CTWBT) [42]  28.11  89.99  191.65  333.74 
Cortinez and Piovan (FTWBT) [42]  27.98  88.34  184.14  311.75 

0.15 Present (FTWBT)  49.80  182.76  394.21  672.39 
Present (HTWBT)  49.80  182.76  394.20  672.38 
Cortinez and Piovan (CTWBT) [42]  54.18  191.65  419.94  739.46 
Cortinez and Piovan (FTWBT) [42]  53.61  184.14  386.03  644.07  

Table 7 
Critical buckling load (N) of LC cantilever I-beam with various lay-ups and span-to-height ratios.  

Lay-up  L/b3 = 20 L/b3 = 10 

[0o/0o/0o/0o ] Present (HTWBT) 19,144 75,403  
Present (FTWBT) 19,179 75,951  
Piovan and Cortinez (FTWBT) [43] 19,175 75,559  
COSMOS/M [43] 19,058 73,564  

[0o/90o/90o/0o] Present (HTWBT) 10,495 41,591  
Present (FTWBT) 10,501 41,683  
Piovan and Cortinez (FTWBT) [43] 10,561 41,861  
COSMOS/M [43] 10,350 40,698  

[45o/ − 45o/ − 45o/45o ] Present (HTWBT) 1935 7846  
Present (FTWBT) 1935 7848  
Piovan and Cortinez (FTWBT) [43] 2003 8012  
COSMOS/M [43] 2033 7958  
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where the following relations have been used: X1 = g0x + fy,s, Y1 =

g0y − fx,s; F = Fω − nrs; the dot-superscript is used to denote the differ-
entiation with respect to the time t; ρ(n) is the mass density and the 
inertia coefficients are given as follows: 

{m1,m2,m3,m4,m5} =

∫ h/2

− h/2

∫

s
ρ
{

1, Y − yP,X

− xP, (Y − yP)
2
, (X − xP)

2 }dsdn (21a)  

{m6,m7,m8,m9,m10,m11} =

∫ h/2

− h/2

∫

s
ρX{1,X, Y,X1, Y1,F}dsdn (21b)  

{m12,m13,m14,m15,m16} =

∫ h/2

− h/2

∫

s
ρY{1, Y,X1,Y1,F}dsdn (21c)  

{m17,m18,m19,m20} =

∫ h/2

− h/2

∫

s
ρX1{1,X1, Y1,F}dsdn (21d) 

Table 8 
Non-dimensional fundamental frequency of LC thin-walled I-beams with different boundary conditions and span-to-height ratios.  

BC Reference Frequency Lay-up 

[0] [15/-15] [30/-30] [45/-45] [60/-60] [75/-75] [90/-90] 

SS Present (HTWBT) ω1  7.042  6.305  3.751  2.150  1.627  1.492  1.468 
ω2  8.300  7.737  5.356  3.663  2.975  2.715  2.647 
ω3  17.967  16.676  12.574  8.567  6.485  5.949  5.851 

Present (FTWBT) ω1  7.107  6.326  3.755  2.150  1.625  1.490  1.465 
ω2  8.300  7.737  5.357  3.665  2.979  2.720  2.652 
ω3  19.140  17.583  12.943  8.569  6.469  5.925  5.824 

Nguyen et al. [39] (FTWBT) ω1  7.107  6.327  3.755  2.151  1.627  1.493  1.468 
ω2  8.189  7.528  5.137  3.610  2.967  2.713  2.645 
ω3  19.140  17.594  12.904  8.538  6.495  5.985  5.860  

CF Present (HTWBT) ω1  2.536  2.255  1.338  0.767  0.580  0.532  0.523 
ω2  3.197  3.247  2.612  1.915  1.577  1.439  1.401 
ω3  6.886  6.327  4.642  3.778  3.565  3.323  3.268 

Present (FTWBT) ω1  2.547  2.259  1.339  0.766  0.580  0.532  0.523 
ω2  3.197  3.247  2.612  1.915  1.578  1.440  1.402 
ω3  7.123  6.502  4.708  3.814  3.596  3.318  3.263 

Nguyen et al. [39] (FTWBT) ω1  2.547  2.259  1.339  0.767  0.580  0.532  0.523 
ω2  3.174  3.057  2.423  1.877  1.572  1.438  1.400 
ω3  7.123  6.538  4.746  3.821  3.597  3.327  3.272  

CC Present (HTWBT) ω1  14.867  13.907  8.432  4.854  3.675  3.373  3.316 
ω2  18.354  16.434  10.190  6.233  4.853  4.436  4.344 
ω3  28.752  27.689  23.010  13.310  10.088  9.261  9.099 

Present (FTWBT) ω1  15.481  14.129  8.472  4.857  3.667  3.358  3.301 
ω2  18.354  16.434  10.192  6.243  4.873  4.462  4.372 
ω3  34.230  32.473  23.215  13.337  10.060  9.205  9.046 

Nguyen et al. [39] (FTWBT) ω1  15.480  14.129  8.474  4.865  3.682  3.378  3.322 
ω2  17.239  16.086  10.104  6.206  4.839  4.423  4.332 
ω3  34.221  32.379  23.221  13.368  10.121  9.285  9.131 

Vo and Lee [16] (FTWBT) ω1  15.460  14.122  8.471  4.862  3.678  3.374  3.319 
ω2  17.211  16.064  10.092  6.202  4.836  4.421  4.330 
ω3  33.996  32.174  23.209  13.392  10.147  9.308  9.152  

δΠK =

∫

Ω
ρ(n)(u̇δu̇ + v̇δv̇ + ẇδẇ)dΩ

=

∫ L

0

{

δu̇P

(

m1u̇P − m2ϕ̇
)

+ δv̇P

(

m1v̇P − m3ϕ̇
)

+ δϕ̇
[

− m2u̇P + (m4 + m5)ϕ̇ − m3v̇P

]

+δẇ0

(

m1ẇ0 + m17γ̇(0)xz + m21γ̇(0)yz − m6u̇P,z − m13v̇P,z − m24ϕ̇,z

)

+δγ̇(0)xz

(

m17ẇ0 + m18γ̇(0)xz + m19γ̇(0)yz − m9u̇P,z − m14 v̇P,z − m20ϕ̇,z

)

+δγ̇(0)yz

(

m21ẇ0 + m19γ̇(0)xz + m22 γ̇(0)yz − m10u̇P,z − m15v̇P,z − m23ϕ̇,z

)

− δu̇P,z

(

m6ẇ0 + m9 γ̇(0)xz + m10γ̇(0)yz − m7u̇P,z − m8v̇P,z − m11ϕ̇,z

)

− δv̇P,z

(

m12ẇ0 + m14γ̇(0)xz + m15γ̇(0)yz − m8u̇P,z − m13v̇P,z − m16ϕ̇,z

)

− δϕ̇,z

(

m24ẇ0 + m20γ̇(0)xz + m23 γ̇(0)yz − m11u̇P,z − m16v̇P,z − m25ϕ̇,z

)}

dz

(20)   
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{m21,m22,m23,m24,m25} =

∫ h/2

− h/2

∫

s
ρ
{

Y1, Y2
1 ,Y1F,F,F2}dsdn (21e)  

2.5. Hybrid series solution 

The displacement field is approximated as follows: 

{uP, vP,ϕ}(z, t) =
∑m

j=1
φj(z)

{
uPj, vPj,ϕj

}
(t) (22a)  

{
w0, γ(0)xz , γ

(0)
yz

}
(z, t) =

∑m

j=1
φj,z(z)

{
wj, ξj, ηj

}
(t) (22b)  

where wj(t),uPj(t), vPj(t), ξj(t), ηj(t) and ϕj(t) are six unknowns to be 
determined; φj(z) are shape functions. It is noted that the approxima-
tions in Eq. (22) are known as Ritz-type series ones whose functions of 
approximation should be constructed to satisfy the specified essential 
boundary conditions (BCs). For the present paper, shape functions are 
proposed in Table 1 and these functions must satisfy various BCs such as 
simply-supported (SS), clamped-free (CF) and clamped-clamped (CC). 

Substituting Eq. (22) into Eq. (12) accounting for Eqs. (14), (18), 

(20), and then using Lagrange’s equations lead to the characteristic 
equations for vibration and buckling analysis of LC thin-walled beams as 
follows: 

Kd+Md̈ = 0 (23) 

where K,M are the stiffness and mass matrix, respectively; d =

[w u v ξ η Φ ]
T is the displacement vector. The components of 

the stiffness matrix K are expressed by: 

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K11 K12 K13 K14 K15 K16

T K12 K22 K23 K24 K25 K26

T K13 T K23 K33 K34 K35 K36

T K14 T K24 T K34 K44 K45 K46

T K15 T K25 T K35 T K45 K55 K56

T K16 T K26 T K36 T K46 T K56 K66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)  

where 

K11
ij = L11S22

ij , K12
ij = L16S22

ij , K13
ij = L17S22

ij , K14
ij = L12S22

ij + L14S12
ij  

K15
ij = L13S22

ij + L15S12
ij , K16

ij = L18S22
ij + L19S12

ij , K22
ij = L66S22

ij + N0S11
ij , K23

ij

= L67S22
ij 

Table 9 
Non-dimensional fundamental frequency of LC thin-walled I-beams with different boundary conditions and span-to-height ratios.  

BC Reference Frequency Lay-up 

[0] [15/-15] [30/-30] [45/-45] [60/-60] [75/-75] [90/-90] 

L/b3 = 10 
SS Present (HTWBT) ω1  6.657  6.168  3.724  2.140  1.617  1.482  1.457   

ω2  8.091  7.257  4.510  2.764  2.157  1.974  1.934   
ω3  13.506  12.932  10.697  8.424  6.373  5.834  5.733  

Present (FTWBT) ω1  6.886  6.250  3.739  2.146  1.624  1.490  1.465   
ω2  8.091  7.257  4.510  2.762  2.152  1.967  1.926   
ω3  15.790  14.874  11.714  8.501  6.442  5.909  5.810 

CF Present (HTWBT) ω1  2.466  2.232  1.333  0.765  0.578  0.530  0.521   
ω2  2.949  2.730  1.863  1.251  1.007  0.920  0.898   
ω3  5.756  5.418  4.244  3.552  3.373  3.274  3.218  

Present (FTWBT) ω1  2.508  2.246  1.336  0.766  0.579  0.531  0.523   
ω2  2.949  2.729  1.863  1.251  1.006  0.919  0.897   
ω3  6.382  5.923  4.470  3.681  3.483  3.305  3.250 

CC Present (HTWBT) ω1  12.121  12.681  8.170  4.770  3.612  3.306  3.249   
ω2  16.777  16.158  9.676  5.638  4.302  3.944  3.874   
ω3  18.220  16.651  15.560  12.891  9.797  8.959  8.801  

Present (FTWBT) ω1  13.621  13.395  8.325  4.822  3.655  3.353  3.297   
ω2  18.220  16.158  9.674  5.628  4.280  3.916  3.845   
ω3  21.931  21.449  19.233  13.125  9.969  9.144  8.990  

L/b3 = 5 
SS Present (HTWBT) ω1  5.580  5.701  3.621  2.106  1.593  1.459  1.433   

ω2  8.009  7.106  4.258  2.482  1.894  1.736  1.705   
ω3  8.169  8.033  7.393  6.833  6.086  5.570  5.469  

Present (FTWBT) ω1  6.173  5.969  3.678  2.125  1.610  1.477  1.453   
ω2  8.009  7.106  4.257  2.477  1.884  1.724  1.693   
ω3  10.486  10.201  8.960  8.006  6.245  5.727  5.628 

CF Present (HTWBT) ω1  2.234  2.144  1.316  0.759  0.574  0.526  0.517   
ω2  2.877  2.576  1.594  0.972  0.756  0.692  0.678   
ω3  3.858  3.749  3.289  2.928  2.828  3.143  2.808  

Present (FTWBT) ω1  2.369  2.196  1.326  0.762  0.577  0.529  0.521   
ω2  2.877  2.576  1.594  0.971  0.754  0.690  0.676   
ω3  4.756  4.554  3.778  3.261  3.119  3.085  3.081 

CC Present (HTWBT) ω1  7.913  8.858  7.327  4.504  3.447  3.155  3.097   
ω2  8.875  9.778  8.660  5.449  4.125  3.782  3.718   
ω3  16.826  16.016  9.499  8.616  8.411  8.232  8.046  

Present (FTWBT) ω1  9.860  11.306  7.802  4.647  3.525  3.221  3.163   
ω2  12.082  11.912  9.500  5.456  4.141  3.802  3.739   
ω3  18.104  16.016  11.369  11.006  9.371  8.559  8.401  
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K24
ij = L26S22

ij + L46S12
ij , K25

ij = L36S22
ij + L56S12

ij , K26
ij

= L68S22
ij + L69S12

ij − N0JPS11
ij  

K33
ij = L77S22

ij + N0S11
ij , K34

ij = L27S22
ij + L47S12

ij , K35
ij = L37S22

ij + L57S12
ij  

K36
ij = L78S22

ij + L79S12
ij + N0IPS11

ij , K44
ij = L22S22

ij + L24

(
S12

ij + S21
ij

)
+ L44S11

ij  

K45
ij = L23S22

ij + L25S12
ij + L34S21

ij + L45S11
ij , K46

ij

= L28S22
ij + L29S12

ij + L48S21
ij + L49S11

ij  

K55
ij = L33S22

ij + L35

(
S12

ij + S21
ij

)
+ L55S11

ij , K56
ij

= L38S22
ij + L39S12

ij + L58S21
ij + L59S11

ij  

K66
ij = L88S22

ij + L89

(
S12

ij + S21
ij

)
+ L99S11

ij +N0KPS11
ij  

Srs
ij =

∫ L

0

∂rφi

∂zr

∂sφj

∂zs dz (25) 

The components of mass matrix M are given by: 

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M11 M12 M13 M14 M15 M16

T M12 M22 M23 M24 M25 M26

T M13 T M23 M33 M34 M35 M36

T M14 T M24 T M34 M44 M45 M46

T M15 T M25 T M35 T M45 M55 M56

T M16 T M26 T M36 T M46 T M56 M66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(26)  

where 

M11
ij = m1S11

ij , M12
ij = − m6S11

ij , M13
ij = − m12S11

ij , M14
ij = m17S11

ij , M15
ij

= m21S11
ij  

M16
ij = − m24S11

ij , M22
ij = m7S11

ij + m1S00
ij , M23

ij = m8S11
ij , M24

ij = − m9S11
ij  

M25
ij = − m10S11

ij , M26
ij = m11S11

ij − m2S00
ij , M33

ij = m13S11
ij + m1S00

ij  

M34
ij = − m14S11

ij , M35
ij = − m15S11

ij , M36
ij = m16S11

ij + m3S00
ij , M44

ij

= m18S11
ij , M45

ij = m19S11
ij  

M46
ij = − m20S11

ij , M55
ij = m22S11

ij , M56
ij = − m23S11

ij , M66
ij

= m25S11
ij + (m4 + m5)S00

ij (27) 

It is noted that the buckling responses of the LC thin-walled beams 
can be derived from Eq. (23) by solving det(K) = 0, whereas the free 
vibration behaviours are obtained by setting d(t) = deiωt where ω is the 
natural frequency, i2 = − 1 the imaginary unit, and then solving the 
subsequent result (K − ω2M)d = 0. 

3. Numerical results 

The vibration frequencies and critical buckling loads of the lami-
nated thin-walled composite I-beams are presented in the following sub- 
sections in which the material properties of the beams are given in 
Table 2. 

3.1. Convergence study 

This section conducts convergence study of the present solution for 
vibration and buckling analysis of composite I-beams (MAT I, b1 = b2 =

Table 10 
Non-dimensional critical buckling load of LC thin-walled I-beams with different boundary conditions and span-to-height ratios.  

BC Reference Lay-up 

[0] [15/-15] [30/-30] [45/-45] [60/-60] [75/-75] [90/-90] 

L/b3 = 20 
SS Present (HTWBT)  11.730  9.405  3.329  1.094  0.626  0.527  0.509  

Present (FTWBT)  11.948  9.469  3.336  1.095  0.626  0.527  0.510  
Nguyen et al. [39]  11.947  9.468  3.336  1.094  0.626  0.527  0.510 

CF Present (HTWBT)  3.021  2.377  0.835  0.274  0.157  0.132  0.128  
Present (FTWBT)  3.035  2.381  0.835  0.274  0.157  0.132  0.128  
Nguyen et al. [39]  3.035  2.381  0.835  0.274  0.157  0.132  0.128 

CC Present (HTWBT)  41.973  36.051  13.143  4.347  2.491  2.096  2.027  
Present (FTWBT)  44.914  37.007  13.249  4.363  2.498  2.103  2.034  
Nguyen et al. [39]  44.914  37.007  13.249  4.363  2.498  2.102  2.034  

L/b3 = 10 
SS Present (HTWBT)  10.494  9.014  3.286  1.087  0.623  0.524  0.507  

Present (FTWBT)  11.230  9.253  3.313  1.091  0.625  0.526  0.508 
CF Present (HTWBT)  2.932  2.351  0.832  0.273  0.156  0.132  0.127  

Present (FTWBT)  2.987  2.367  0.834  0.274  0.157  0.132  0.127 
CC Present (HTWBT)  29.532  30.909  12.494  4.242  2.444  2.056  1.988  

Present (FTWBT)  36.203  33.915  12.889  4.306  2.473  2.080  2.012  

L/b3 = 5 
SS Present (HTWBT)  7.384  7.728  3.124  1.061  0.611  0.514  0.497  

Present (FTWBT)  9.052  8.480  3.223  1.077  0.618  0.520  0.503 
CF Present (HTWBT)  2.623  2.253  0.821  0.272  0.156  0.131  0.127  

Present (FTWBT)  2.807  2.313  0.828  0.273  0.156  0.131  0.127 
CC Present (HTWBT)  13.514  17.699  10.435  3.870  2.272  1.910  1.843  

Present (FTWBT)  20.387  25.420  11.623  4.091  2.374  1.997  1.929  
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b3 = 5× 10− 2m,h1 = h2 = h3 = 2.08 × 10− 3m and L = 2 m) with 
various boundary conditions, namely, SS, CF and CC. For lay-up, all the 
flanges and web are angle-ply [45o/ − 45o]4s with 16 plies and uniform 
thickness. Their fundamental frequencies (Hz) and critical buckling 
loads (kN) are given in Table 3. It can be observed that the convergence 
speed of the buckling analysis is quicker than the vibration one. The 
proposed solutions converge with series number m = 10 for natural 
frequencies and m = 6 for buckling loads. These series numbers are 
therefore applied in the subsequent analyses. 

3.2. Verification and parametric study 

Example 1: For verification purpose, composite I-beams (MAT I,b1 =

b2 = b3 = 0.05m,h1 = h2 = h3 = h = 0.00208m) and symmetrical lay- 
up [αo/ − αo]4s in both flanges and web are studied. Tables 4 and 5 show 
the fundamental frequencies and critical buckling loads with various 
BCs. It is clear that the present solutions for FTWBT are in excellent 
agreement with those from previous studies [16,39–41]. Due to the 
additional shear effect, the results from HTWBT are slightly different. 
These tables also present some new results for thicker beams (L/b3 =

5 and 10), which can be useful for future references. Fig. 3 displays the 
variation of the fundamental frequencies and critical buckling loads 
with respect to fiber angle change for various theories. It can be 
observed that the results from HTWBT are slightly lower than those from 
FTWBT and those from CBWBT are noticeably higher than the HTWBT 

Fig. 4. Shear effect (%) on the fundamental frequencies and critical buckling 
loads of LC thin-walled I-beam for various span-to-height ratios with lay-ups 
[150/–150]4s, [450/–450]4s and [750/–750]4s. 

Fig. 5. Shear effect (%) on the fundamental frequencies and critical buckling 
loads for various span-to-height ratios with lay-up [150/–150]4s (SS, CC, CF 
boundary conditions). 
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and FTWBT in all fiber angles. 
Example 2: Two composite I-beams with three different lay-ups 

[0o/0o/0o/0o], [0o/90o/90o/0o], [45o/ − 45o/ − 45o/45o] in both flanges 
and web are considered, the first one for torsional frequencies (MAT 
II,h1 = h2 = h3 = h = 0.03m, b1 = b2 = b3 = 0.6m) and the second 
one for critical buckling loads (MAT III, h1 = h2 = h3 = h = 0.01m, 
b1 = b2 = 0.05m, b3 = 0.1m). The present solutions of torsional fre-
quencies in Table 6 for both FTWBT and HTWBT, match with those 
without shear effect [42] but differ from the results accounting for the 
shear effect. The discrepancy in transverse shear effect in the FTWBT 
and HTWBT model does not have much impact on the torsional 

frequencies. On the other hand, the critical buckling loads in Table 7 
show good agreement with those from Piovan and Cortinez [43]. It is 
worth noting that the critical buckling loads from HTWBT model are 
slightly less than those from FTWBT in the cases of [0o/0o/0o/0o] and 
[0o/90o/90o/0o] lay-ups but are almost the same for 
[45o/ − 45o/ − 45o/45o]. 

Example 3: This example further confirms the accuracy of the present 
solution and investigates the effects of additional shear deformation 
with respect to fiber angle change. Tables 8-10 present the first three 
natural frequencies and critical buckling loads of composite I-beams 
(MAT IV, h1 = h2 = h3 = h = 0.01m, b1 = b2 = 0.2m, b3 = 0.3m) with 
angle-ply lay-up [αo/ − αo] in both flanges and unidirectional in the web. 

The following non-dimensional terms are used: ω = ωL2

b3

̅̅̅̅
ρ
E2

√
and Ncr =

Ncr
L2

E2hb3
3
. Again, the present results for both HTWBT and FTWBT are in 

excellent match with those from Nguyen et al. [39] and Vo and Lee [16]. 
Some new results for thick beams L/b3 = 5 and 10 are also given for 
future benchmark. 

The additional shear effect of HTWBT when compared to FTWBT for 
fundamental frequencies and buckling loads is investigated. The shear 
effect percentage is defined as S.E(%) = ωFTWBT − ωHTWBT

ωFTWBT
× 100% or S.

E(%) = Ncr− FTWBT − Ncr− HTWBT
Ncr− FTWBT

× 100%. As expected, the shear effect is 
particularly significant for thick beam where L/b3 is small in Figs. 4 and 
5. For lay-up [15o/ − 15o] and L/b3 = 5, the maximum shear effect on the 
critical buckling load of CC beams is 30%, which is higher than that of 
fundamental frequency (21%). The increase in the fiber angle drastically 
reduces the shear effect from more than 18% for unidirectional lay-up 
[0o/0o] to 2% one with lay-up with fiber angle greater than 
60o(Fig. 6b). The shear effect of CC beams is much higher than that of SS 
and CF ones even though these differences become lower as the L/b3 
ratio and the fiber angle increases (Figs. 5 and 6). 

Figs. 7-9 present the first three vibration mode shapes, which are 
plotted from the FTWBT and HTWBT, of CC beam with lay-up 
[45o

/ - 45o
]. There is no visible difference in Fig. 8 between two 

models as expected since the beam is in torsion mode and the transverse 
shear strain γ0

xz and γ0
yz are zero along the beam length. This explains the 

torsional frequencies of two models in Table 6 are almost identical. 
Nonetheless, the transverse shear strains γ0

xz and γ0
yz in Figs. 7 and 9 are 

different and more apparent at the beam ends. 

4. Conclusions 

A general higher-order shear deformation theory for thin-walled 
composite I-beams is proposed in this paper. Theoretical formulation 
is derived in the general form which can recover the previous conven-
tional theories. A hybrid series solution is developed to solve equations 
of motion for various theories including CTWBT, FTWBT and HTWBT of 
thin-walled composite I-beams with different boundary conditions. 
Numerical examples are performed to investigate the effects of lay-ups, 
fiber angle and shear deformation on the natural frequencies and critical 
buckling loads of the thin-walled I-section beams. Some new results for 
thick-beams are provided for future reference. Due to the additional 
shear effects, the results from the HTWBT are slightly lower than those 
from the CTWBT and FTWBT. They become particularly significant for 
low span-to-high ratio and small fiber angle of angle-ply lay-up. The 
present model has proved to be reliable in analysing laminated com-
posite thin-walled beams. 

Fig. 6. Variation of shear effect (%) on the fundamental frequencies and crit-
ical buckling loads with respect to fiber angle change and boundary conditions 
(L/b3 = 10). 

X.-B. Bui et al.                                                                                                                                                                                                                                   



Composite Structures 295 (2022) 115775

13

Fig. 7. The first mode shape of LC thin-walled I-beams with lay-up [450/–450].  

Fig. 8. Second mode shape of LC thin-walled I-beams with lay-up [450/–450].  

Fig. 9. Third mode shape of LC thin-walled I-beams with lay-up [450/–450].  
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[28] Carrera E, Kröplin B. ZIGZAG AND INTERLAMINAR EQUILIBRIA EFFECTS IN 
LARGE-DEFLECTION AND POSTBUCKLING ANALYSIS OF MULTILAYERED 
PLATES. Mech Compos Mater Struct 1997;4(1):69–94. 

[29] Khalili SMR, Botshekanan Dehkordi M, Carrera E, Shariyat M. Non-linear dynamic 
analysis of a sandwich beam with pseudoelastic SMA hybrid composite faces based 
on higher order finite element theory. Compos Struct 2013;96:243–55. https://doi. 
org/10.1016/j.compstruct.2012.08.020. 

[30] Carrera E, Filippi M, Zappino E. Free vibration analysis of rotating composite 
blades via Carrera Unified Formulation. Compos Struct 2013;106:317–25. https:// 
doi.org/10.1016/j.compstruct.2013.05.055. 

[31] Pagani A, de Miguel AG, Petrolo M, Carrera E. Analysis of laminated beams via 
Unified Formulation and Legendre polynomial expansions. Compos Struct 2016; 
156:78–92. https://doi.org/10.1016/j.compstruct.2016.01.095. 

[32] Carrera E, Petrolo M, Zappino E. Performance of CUF Approach to Analyze the 
Structural Behavior of Slender Bodies. J Struct Eng 2012;138(2):285–97. https:// 
doi.org/10.1061/(ASCE)ST.1943-541X.0000402. 

[33] Carrera E, Boscolo M, Robaldo A. Hierarchic Multilayered Plate Elements for 
Coupled Multifield Problems of Piezoelectric Adaptive Structures: Formulation and 
Numerical Assessment. Arch Comput Methods Eng 2007;14(4):383–430. https:// 
doi.org/10.1007/s11831-007-9012-8. 

[34] Carrera E, Pagani A, Petrolo M. Classical, Refined, and Component-Wise Analysis 
of Reinforced-Shell Wing Structures. AIAA Journal 2013;51(5):1255–68. https:// 
doi.org/10.2514/1.J052331. 

[35] Carrera E. Temperature Profile Influence on Layered Plates Response Considering 
Classical and Advanced Theories. Aiaa Journal - AIAA J 2002;40(9):1885–96. 
https://doi.org/10.2514/2.1868. 

[36] Chandiramani NK, Librescu L, Shete CD. On the free-vibration of rotating 
composite beams using a higher-order shear formulation. Aerosp Sci Technol 2002; 
6(8):545–61. https://doi.org/10.1016/S1270-9638(02)01195-1. 

[37] Bhaskar K, Librescu L. A geometrically non-linear theory for laminated anisotropic 
thin-walled beams. Int J Eng Sci 1995;33(9):1331–44. https://doi.org/10.1016/ 
0020-7225(94)00118-4. 

[38] Reddy JN. Mechanics of Laminated Composite Plates and Shells. 2nd ed. Boca 
Raton: CRC Press; 2003. 

[39] Nguyen N-D, Nguyen T-K, Vo TP, Nguyen T-N, Lee S. Vibration and buckling 
behaviours of thin-walled composite and functionally graded sandwich I-beams. 
Compos B Eng 2019;166:414–27. https://doi.org/10.1016/j. 
compositesb.2019.02.033. 

[40] Kim N-I, Shin DK, Park Y-S. Dynamic stiffness matrix of thin-walled composite I- 
beam with symmetric and arbitrary laminations. J Sound Vib 2008;318(1–2): 
364–88. https://doi.org/10.1016/j.jsv.2008.04.006. 

[41] Kim N-I, Lee J. Exact solutions for stability and free vibration of thin-walled 
Timoshenko laminated beams under variable forces. Arch Appl Mech 2014;84(12): 
1785–809. https://doi.org/10.1007/s00419-014-0886-2. 

[42] Cortínez VH, Piovan MT. VIBRATION AND BUCKLING OF COMPOSITE THIN- 
WALLED BEAMS WITH SHEAR DEFORMABILITY. J Sound Vib 2002;258(4): 
701–23. https://doi.org/10.1006/jsvi.2002.5146. 

[43] Piovan MT, Cortínez VH. Mechanics of shear deformable thin-walled beams made 
of composite materials. Thin-Walled Structures 2007;45(1):37–62. https://doi.org/ 
10.1016/j.tws.2006.12.001. 

[44] Kim N-I, Shin DK, Kim M-Y. Flexural–torsional buckling loads for spatially coupled 
stability analysis of thin-walled composite columns. Adv Eng Softw 2008;39(12): 
949–61. https://doi.org/10.1016/j.advengsoft.2008.03.001. 

X.-B. Bui et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0263-8223(22)00550-5/h0005
http://refhub.elsevier.com/S0263-8223(22)00550-5/h0005
https://doi.org/10.1016/j.tws.2019.01.042
https://doi.org/10.1115/1.4045680
https://doi.org/10.1016/j.compstruct.2013.04.039
https://doi.org/10.1016/j.compstruct.2013.04.039
https://doi.org/10.1016/0020-7683(84)90039-8
https://doi.org/10.1016/0020-7683(84)90039-8
https://doi.org/10.1016/0961-9526(94)00101-E
https://doi.org/10.1016/0961-9526(94)00101-E
https://doi.org/10.1016/S0263-8223(01)00150-7
https://doi.org/10.1016/S0263-8223(01)00150-7
https://doi.org/10.1016/S0045-7949(00)00195-4
https://doi.org/10.1016/S0045-7949(00)00195-4
https://doi.org/10.3390/app10217802
https://doi.org/10.3390/app10217802
https://doi.org/10.1016/j.tws.2005.02.003
https://doi.org/10.1016/j.tws.2005.02.003
https://doi.org/10.1016/S0263-8223(00)00093-3
https://doi.org/10.1016/S0263-8223(00)00093-3
https://doi.org/10.1016/S0263-8223(99)00005-7
https://doi.org/10.1016/S0263-8223(99)00005-7
https://doi.org/10.1016/j.compstruct.2004.08.023
https://doi.org/10.1016/j.compstruct.2004.08.023
https://doi.org/10.1016/S0263-8223(02)00019-3
https://doi.org/10.1016/S0263-8223(02)00019-3
https://doi.org/10.1016/j.ijmecsci.2009.05.001
https://doi.org/10.1016/S0263-8223(00)00177-X
https://doi.org/10.1016/S0263-8223(00)00177-X
https://doi.org/10.1016/S0263-8223(02)00318-5
https://doi.org/10.1016/S0263-8223(02)00318-5
https://doi.org/10.1007/s00466-008-0324-9
https://doi.org/10.1007/s00466-008-0324-9
https://doi.org/10.1139/l11-007
https://doi.org/10.1016/j.compstruct.2010.11.007
https://doi.org/10.1016/j.compstruct.2010.11.007
https://doi.org/10.1016/j.jsv.2013.10.030
https://doi.org/10.1016/j.jsv.2013.10.030
https://doi.org/10.1115/1.2791769
https://doi.org/10.1016/j.compstruc.2006.01.029
https://doi.org/10.1080/01495739.2010.482379
https://doi.org/10.1080/01495739.2014.937251
https://doi.org/10.1016/j.compstruct.2013.12.010
https://doi.org/10.1016/j.compstruct.2013.12.010
http://refhub.elsevier.com/S0263-8223(22)00550-5/h0140
http://refhub.elsevier.com/S0263-8223(22)00550-5/h0140
http://refhub.elsevier.com/S0263-8223(22)00550-5/h0140
https://doi.org/10.1016/j.compstruct.2012.08.020
https://doi.org/10.1016/j.compstruct.2012.08.020
https://doi.org/10.1016/j.compstruct.2013.05.055
https://doi.org/10.1016/j.compstruct.2013.05.055
https://doi.org/10.1016/j.compstruct.2016.01.095
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000402
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000402
https://doi.org/10.1007/s11831-007-9012-8
https://doi.org/10.1007/s11831-007-9012-8
https://doi.org/10.2514/1.J052331
https://doi.org/10.2514/1.J052331
https://doi.org/10.2514/2.1868
https://doi.org/10.1016/S1270-9638(02)01195-1
https://doi.org/10.1016/0020-7225(94)00118-4
https://doi.org/10.1016/0020-7225(94)00118-4
https://doi.org/10.1016/j.compositesb.2019.02.033
https://doi.org/10.1016/j.compositesb.2019.02.033
https://doi.org/10.1016/j.jsv.2008.04.006
https://doi.org/10.1007/s00419-014-0886-2
https://doi.org/10.1006/jsvi.2002.5146
https://doi.org/10.1016/j.tws.2006.12.001
https://doi.org/10.1016/j.tws.2006.12.001
https://doi.org/10.1016/j.advengsoft.2008.03.001


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lmbd20

Mechanics Based Design of Structures and Machines
An International Journal

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/lmbd20

Stochastic vibration and buckling analysis of
functionally graded sandwich thin-walled beams

Xuan-Bach Bui, Trung-Kien Nguyen & Phong T. T. Nguyen

To cite this article: Xuan-Bach Bui, Trung-Kien Nguyen & Phong T. T. Nguyen (2024)
Stochastic vibration and buckling analysis of functionally graded sandwich thin-walled
beams, Mechanics Based Design of Structures and Machines, 52:4, 2017-2039, DOI:
10.1080/15397734.2023.2165101

To link to this article:  https://doi.org/10.1080/15397734.2023.2165101

Published online: 12 Jan 2023.

Submit your article to this journal 

Article views: 122

View related articles 

View Crossmark data

Citing articles: 4 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=lmbd20
https://www.tandfonline.com/journals/lmbd20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15397734.2023.2165101
https://doi.org/10.1080/15397734.2023.2165101
https://www.tandfonline.com/action/authorSubmission?journalCode=lmbd20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=lmbd20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15397734.2023.2165101?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15397734.2023.2165101?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/15397734.2023.2165101&domain=pdf&date_stamp=12 Jan 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/15397734.2023.2165101&domain=pdf&date_stamp=12 Jan 2023
https://www.tandfonline.com/doi/citedby/10.1080/15397734.2023.2165101?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/15397734.2023.2165101?src=pdf


Stochastic vibration and buckling analysis of functionally
graded sandwich thin-walled beams

Xuan-Bach Buia, Trung-Kien Nguyenb, and Phong T. T. Nguyenc

aFaculty of Civil Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City,
Viet Nam; bCIRTech Institute, HUTECH University, Ho Chi Minh City, Viet Nam; cFaculty of International
Education, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Viet Nam

ABSTRACT
Stochastic vibration and buckling analysis of functionally graded sandwich
thin-walled beams with I-section based on the first-order shear deformation
theory is for the first time proposed in this paper. The material properties of
beams in both web and two flanges are assumed to be continuously varied
in its thickness. Additionally, the constituent material properties are randomly
changed according to the lognormal distributions. These stochastic variabil-
ities are then propagated to the stochastic responses of the thin-walled
beam through a beam solver with hybrid series-type approximation func-
tions. To achieve efficient evaluations for stochastic responses including nat-
ural frequencies and critical buckling loads, polynomial chaos expansion
(PCE) based surrogate model is developed. The efficiency and accuracy of
PCE’s results are assessed by comparing with those of crude Monte Carlo
simulation. Sensitivity analysis is carried out to compare the importance of
the uncertainty in material properties to stochastic responses. New results
reported in this paper can be interesting benchmarks for scientific and engin-
eering community in the future.
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1. Introduction

Owing to the continuous variation of material constituents, functionally graded materials (FGMs)
present many advantages in comparison with multi-layered laminated composite materials. Many
researches have been performed in predicting static and dynamic responses of functionally graded
(FG) beams and plates with different theories and computational methods, only some representative
references are herein cited (Jalaei, Thai, and Civalek 2022, Chaikittiratana and Wattanasakulpong
2022, Madrahalli Chidanandamurthy et al. 2021, Civalek and Kiracioglu 2010, Ebrahimi, Barati, and
Civalek 2020, Demir et al. 2018). Moreover, it is known that the thin-walled beam is a slender struc-
tural element whose thickness is small compared with the cross-sectional dimensions, while its
length greatly exceeds the dimensions of its cross-section. Thanks to its high efficiency in strength-
to-weight ratio, the thin-walled beams with open and closed sections have been widely applied in
aerospace, helicopter and turbomachinery rotor blades, civil, mechanical and naval engineerings, etc
(Librescu and Song 2006). The application of the FGMs for thin-walled beams will hence promise
important uses in different engineering fields. In order to study behaviors of the thin-walled beams,
Vlasov’s classical thin-walled beam theory (CTWBT), first-order shear deformation thin-walled
beam theory (FTWBT) and higher-order shear deformation thin-walled beam theory (HTWBT)
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have been considered. The CTWBT initiated by Vlasov (1961) is mostly used thanks to its simplicity.
Based on this approach and the finite element method (FEM), Nguyen and Lee (2018) investigated
effects of bi-directional FGM distribution in web and flanges of I- and channel-sections on deflec-
tions of FG thin-walled beams. Moreover, the effects of continuous variations of FGMs on vibration,
nonlinear buckling responses, center of gravity and shear center of FG thin-walled beams with
I- and channel-sections have been studied by Lanc et al. (2016), Nguyen, Kim, and Lee (2016a) and
(Nguyen, Kim, and Lee 2016b) respectively. Although the CTWBT is commonly applied for the ana-
lysis of FG thin-walled beams, this theory neglects the effects of transverse shear strains and there-
fore, it underestimates the deflection and overestimates the frequencies as well as the critical
buckling loads. In order to overcome the disadvantages of the CTWBT, the FTWBT with linear vari-
ation of the displacement in the section accounts for the effects of transverse shear strains and thus
predicts more accurate than the CTWBT. Based on the FTWBT and FEM, Kim and Lee (2018, 2017)
studied static, buckling and vibration behaviors of FG sandwich thin-walled beams with I-section.
Based on the FTWBT and Ritz method, several authors (Nguyen et al. 2019, Nguyen, Vo, et al. 2020,
Nguyen, Vo, et al. 2020) examined static, vibration and buckling behaviors of thin-walled FG
sandwich beams with channel- and I-section, respectively. Oh, Librescu, and Song (2003) studied
vibration behaviors of FG thin-walled box beams in a thermal environment. Although the FTWBT
provides more accurate results than the CTWBT, it requires a shear factor to correct the traction-
free boundary conditions. In order to overcome this problem, the HTWBT (Bui et al. 2022,
Chandiramani, Librescu, and Shete 2002) can be used by supposing a nonlinear variation of the
transverse shear strains in the wall thickness. However practically, this approach appears to be com-
plicated for implementation.

Furthermore, the component materials’ properties can inadvertently vary due to their manu-
facturing process or other unforeseen factors. This leads to the change in static and dynamic
behaviors of the structures, and therefore calls for the field of uncertainty quantification or sto-
chastic analysis. In order to investigate stochastic static and dynamic behaviors of structures with
uncertainties in material properties, the most straightforward and intuitive method is the Monte
Carlo Simulation method (MCS) which simply runs the computational model as many times as
the accuracy required. Nonetheless, when the physical model is complicated, the MCS demands
too much computing time and is infeasible to obtain desired sample outputs. The MCS has been
used with different level of success for analysis of laminated composite structures (Nguyen et al.
2017, Grover et al. 2017, Li et al. 2016, Naskar et al. 2017, Sasikumar, Suresh, and Gupta 2014,
Mishra, Kumar, and Topal 2020). However, as the studied system becomes more computationally
exhausting, the MCS fail to deliver a quick result for a high number of simulations. To overcome
this drawback, stochastic numerical methods based on polynomial chaos expansion (PCE) that
requires the fewer input samples but still produces accurate outputs have attracted considerable
attention (Stefanou 2009). Various numerical methods have been proposed to address this issue,
among which the polynomial chaos expansion (PCE) has attracted considerable attention for
composite plates (Peng et al. 2019, Carvalho et al. 2017, Umesh and Ganguli 2013, Chandra et al.
2019, Chakraborty et al. 2016, Parviz and Fakoor 2021) and beam structures (Mukherjee,
Gopalakrishnan, and Ganguli 2019, Sharma, Mukherjee, and Ganguli 2022) lately. The key idea
of this approach is to approximate the stochastic outputs as an orthogonal series including the
basis functions and their corresponding coefficients. A small number of simulation runs is needed
to compute these PCE coefficients and the substitution of the random input variables into the
series is computationally inexpensive. Therefore, the stochastic output can be computed easily as
many times as needed. Importantly, the PCE method reduces the computational cost significantly
while maintaining the accuracy of the stochastic model output. A brief literature review shows
that although a numer of researches have been performed to examine behaviors of FG thin-walled
beams, stochastic responses of these structures with the uncertainty of material properties are
extremely limited, this gap needs to be studied further.
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The objective of this paper is to develop a stochastic model for free vibration and buckling
analysis of FG sandwich thin-walled I-beams by using the PCE with spectral projection approach.
The governing equations of motion are derived by using Hamilton’s principle and then a new
hybrid series solution is developed for FG sandwich thin-walled beams with different boundary
conditions. The Monte Carlo simulation method with one hundred thousand samples is consid-
ered as the exact results and used to investigate the performance of the proposed model. The out-
puts for the deterministic system with mean material properties are also computed and verified
with the earlier FG thin-walled models. A parametric study is performed to investigate the effects
of material distribution and material uncertainty parameters on natural frequencies and critical
buckling loads of the FG sandwich thin-walled beams.

2. Theoretical formulation

Consider a FG sandwich thin-walled beam with length L and section I. Three sets of coordinate
systems are introduced in Figure 1. They are the Cartesian coordinate system ðx1, x2, x3Þ, the local
plate coordinate system ðn, s, x3Þ and the contour coordinate s along the profile of the section. h
is an angle of orientation between ðn, s, x3Þ and ðx1, x2, x3Þ coordinate systems. The pole P with
coordinates ðxP1 , xP2 Þ is considered as the shear center of the section. For simplicity purpose, the
following assumptions are made: the strains are small and the section contour does not deform
in its own plane, the shear and warping shear strains are uniform over the section, local buckling
and pre-buckling deformation are negligible.

2.1. Kinematics, strains and stresses

The mid-surface displacements u0ðs, x3Þ and v0ðs, x3Þ at any points in the contour coordinate sys-
tem under a rotation / about the pole axis can be expressed in terms of those at the pole nðx3Þ
and gðx3Þ in x1� and x2� directions, respectively, as follows:

Figure 1. Thin-walled coordinate systems.
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u0 s, x3ð Þ ¼ n x3ð Þ sin hðsÞ � g x3ð Þ cos hðsÞ � / x3ð ÞrsðsÞ (1a)

v0 s, x3ð Þ ¼ n x3ð Þ cos hðsÞ þ g x3ð Þ sin hðsÞ þ / x3ð ÞrnðsÞ (1b)

where rsðx3Þ, rnðx3Þ are the lengths of the perpendiculars from P to the tangent and normal of the
profile line at the considered point. It is observed from Eq. (1) that the displacements at any
points of the contour depend on those of the pole point and its length to the pole point.

Moreover, the mid-surface shear strains in the contour can be written in terms of the trans-
verse strains c013, c

0
23 and warping one c0- as follows:

c0n3 s, x3ð Þ ¼ u0, 3 þ w0, n

¼ c013 x3ð Þ sin hðsÞ � c023 x3ð Þ cos hðsÞ � c0- x3ð ÞrsðsÞ (2a)

c0s3 s, x3ð Þ ¼ c013 x3ð Þ cos hðsÞ þ c023ðvÞ sin hðsÞ þ c0- x3ð ÞrnðsÞ
¼ v0, 3 þ w0, s

(2b)

where the comma in the subscript is used to indicate the differentiation with respect to the vari-
able that follows. Moreover, substituting Eq. (1b) into Eq. (2b) and then integrating the subse-
quent result with respect to s lead to:

w0 s, x3ð Þ ¼ f x3ð Þ þ w2 x3ð Þx1ðsÞ þ w1 x3ð Þx2ðsÞ þ w- x3ð Þ-ðsÞ (3)

where fðx3Þ is the displacement of P in the x3� direction; w1, w2 and w- represent rotations of
the cross-section with respect to x1, x2; - is warping function.

w2 ¼ c013 � n, 3 (4a)

w1 ¼ c023 � g, 3 (4b)

w- ¼ c0- � /, 3 (4c)

-ðsÞ ¼
ðs
s0

rnðsÞds (4d)

It is worth noticing that the Vlasov’s classical thin-walled beam can be found by setting c013 ¼
0, c023 ¼ 0, c0- ¼ 0: For the present beam based on the first-order shear deformation theory, the
displacements ðu, v, wÞ at any points on the section can be expressed linearly in terms of the
mid-surface displacements ðu0, v0, w0Þ as follows:

u n, s, x3ð Þ ¼ u0 s, x3ð Þ (5a)

v n, s, x3ð Þ ¼ v0 s, x3ð Þ þ nw0
s s, x3ð Þ (5b)

w n, s, x3ð Þ ¼ w0 s, x3ð Þ þ nw0
3 s, x3ð Þ (5c)

where w0
s and w0

3 are rotations of a transverse normal about x3� and s� axis, respectively; w0
3

can be derived from the balance of the shear strain c0n3 from Eq. (2a) and Eqs. (5) as follows:

w0
3 ¼ w2 sin h� w1 cos h� w-rs (6)

whereas w0
s can be determined from the restraint csn ¼ 0 :

w0
s s, x3ð Þ ¼ �u0, s (7)

The non-zero strains related to the displacements in Eq. (5) are given by:

e33 ¼ w, 3 ¼ f, 3 þ x1 þ n sin hð Þw2, 3 þ x2 � n cos hð Þw1, 3 þ -� nrsð Þw-, 3 (8a)
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cs3 ¼ v, 3 þ w, s ¼ n, 3 þ w2ð Þ cos hþ g, 3 þ w1

� �
sin hþ /, 3 þ w-

� �
rn þ n /, 3 � w-

� �
(8b)

cn3 ¼ u, 3 þ w, n ¼ n, 3 þ w2ð Þ sin h� g, 3 þ w1

� �
cos h� /, 3 þ w-

� �
rs (8c)

where the following assumptions have been included: es ¼ v, s ¼ 0: Moreover, it is supposed that
the web and flanges are maded of FGMs whose properties vary continuously in its thickness. The
constitutive relation of the FG sandwich thin-walled beams can be written as follows:

r33
rs3
rn3

8<
:

9=
; ¼

Q11 0 0
0 Q66 0
0 0 Q55

0
@

1
A e33

cs3
cn3

8<
:

9=
; (9)

where Q11 ¼ EðnÞ, Q66 ¼ Q55 ¼ EðnÞ
2ð1þ�Þ ; EðnÞ is Young’s modulus; � is Poisson’s coefficient which

is supposed to be constant. The effective mass density q and Young’s modulus E of the FG sand-
wich thin-walled beam are approximated by (Kim and Lee 2018, Nguyen et al. 2019):

q ¼ qcVc þ qm 1� Vcð Þ (10a)

E ¼ EcVc þ Em 1� Vcð Þ (10b)

where the subscripts c and m are used to indicate the ceramic and metal constituents, respect-
ively; Vc is the volume fraction of ceramic material. It is noted that the implicit assumption
within Eq. (10) is known as the Voigt’s model, many more approximations of the effective elastic
properties of FGMs can be found in Gasik (1998). The distribution of materials of FG sandwich
thin-walled beams is presented in Figure 2 in which the volume fraction of the ceramic material
is given by:

� For the flanges:

Vc ¼ nþ 0:5h
1� að Þh

� �p
, � 0:5h � n � 0:5� að Þh (11a)

Vc ¼ 1, 0:5� að Þh � n � 0:5h (11b)

Figure 2. Geometry of FG sandwich thin-walled I-beams.
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where h ðh1, h2Þ are the thickness of the top and bottom flanges; p is material parameter ðp � 0Þ; a
ða1, a2Þ are thickness ratio of ceramic material of the top and bottom flanges.

� For the web:

Vc ¼ �jnj þ 0:5h
0:5ð1� bÞh

� �p
, � 0:5h � n � �0:5bh or 0:5bh � n � 0:5h (12a)

Vc ¼ 1, � 0:5bh � n � 0:5bh (12b)

where h ¼ h3 is the thickness of the web; b is thickness ratio of the ceramic material of the web.

2.2. Variational formulation

The characteristic equations of the FG sandwich thin-walled beams can be derived by Hamilton’s
equations in which the total energy of the system P is composed of the strain energy PU , work
done by external force PV and kinetic energy PK as follows:

ðt2
t1

dPU þ dPV � dPKð Þdt ¼ 0 (13)

The variation of strain energy PU of the FG sandwich thin-walled beams is defined by:

dPU ¼
ð
X
r33de33 þ rs3dcs3 þ rn3dcn3ð ÞdX (14)

where a shear correction coefficient has been supposed to unity in Eq. (14). Substituting Eqs. (8)
and (9) into Eq. (14) leads to:

dPU ¼
ðL

0

h
N33df, 3 þM22dw2, 3 þM11dw1, 3 þM-dw-, 3

þV11d n, 3 þ w2ð Þ þ V22d g, 3 þ w1

� �þ Td /, 3 þ w-

� �þMtd /, 3 � w-

� �i
dx3

(15)

where the stress resultants ðN33,M22,M11,M-,V11,V22,T,MtÞ are defined as follows:

N33,M22,M11,M-ð Þ ¼
ð
A

1, x1 þ n sin h, x2 � n cos h,-� nrsð Þr33dsdn (16a)

V11 ¼
ð
A

rs3 cos hþ rn3 sin hð Þdsdn (16b)

V22 ¼
ð
A

rs3 sin h� rn3 cos hð Þdsdn (16c)

T ¼
ð
A

rs3rn � rn3rsð Þdsdn (16d)

Mt ¼
ð
A

nrs3dsdn (16e)
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These stress resultants are related to the displacement gradients as follows:

N33

M22

M11

M-

V11

V22

T
Mt

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

�H11 �H12 �H13 �H14 0 0 0 0
�H12 �H22 �H23 �H24 0 0 0 0
�H13 �H23 �H33 �H34 0 0 0 0
�H14 �H24 �H34 �H44 0 0 0 0
0 0 0 0 �H55 �H56 �H57 �H58

0 0 0 0 �H56 �H66 �H67 �H68

0 0 0 0 �H57 �H67 �H77 �H78

0 0 0 0 �H58 �H68 �H78 �H88

2
66666666664

3
77777777775

f, 3
w2, 3
w1, 3
w-, 3

/, 3 � w-
n, 3 þ w2
g, 3 þ w1
/, 3 þ w-

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(17)

where the stiffness components of the FG sandwich thin-walled beams �Hijði, j ¼ 1, :::, 8Þ are
defined by:

�H11 ¼
ð
s

A11ds, �H12 ¼
ð
s

A11x1 þ B11 sin hð Þds, �H13 ¼
ð
s

A11x2 � B11 cos hð Þds

�H14 ¼
ð
s

A11-� B11rsð Þds, �H22 ¼
ð
s

A11x
2
1 þ 2B11x1 sin hþ D11 sin

2h
� �

ds

�H23 ¼
ð
s

A11x1x2 þ B11x2 sin h� B11x1 cos h� D11 sin h cos hð Þds

�H24 ¼
ð
s

A11x1-þ B11- sin h� B11x1rs � D11rs sin hð Þds

�H33 ¼
ð
s

A11x
2
2 � 2B11x2 cos hþ D11cos

2h
� �

ds

�H34 ¼
ð
s

A11x2-� B11- cos h� B11x2rs þ D11rs cos hð Þds

�H44 ¼
ð
s

A11-
2 � 2B11-rs þ D11r

2
s

� �
ds, �H55 ¼

ð
s

D66ds, �H56 ¼
ð
s

B66 cos hds

�H57 ¼
ð
s

B66 sin hds, �H58 ¼
ð
s

B66rnds, �H66 ¼
ð
s

A66 cos
2hþ A55 sin

2h
� �

ds

�H67 ¼
ð
s

A66 sin h cos h� A55 sin h cos hð Þds, �H68 ¼
ð
s

A66rn cos h� A55rs sin hð Þds

�H77 ¼
ð
s

A66sin
2hþ A55cos

2h
� �

ds, �H78 ¼
ð
s

A66rn sin hþ A55rs cos hð Þds

�H88 ¼
ð
s

A66r
2
n þ A55r

2
s

� �
ds, Aij,Bij,Dijð Þ ¼

ð
s

1, n, n2ð ÞQijds

(18)

The variation of potential energy PW of the FG sandwich thin-walled beams subjected to axial
compressive load N0 can be expressed as:

dPW ¼
ð
X

N0

A
u, 3du, 3 þ v, 3dv, 3ð ÞdX

¼
ðL

0

N0 n, 3dn, 3 þ g, 3dg, 3 þ xP2 n, 3d/, 3 þ /, 3dn, 3
� �� xP1 g, 3d/, 3 þ /, 3dg, 3

� �þ IP
A
/, 3d/, 3

� �
dx3

(19)
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where A is the cross-sectional area; IP is polar moment of inertia of the cross-section about the
centroid defined by:

IP ¼ Ix1 þ Ix2 (20)

where Ix1 and Ix2 are second moment of inertia with respect to x1� and x2� axis, respectively,
defined by:

Ix1 ¼
ð
A

x22dA, Ix2 ¼
ð
A

x21dA (21)

The variation of kinetic energy PK of the FG sandwich thin-walled beams is given by:

dPK ¼
ð
X
qðnÞð _ud _u þ _vd _v þ _wd _wÞdX

¼
ðL

0

�
d _f
h
J0 _f � Jc _w1 þ Js _w2 þ ðJ- � JrsÞ _w-

i
þ d _n

h
J0 _n þ ðJc þ xP2 J0Þ _/

i

þd _g
h
J0 _g þ ðJs � xP1 J0Þ _/

i
þ d _/

h
ðJc þ xP2 J0Þ _n þ ðJs � xP1 J0Þ _g þ ðJrs þ J2 þ 2JrnÞ _/

i

þd _w1

h
� Jc _f þ ðJ22 � 2J2c þ Jc2Þ _w1 þ ðJ12cs � JcsÞ _w2 þ ðJ2- � J2-rsc þ JrscÞ _w-

i

þd _w2

h
Js _f þ ðJ12cs � JcsÞ _w1 þ ðJ12 þ 2J1s þ Js2Þ _w2 þ ðJ1- þ J1-rss � JrssÞ _w-

i

þd _w-

h
ðJ- � JrsÞd _f þ ðJ2- � J2-rsc þ JrscÞ _w1 þ ðJ1- þ J1-rss � JrssÞ _w2

þðJ-2 � 2Jrs- þ Jrs2Þ _w-

i�
dx3

(22)

where the following relations have been used: x1 � xP1 ¼ rs cos hþ rn sin h, x2 � xP2 ¼ rs sin h�
rn cos h; the dot-superscript is used to denote the differentiation with respect to the time t; qðnÞ
is the mass density and the inertia coefficients are given as follows:

Jsn, J-, J12, J22, J-2, J1-, J2-ð Þ ¼ I0

ð
s

r2s þ r2n,-, x
2
1, x

2
2,-

2, x1-, x2-
� �

ds (23a)

Jc2, Js2, Jrs2, Jcs, Jrsc, Jrssð Þ ¼ I2

ð
s

cos 2h, sin 2h, r2s , sin h cos h, rs cos h, rs sin h
� �

ds (23b)

ðJ0, J2Þ ¼ ðI0, I2Þ
ð
s

ds, ðJc, Jrn , Jrs , JsÞ ¼ I1

ð
s

ð cos h, rn, rs, sin hÞds (23c)

J1s, J2c, Jrs-, J-c, J-sð Þ ¼ I1

ð
s

x1 sin h, x2 cos h, rs-,- cos h,- sin hð Þds (23d)

J12cs, J1-rss, J2-rscð Þ ¼ I1

ð
s

�x1 cos hþ x2 sin h, � rsx1 þ - sin h, rsx2 þ - cos hð Þds (23e)
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I0, I1, I2ð Þ ¼
ð
n

1, n, n2ð Þqdn (23f)

2.4. Hybrid series solution

The displacement field is approximated as follows:

f,w2,w1,w-f g x3, tð Þ ¼
XN
j¼1

uj, 3 x3ð Þ fj,w2j,w1j,w-j
� 	ðtÞ (24a)

n, g,/f g x3, tð Þ ¼
XN
j¼1

uj x3ð Þ nj, gj,/j
� 	ðtÞ (24b)

where fjðtÞ, njðtÞ, gjðtÞ, /jðtÞ, w2jðtÞ, w1jðtÞ and w-jðtÞ are unknowns to be determined; ujðx3Þ
are shape functions. It is noted that the approximations in Eq. (24) are known as Ritz-type series
ones whose functions of approximation should be constructed to satisfy the specified essential
boundary conditions (BCs) (Reddy 1997). For the present paper, new hybrid shape functions are
proposed in Table 1 by a combination of exponential and admissible trigonometric functions to
satisfy various BCs such as simply-supported (S-S), clamped-free (C-F) and clamped-clamped
(C-C).

Substituting Eq. (24) into Eq. (13) accounting for Eqs. (15)(19) and (22) leads to the character-
istic equations for vibration and buckling analysis of FG sandwich thin-walled beams as follows:

KdþM}d ¼0 (25)

where K,M are the stiffness and mass matrix, respectively; d ¼ w u v U w2 w1 w-


 �T
is the displacement vector. The components of the stiffness matrix K are expressed by:

K ¼

K11 0 0 0 K15 K16 K17

0 K22 K23 K24 K25 K26 K27

0 TK23 K33 K34 K35 K36 K37

0 TK24 TK34 K44 K45 K46 K47

TK15 TK25 TK35 TK45 K55 K56 K57

TK16 TK26 TK36 TK46 TK56 K66 K67

TK17 TK27 TK37 TK47 TK57 TK67 K77

2
6666666664

3
7777777775

(26)

where

Table 1. Shape functions and essential BCs of FG sandwich thin-walled I-beams.

BC ujðx3Þ x3 ¼ 0 x3 ¼ L

S-S sin px3
L

� �
e
�jx3
L n ¼ g ¼ / ¼ 0 n ¼ g ¼ / ¼ 0

C-F sin 2 px3
2L

� �
e
�jx3
L n ¼ g ¼ / ¼ 0

n, 3 ¼ g, 3 ¼ /, 3 ¼ 0
f ¼ w2 ¼ w1 ¼ w- ¼ 0

C-C sin 2 px3
L

� �
e
�jx3
L n ¼ g ¼ / ¼ 0

n, 3 ¼ g, 3 ¼ /, 3 ¼ 0
f ¼ w2 ¼ w1 ¼ w- ¼ 0

n ¼ g ¼ / ¼ 0
n, 3 ¼ g, 3 ¼ /, 3 ¼ 0

f ¼ w2 ¼ w1 ¼ w- ¼ 0
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K11
ij ¼ �H11S22ij , K

15
ij ¼ �H12S22ij , K

16
ij ¼ �H13S22ij , K

17
ij ¼ �H14S22ij , K

22
ij ¼ �H66 þ N0ð ÞS11ij

K23
ij ¼ �H67S11ij , K

24
ij ¼ �H56 þ �H68 þ N0xP2

� �
S11ij , K

25
ij ¼ �H66S11ij , K

26
ij ¼ �H67S11ij

K27
ij ¼ �H68 � �H56ð ÞS11ij , K33

ij ¼ �H77 þ N0ð ÞS11ij , K34
ij ¼ �H57 þ �H78 � N0xP1

� �
S11ij

K35
ij ¼ �H67S11ij , K

36
ij ¼ �H77S11ij , K

37
ij ¼ �H78 � �H57ð ÞS11ij , K45

ij ¼ �H56 þ �H68ð ÞS11ij
K44
ij ¼ �H55 þ 2�H58 þ �H88 þ

N0Ip
A

� 

S11ij , K

46
ij ð�H57 þ �H78ÞS11ij

K47
ij ¼ �H88 � �H55ð ÞS11ij , K55

ij ¼ �H22S22ij þ �H66S11ij , K
56
ij ¼ �H23S22ij þ �H67S11ij

K57
ij ¼ �H24S22ij þ �H68 � �H56ð ÞS11ij , K66

ij ¼ �H33S22ij þ �H77S11ij

K67
ij ¼ �H34S22ij þ �H78 � �H57ð ÞS11ij , K77

ij ¼ �H44S22ij þ �H88 � 2�H58 þ �H55ð ÞS11ij

Srsij ¼
ðL

0

@rui

@xr3

@suj

@xs3
dx3

(27)

The components of mass matrix M are given by:

M ¼

M11 0 0 0 M15 M16 M17

0 M22 0 M24 0 0 0
0 0 M33 M34 0 0 0
0 TM24 TM34 M44 0 0 0

TM15 0 0 0 M55 M56 M57

TM16 0 0 0 TM56 M66 M67

TM17 0 0 0 TM57 TM67 M77

2
6666666664

3
7777777775

(28)

where

M11
ij ¼ J0S11ij , M

15
ij ¼ JsS11ij , M

16
ij ¼ �JcS11ij , M

17
ij ¼ J- � Jrsð ÞS11ij , M22

ij ¼ J0S00ij

M24
ij ¼ Jc þ J0xP2

� �
S00ij , M

33
ij ¼ J0S00ij , M

34
ij ¼ Js � J0xP1

� �
S00ij , M

44
ij ¼ Jp þ J2 þ 2Jrnð ÞS00ij

M55
ij ¼ Jx2 þ 2Jxs þ Js2ð ÞS11ij , M56

ij ¼ J12cs � Jcsð ÞS11ij , M57
ij ¼ J1- þ J1-rss � Jrssð ÞS11ij

M66
ij ¼ J22 � 2J2c þ Jc2ð ÞS11ij , M67

ij ¼ J2- � J2-rsc þ Jrscð ÞS11ij , M77
ij ¼ J-2 � 2Jrs- þ Jrs2ð ÞS11ij

(29)

It is noted that the buckling responses of the FG sandwich thin-walled beams can be derived
from Eq. (25) by solving detðKdÞ ¼ 0, whereas the free vibration behaviors are obtained by set-
ting dðtÞ ¼ deixt where x is the natural frequency, i2 ¼ �1 the imaginary unit, and then solving
the subsequent result ðK� x2MÞd ¼ 0:

2.5. Polynomial chaos expansion

Constituent material properties of the FG sandwich thin-walled beam such as Young’s modulus
ðEc, EmÞ and mass densities ðqc, qmÞ are supposed to be randomly changed according to lognormal
distributions. In order to efficiently propagate the variability in material properties to that in the
responses of FG sandwich thin-walled beams, a surrogate model based on the PCE is constructed in
which the framework for probabilistically assessing the responses of FG sandwich thin walled beams
is described in Figure 3 for both PCE and MCS methods. It is noted that though two quantities of
interests (QoIs) of the present study are natural frequencies and critical buckling loads, this approach
can be applied to other responses of interest. For the MCS method, it is known that the implementa-
tion of MCS is straightforward in which material properties are generated with a large number of
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samples, and then natural frequencies and critical buckling loads of the FG sandwich thin-walled
beams are computed for each simulation by solving Eq. (25). The outputs obtained from the MCS
method will be considered as benchmarks for the comparison purpose. Otherwise, the PCE model is
considered as an alternative method with less computational costs for a required accuracy.

For the PCE method, the first step of this approach is to approximate the responses û of FG
sandwich thin-walled beams in terms of a truncated orthogonal series as follows:

û ’ ûPCEðxÞ ¼
XP�1

i¼0

ciHeiðqÞ þ e (30)

where ûPCE are the responses of interest obtained from PCE; q is a vector of independent random
variables in the PCE space mapped to physical random parameters x; Hei are multivariate orthog-
onal basis functions; ci are coefficients to be determined so that the residual e is minimized; P is
the permutation of the qualified order of polynomial p and the number of random variable d

which is given by: P ¼ ðdþpÞ!
d!p! : It is noted that based on Askey’s scheme (Xiu and Karniadakis

2002), the Hermite polynomials, Hei, is chosen for input variables with lognormal distribution.
The second step is to estimate all associated coefficients. This task can be easily obtained by

forcing the residual minimum resulting in the inner product of the residual and each basis func-
tion Hei becomes zero. Taking the inner product of both sides of Eq. (30), with respect to Hej:

Figure 3. Flowchart of stochastic free vibration and buckling analysis of thin-walled I-beam using PCE and MCS.
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hû,Heji ¼
XP�1

i¼0

cihHei,Heji (31)

then enforcing the orthogonality of Hej, Eq. (31) becomes:

ci ¼ hû,Heii
hHei,Heii ¼

1
hHei,Heii

ð
ûHeiqQðqÞdq (32)

Note that Hei is Hermite polynomial, so the normalization factor hHei,Heii in Eq. (32) can be
analytically evaluated. It is noted that all coefficients can be theoretically obtained by solving the
integral term in Eq. (32), however the random response û is unknown. In the present paper,
therefore, the coefficient ci will be numerically computed using the simple tensor product Gauss-
Hermite quadrature:

hû,Heii ¼
XN1

gp

j1¼1

:::
XNd

gp

jd¼1

w1
j1 � � � � � wd

jd

� �
û q1j1 , :::, q

d
jd

� �
Hei q1j1 , :::, q

d
jd

� �
(33)

where Ni
gp is the number of quadrature point; qij and wi

j are the set of quadrature points and their

weights, respectively for the random variable ith: For convenience, the number of quadrature
points for each variable is chosen equally such that N1

gp ¼ N2
gp ¼ � � � ¼ Nd

gp ¼ Ngp: It is worth

noticing that if the order of the model output û is p, the highest order of the integrands in Eq.
(32) is at least 2p, so the minimum number of quadrature points for each dimension is Ngp ¼
pþ 1 and the total number of Gauss points is at least ðpþ 1Þd: Therefore, ðpþ 1Þd problems
shown in Eq. (25) need to be solved for the model response ûðq1j1 :::qdjdÞ:

Once the PCE model is developed, the uncertainty is explicitly propagated from the random
inputs to the stochastic response via the polynomial function in Eq. (30) which takes a fraction of
a second. The predominant computational cost required to predict the stochastic responses using
the PCE model is therefore associated with obtaining ûðq1j1 :::qdjdÞ for coefficients estimations

shown in Eq. (33). This computational cost is much less than those of applying the crude MCS.
Another advantage of the PCE is that the mean and the variance of the response can be analytic-
ally estimated from the PCE coefficients as follows:

lû ¼ E û½ � ¼ c0 (34a)

�r2
û ¼ E ðû � lûÞ2


 �
¼

XP�1

i¼1

c2i hHei,Heii (34b)

Furthermore, Sobol’ sensitivity indices can be also estimated directly from the PCE coefficients
(Sudret 2008). In particular, the first-order main effect Sk and the total sensitivity index STk of a
random variable Xk are estimated as follows:

Sk ¼ Dk

r2û
(35a)

STk ¼ DT
k

r2û
(35b)

where Dk ¼
P

j2Ck
c2j hHejðqÞ,HejðqÞi and DT

k ¼ P
j2CT

k
c2j hHejðqÞ,HejðqÞi; Ck includes all j such

that the multivariate function HejðqÞ only include the variable qk (i.e., HejðqÞ ¼ HejðqkÞ), while
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CT
k includes all j such that HejðqÞ must include the variable qk (i.e., HejðqÞ ¼

Hejðq1, :::, qk, :::, qdÞ).

3. Numerical results

This section investigates natural frequencies and critical buckling loads of FG sandwich thin-
walled I-beams with various configurations of material parameters, boundary conditions and
thickness ratios of the ceramic material. Two types of material of the FG sandwich thin-walled
beams are introduced in Table 2 including the means and coefficients of variation (COV) in
which the material MAT I is used for vibration analysis and MAT II for buckling problems. The
material properties are supposed to be randomly changed according to lognormal distributions.
Unless stated otherwise, the following geometries of the FG sandwich thin-walled beams is used
in numerical examples: b1 ¼ b2 ¼ 15cm, b3 ¼ 20cm, h ¼ h1 ¼ h2 ¼ h3 ¼ 0:5cm and L ¼ 10b3).

3.1. Convergence and verification study

For the convergence study of hybrid series solutions in predicting buckling and vibration behaviors,
Tables 3 and 4 give the fundamental frequency and critical buckling load for the FG sandwich thin-
walled I-beams with the increase in the number of series N: The material properties of the FG sand-
wich thin-walled beams for Table 3 are MAT I and for Tables 4 and 5 are MAT II. The thickness
ratios of ceramic material are a1 ¼ a2 ¼ b ¼ 0:1 for Table 3 and a1 ¼ a2 ¼ 0:7,b ¼ 0:4 for Tables 4
and 5. Three boundary conditions of simply-supported (S-S), clamped-clamped (C-C) and clamped-
free (CF) are considered with different values of the power index p: It is seen in Table 3 that for
vibration analysis, the output is numerically converged at N ¼ 10 under C-C boundary condition
and is converged at N ¼ 6 and N ¼ 8 under S-S and C-F boundary conditions, respectively.
Meanwhile, the output of buckling analysis shown in Table 4 shows faster convergence at N ¼ 6 in
most cases. In the subsequent analysis, N ¼ 8 is hence chosen for numerical computations.

Table 2. Material properties of FG sandwich thin-walled I-beams.

Mean

Material properties MAT I MAT II COV Distribution

Ec (GPa) 380 320.7 0.1 Lognormal
Em (GPa) 70 101.69 0.1 Lognormal
� ¼ �c ¼ �m 0.3 0.3 – –
qc (kg/m

3) 3960 – 0.1 Lognormal
qm (kg/m3) 2702 – 0.1 Lognormal
a1 0.1 0.7 – –
a2 0.1 0.7 – –
b 0.1 0.4 – –

Table 3. Convergence of fundamental frequencies (Hz) of the FG sandwich thin-walled beams without any variation in input
variables (MAT I, a1 ¼ a2 ¼ b ¼ 0:1).

BCs Reference

N

2 4 6 8 10 12

S-S Present (Shear) 96.18 91.33 91.18 91.18 91.18 91.18
Nguyen et al. (2019; Shear) 92.72 91.52 91.18 91.18 91.18 91.18

C-C Present (Shear) 209.49 201.24 200.25 200.02 199.91 199.92
Nguyen et al. (2019; Shear) 201.80 200.43 200.13 199.97 199.89 199.88

C-F Present (Shear) 63.60 46.64 34.25 32.73 32.66 32.65
Nguyen et al. (2019; Shear) 33.14 32.69 32.66 32.66 32.66 32.66
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Table 4. Convergence of critical buckling loads (x106 N) of the FG sandwich thin-walled beam without any variation in input
variables (MAT II, a1 ¼ a2 ¼ 0:7, b ¼ 0:4Þ:

N

BCs p 2 4 6 8 10 12

S-S 0.5 2.02 1.97 1.96 1.96 1.96 1.96
1 1.69 1.65 1.64 1.64 1.64 1.64
2 1.36 1.33 1.32 1.32 1.32 1.32
5 1.04 1.01 1.01 1.01 1.01 1.01
10 0.89 0.87 0.86 0.86 0.86 0.86

C-C 0.5 7.53 7.45 7.43 7.43 7.43 7.43
1 6.31 6.24 6.23 6.23 6.23 6.23
2 5.09 5.03 5.02 5.02 5.02 5.02
5 3.87 3.83 3.82 3.82 3.82 3.82
10 3.31 3.28 3.27 3.27 3.27 3.27

C-F 0.5 0.52 0.50 0.50 0.50 0.50 0.50
1 0.44 0.42 0.42 0.42 0.42 0.42
2 0.35 0.34 0.34 0.34 0.34 0.34
5 0.27 0.25 0.25 0.25 0.25 0.25
10 0.23 0.22 0.22 0.22 0.22 0.22

Table 5. Critical buckling load (kN) of the FG sandwich thin-walled I-beams without any variation in input variables (MAT II,
a1 ¼ a2 ¼ 0:7, b ¼ 0:4).

BCs Reference p¼ 0 0.25 0.5 1 2 5 10 20

S-S Present (Shear) 421.633 404.155 392.508 377.958 363.420 348.899 342.305 338.539
Kim and Lee (2018; No shear) 423.083 405.933 394.515 380.286 366.056 351.825 345.333 341.605
Kim and Lee (2018; Shear) 422.359 405.208 393.783 379.533 365.280 351.058 344.601 340.906
Lanc et al. (2016; No shear) 423.296 406.130 394.692 380.412 366.150 351.914 345.451 341.762

C-C Present (Shear) 1669.413 1599.491 1552.860 1494.550 1436.212 1377.838 1351.288 1336.110
Kim and Lee (2018; No shear) 1692.352 1623.751 1578.078 1521.156 1464.229 1407.293 1381.317 1366.399
Kim and Lee (2018; Shear) 1680.840 1612.410 1566.830 1509.950 1453.060 1396.270 1370.490 1355.730
Lanc et al. (2016; No shear) 1705.050 1635.900 1589.830 1532.310 1474.860 1417.520 1391.480 1376.630

C-F Present (Shear) 106.144 101.755 98.832 95.180 91.533 87.892 86.239 85.295
Kim and Lee (2018; No shear) 105.771 101.483 98.629 95.072 91.514 87.957 86.334 85.403
Kim and Lee (2018; Shear) 105.725 101.435 98.577 95.013 91.448 87.891 86.277 85.353
Lanc et al. (2016; No shear) 105.773 101.484 98.626 95.057 91.494 87.936 86.321 85.400

Figure 4. Non-dimensional fundamental frequency of thin-walled FG sandwich thin-walled I-beams without any variation in
input variables.
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In order to verify the accuracy of present theory, the deterministic vibration and buckling
responses of the FG sandwich thin-walled I-beam are compared with results of Nguyen et al.
(2019), Nguyen, Kim, and Lee (2016b), Lanc et al. (2016), and Kim and Lee (2018). It is noted
that the term “deterministic” indicates that the results are calculated with mean material proper-
ties (see Table 2). It can be seen from Table 3 that the fundamental frequencies computed from
the present model concur with those of Nguyen et al. (2019). Moreover, Figure 4 also shows that
the non-dimensional frequencies for the FG sandwich thin-walled beam (MAT I, h ¼ h1 ¼ h2 ¼
h3 ¼ 0:5cm, b1 ¼ 20h, b2 ¼ 10h, b3 ¼ 40h, L ¼ 40b3 a1 ¼ 0:1, a2 ¼ 0:9) of the present solution
are in excellent agreements with those of Nguyen, Kim, and Lee (2016b). Additionally, the critical
buckling loads for the FG sandwich thin-walled beam (MAT II, h ¼ h1 ¼ h2 ¼ h3 ¼ 0:5cm, b1 ¼
b2 ¼ 20h, b3 ¼ 40h, L ¼ 12:5b3) presented in Table 5 are comparable to the results of Kim and

Table 6. Comparative study between MCS (100.000 samples) and PCE (625 samples) for the mean, standard deviation (SD),
kurtosis and skewness of the fundamental frequency outputs (Hz, MAT I: a1 ¼ a2 ¼ b ¼ 0:1).

BCs p

MCS (Ns ¼ 100, 000) PCE (Ns ¼ 625) Deterministic

Mean SD Kurtosis Skewness Time (s) Mean SD Kurtosis Skewness Time (s)

S-S 0 128.05 9.04 3.10 0.21 344.64 128.11 9.05 3.11 0.21 13.65 127.75
0.5 116.84 7.21 3.06 0.20 311.88 116.89 7.19 3.08 0.18 10.21 116.72
1 109.89 6.27 3.06 0.17 310.84 109.89 6.28 3.09 0.19 10.90 109.77
2 101.55 5.48 3.04 0.18 310.97 101.52 5.47 3.07 0.17 10.72 101.45
5 91.30 4.79 3.05 0.15 312.93 91.28 4.77 3.05 0.15 10.73 91.18
10 85.74 4.55 3.03 0.15 323.77 85.74 4.56 3.03 0.15 10.70 85.62

C-C 0 281.01 19.81 3.05 0.21 360.44 280.95 19.87 3.08 0.22 12.17 280.25
0.5 256.36 15.70 3.05 0.17 329.66 256.32 15.79 3.05 0.18 10.58 256.04
1 241.01 13.86 3.03 0.17 326.74 241.05 13.80 3.05 0.18 10.53 240.80
2 222.75 11.98 3.03 0.18 317.96 222.76 12.03 3.03 0.16 10.53 222.54
5 200.29 10.46 3.05 0.17 312.41 200.27 10.48 3.05 0.16 10.56 200.02
10 188.20 10.02 3.04 0.15 313.17 188.15 9.98 3.03 0.15 10.51 187.82

C-F 0 46.00 3.25 3.08 0.20 398.93 45.98 3.24 3.06 0.21 14.83 45.86
0.5 41.97 2.58 3.11 0.20 363.63 41.96 2.57 3.07 0.19 12.84 41.90
1 39.45 2.26 3.06 0.17 366.03 39.45 2.26 3.09 0.19 12.69 39.41
2 36.45 1.96 3.03 0.18 365.92 36.45 1.96 3.06 0.18 13.12 36.42
5 32.78 1.72 3.01 0.15 357.95 32.79 1.72 3.07 0.17 13.54 32.73
10 30.78 1.64 3.03 0.15 362.76 30.80 1.64 3.04 0.14 13.09 30.74

Table 7. Comparative study between MCS (100.000 samples) and PCE (64 samples) for the mean, standard deviation (SD), kur-
tosis and skewness of the critical buckling load outputs (kN, MAT II: a1 ¼ a2 ¼ 0:7 ,b ¼ 0:4).

BCs P

MCS (Ns ¼ 100, 000) PCE (Ns ¼ 64) Deterministic

Mean SD Kurtosis Skewness Time (s) Mean SD Kurtosis Skewness Time (s) 421.633

S-S 0 421.46 42.11 3.17 0.29 105.19 421.48 42.12 3.17 0.31 1.59 421.63
0.5 392.24 37.83 3.14 0.29 101.15 392.23 37.89 3.15 0.30 1.43 392.51
1 377.91 35.85 3.12 0.28 101.45 377.99 35.77 3.15 0.30 1.44 377.96
2 363.50 33.76 3.13 0.28 102.03 363.49 33.74 3.20 0.32 1.47 363.42
5 348.91 31.77 3.16 0.30 101.13 348.91 31.73 3.17 0.30 1.44 348.90
10 342.38 30.86 3.15 0.29 101.98 342.25 30.74 3.14 0.30 1.51 342.31

C-C 0 1669.40 166.82 3.18 0.29 116.18 1668.24 166.97 3.14 0.30 1.53 1669.41
0.5 1553.10 150.19 3.17 0.30 110.69 1552.98 149.89 3.15 0.30 1.59 1552.86
1 1494.50 141.46 3.16 0.29 111.43 1495.30 141.02 3.16 0.29 1.54 1494.55
2 1436.70 133.88 3.17 0.31 118.93 1435.96 133.53 3.16 0.30 1.56 1436.21
5 1377.60 124.80 3.20 0.31 109.34 1378.50 125.30 3.14 0.30 1.53 1377.84
10 1351.50 121.42 3.13 0.29 110.25 1351.27 121.11 3.13 0.28 1.55 1351.29

C-F 0 105.67 10.53 3.14 0.29 107.87 105.70 10.58 3.20 0.32 1.49 105.68
0.5 98.35 9.50 3.12 0.29 110.89 98.41 9.51 3.16 0.31 1.60 98.40
1 94.70 8.98 3.16 0.30 110.20 94.73 9.02 3.19 0.30 1.55 94.76
2 91.10 8.47 3.15 0.30 110.11 91.12 8.47 3.19 0.30 1.53 91.13
5 87.50 7.97 3.18 0.30 109.60 87.50 7.95 3.14 0.29 1.50 87.51
10 85.90 7.73 3.14 0.29 111.91 85.86 7.71 3.15 0.30 1.55 85.86
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Lee (2018) and Lanc et al. (2016). Thus, the present FG sandwich thin-walled beam model is
valid for the subsequent stochastic analysis.

Figure 5. Probability density function (PDF) and Probability of exceedance (PoE) of MCS and PCE methods of the fundamental
frequency (Hz) for FG sandwich thin-walled beams with S-S, C-C and C-F boundary condition, p ¼ 5, a1 ¼ a2 ¼ b ¼ 0:1:
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3.3. Stochastic analysis

For stochastic analysis, the MCS with Ns ¼ 100, 000 samples is carried out to verify the accuracy
and efficiency of PCE surrogate model. Four first statistical moments of the fundamental frequen-
cies and critical buckling loads, namely the mean, standard deviation (SD), skewness and kurtosis

Figure 6. Probability density function (PDF) and Probability of exceedance (PoE) of MCS and PCE methods of critical buckling
load (kN) for FG sandwich thin-walled beams with S-S, C-C and C-F boundary conditions, p ¼ 5, a1 ¼ a2 ¼ 0:7,b ¼ 0:4:
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obtained from the MCS and PCE models are compared in Tables 6 and 7. The running time and
deterministic values of each case are also reported for three different boundary conditions and
five different values of the power index p: It is noted that for deterministic analysis, all random
variables are set to equal the mean values. It can be seen from Tables 6 and 7 that the determinis-
tic responses are in excellent agreement with those from Nguyen et al. (2019). These results dem-
onstrate the accuracy of the beam model with the proposed hybrid shape functions in predicting
vibration and buckling responses of the FG sandwich thin-walled I-section beams.

Besides the MCS approach, the fourth-order PCE model is used for FG I-beam vibration ana-
lysis and the third-order PCE model is for buckling analysis of the same beam. Consequently,
625 and 64 output samples obtained from the beam solver are required to construct the PCE
model for fundamental frequencies and critical buckling loads, respectively. It is observed that the
mean and standard deviation of the fundamental frequencies obtained from the MCS and PCE
show good agreement in all cases. Meanwhile, most of the skewness and kurtosis are closely
matched with the exception of some cases where these two higher-order statistical moments are
different by at most 10%. A similar trend can be seen in the results of critical buckling loads in
Table 7. The skewness and kurtosis are two statistical moments measuring the tails of the distri-
butions and might vary due to the lack of samples. From Figures 5 and 6, the probability density
function (PDF) plots produced from MCS and PCE methods for both QoIs show no discrepancy

Figure 7. Quantile-quantile plot of the PCE method with respect to the MCS method for the fundamental frequency of FG thin-
walled I-beam with S-S, C-C and C-F boundary conditions (p ¼ 5, a1 ¼ a2 ¼ b ¼ 0:1).
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but the probability of exceedance (PoE) graph can represent the difference in skewness and kur-
tosis. As the probability of exceedance, PðX > xÞ, becomes smaller, there are fewer samples in
both methods to represent the randomness in model outputs and this leads to the difference
mentioned above. It is worth noting that with 100,000 samples, the PoE obtained from MCS and
PCE only agrees well up to the point of PðX > xÞ ¼ 10�4:

Regarding the computational cost, PCE requires only 625 and 64 ‘truth’ samples (i.e., gener-
ated from the beam model) to develop surrogate models for the fundamental frequency and
buckling load, respectively compared with 100,000 samples of the MCS. Considering the whole
process for assessing the probabilistic characteristics of stochastic outputs (as illustrated in
Figure 3), the running time of the PCE method is also significantly lower than the running time
of the MCS method. This running time can vary between computing processor power and for
efficiency comparison; the ratio between the running time of both methods is a better index. It is
observed that the required computational time of the present PCE method with respect to the
direct MCS method is 1/50 for vibration analysis and 1/72 for buckling analysis.

In Figure 7, the 45-degree linear quantile-quantile plot further confirms the matching statistical
distribution of the fundamental frequency computed from the MCS and PCE. Thus, the PCE
method gives an affordable alternative solution to numerically simulate the uncertainties in mul-
tiple material properties and predict the fundamental frequency responses.

Figure 8. First order Sobol index of the random input variables with respect to the fundamental frequency of the FG thin-walled
beam models obtained from both MCS and PCE; three boundary conditions (S-S, C-C, C-F); p ¼ 5; a1 ¼ a2 ¼ b ¼ 0:1:
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3.4. Sensitivity analysis

In addition to the probabilistic characteristics of the outputs, the influence of each random input
on the variability of model responses is also a topic of interest in this study. Figure 8 compares
the sensitivity indices based on the first-order Sobol indices for the vibration analysis using MCS
and PCE methods for the power index : It is seen that the Sobol indices computed from the poly-
nomial expansion coefficients are closely matched with those calculated from MCS. In this sensi-
tivity study, the PCE method is far more efficient than the MCS. Note that a random input
parameter with a greater first-order Sobol index has higher influence on the variance of the
model output without accounting for the interaction between different input parameters.
Therefore, the effects of Ec and qm on the fundamental frequency of this stochastic model (with
p ¼ 5) are about four-fold compared to Em and qc: As expected, the first Sobol indices are inde-
pendent with the beam boundary conditions.

The total Sobol indices obtained from the PCE method of each random variable corresponding
to fundamental frequency for different p values are presented in Figure 9. It is observed that the
sensitivity index for each parameter is the same for three boundary conditions. Moreover, the
power-law index p has a significant impact on the sensitivity results. In particular, as p increases,
the importance of metal constituent increases; in contrast, the influence of ceramic material
properties decreases except for Ec as its influence increases when p � 1: Subjected to different
cases, the total Sobol indices can help filter out unimportant input variables and therefore,
improve the computing time. To further investigate the effect of values of p on the outputs’

Figure 9. Total Sobol index of the random input variables with respect to the fundamental frequency of the FG thin-walled
beam models obtained from PCE; three boundary conditions (S-S, C-C, C-F); a1 ¼ a2 ¼ b ¼ 0:1:
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uncertainty, the probability density functions of fundamental frequency and buckling load of C-C
beam for different values of p are compared in Figure 10. Interestingly, the uncertainty in both
frequency and buckling load appears larger with the decrease in the values of p where the distri-
butions of two outputs are spread wider.

4. Conclusions

A stochastic model for buckling and vibration analysis of FG sandwich thin-walled beam with I-
section based on the first-order shear deformation theory is proposed in this paper. The FGM
properties are supposed to be randomly varied according to lognormal distributions. These varia-
bilities are propagated to the stochastic responses of FG sandwich thin-walled beams through a
beam solver with novel hybrid series-type approximation functions. Polynomial chaos expansion
(PCE) based surrogate model is developed for evaluations of stochastic responses. The efficiency
and accuracy of PCE’s results are assessed by comparing them with those of crude Monte Carlo
simulation (MCS). Sensitivity analysis is investigated to compare the importance of the uncer-
tainty in material properties to stochastic responses. Numerical results showed that the efficiency
of the proposed PCE based model is far more superior than the conventional MCS while ensur-
ing accuracy. In addition, the PCE method is also faster than MCS in determining Sobol sensitiv-
ity indices, which successively helps reduce the number of random input variables. The present
theory and model is found to be efficient in predicting stochastic buckling and vibration behav-
iors of the FG sandwich thin-walled beams.
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Deterministic and stochastic flexural behaviors of laminated 
composite thin-walled I-beams using a sinusoidal higher-order 
shear deformation theory

Xuan-Bach Buia and Trung-Kien Nguyenb 

aFaculty of Civil Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 
Viet Nam; bCIRTech Institute, HUTECH University, Ho Chi Minh City, Viet Nam 

ABSTRACT 
In this study, a novel sinusoidal higher-order shear deformation thin-walled 
beam theory is presented to examine the effects of material properties 
and external load uncertainty on static responses of laminated composite 
thin-walled beams with open sections. The solution for the deterministic 
flexural analysis is based on Hamilton’s principle and Ritz-type exponential 
shape function series. Several mechanical parameters of laminated com-
posite materials are randomized and plugged into the beam solver to 
investigate the thin-walled beam’s stochastic flexural behaviors. The com-
putational cost and accuracy of the polynomial chaos expansion (PCE) 
method with both projection and linear regression approaches are pre-
sented and evaluated by comparing its results with crude Monte Carlo 
simulation (MCS). This comparison allows for a thorough assessment of the 
PCE method’s performance. Additionally, a sensitivity analysis is conducted 
to compare the relative significance of the uncertainty in material proper-
ties and loads on the stochastic responses. The supervised training of the 
artificial neural network based on the MCS beam data is also conducted 
and compared to the PCE and MCS methods. The findings about the sto-
chastic outputs are introduced in various statistical metrics and illustrations 
to demonstrate the influences of material properties’ randomness on differ-
ent laminated composite thin-walled beam configurations.
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1. Introduction

Laminated composite thin-walled beams are an essential structural element that has been exten-
sively used in engineering applications, particularly in aerospace, aircraft, and mechanical engin-
eering. These thin-walled beams are made of multilayered materials in web and flanges with 
enhanced material properties compared to their constituent materials in weight-to-strength ratio. 
However, the design and analysis of laminated composite thin-walled beams have been challeng-
ing due to their complex geometry, anisotropic material behaviors, uncertainty in external loads, 
and material properties. This interesting topic has, therefore, attracted numerous researchers.

Based on the transverse shear deformation, the beam theories can be divided into three 
groups: classical beam theory, first-order shear deformation beam theory, and higher-order shear 
deformation beam theory (HSDT). The order of the shear function can be as high as the accuracy 
required to accurately simulate the transverse shear effect (Abdelmalek et al. 2019). Even though 
the HSDT has been well-studied for solid beams, it has rarely been implemented for thin-walled 
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beams. Further investigation of HSDT-based thin-walled beams is therefore needed to predict the 
thin-walled beams’ responses more accurately. Various analytical and numerical techniques have 
been developed to predict behaviors of the laminated composite thin-walled beams in which most 
of the research focused on its deterministic responses. By the simplicity in theoretical formula-
tion, Vlasov’s thin-walled beam theory (CTWT) (Piovan, Ramirez, and Sampaio 2013) has been 
commonly used for analysis of laminated composite thin-walled beams (Bauld and Lih-Shyng 
1984; Pandey, Kabir, and Sherbourne 1995; Lee and Kim 2002, 2001; Latalski and Zulli 2020; Yu 
et al. 2005). However, the CTWT does not accurately predict static and dynamic responses due 
to the lack of transverse shear strains. To overcome this adverse, the first-order thin-walled beam 
theory (FTWT) accounted for the shear strain effects has become a surrogate model by introduc-
ing constant shear strains in the wall thickness. This approach enabled to predict the deflection, 
buckling loads and natural frequencies more accurately than the CTWT (Maddur and Chaturvedi 
2000, 1999; Lee 2005; Qin and Librescu 2002; Vo and Lee 2009; Lee 2001; Jung and Lee 2003; 
Kim and Shin 2008; Wu and Mohareb 2011; Kim and Jeon 2013; Ramaprasad, Dattaguru, and 
Singh 2022; Nguyen et al. 2023). In practice, the FTWT violated the free-stress boundary condi-
tions, which required a shear correction factor in calculation of the shear strain energy. An alter-
native way to solve this problem is to use the higher-order shear deformation thin-walled beams 
(HTWT) in which a nonlinear variation of the transverse shear strains is supposed in the wall 
thickness. Based on this approach, several works have been developed for deterministic analysis 
of laminated composite thin-walled beams. Chandiramani, Librescu, and Shete (2002) investigated 
free, forced and geometrically nonlinear vibration responses of laminated composite thin-walled 
beams with closed sections by introducing a parabolic distribution of the transverse shear strains 
in the wall thickness. Bui et al. (2022) recently presented a HTWT for vibration and buckling 
analysis of laminated composite I-beams in which the authors showed that the higher-order 
transverse shear strain effects impacted importantly on the behaviors of thin-walled beams. In 
this context, this study proposes a novel HTWT using a higher-order sinusoidal shear function to 
analyze the static behaviors of laminated composite I-beams.

Besides the beam models, the computational methods have also had an important influence on 
behaviors of the beam. There exist many numerical methods to solve for the beam models’ 
responses such as Cottrell, Hughes, and Bazilevs (2009), O~nate (2013), and Carrera, Giunta, and 
Petrolo (2011). Among those, the Ritz method proves to be simple and accurate in investigating 
the static and dynamic responses of beams and plates with different boundary conditions (Reddy 
2003b), this approach has been successfully applied for analysis of laminated composite plates 
(Abdelmalek et al. 2019), laminated composite nanoplates (Tayeb Tayeb et al. 2020; Boulal et al. 
2020; Guessas et al. 2018), laminated composite beams (Bouazza et al. 2015), and laminated com-
posite nanobeams (Zerrouki, Karas, and Zidour 2020). It is worth to noticing that the perform-
ance of the Ritz method relies on the construction of approximate functions for the entire beam’s 
length. A substantial number of researchers (Moreno-Garc�ıa, dos Santos, and Lopes 2018; 
Nguyen et al. 2018) have focused on proposing these functions so that the solution has a quick 
convergence rate and optimal computational cost (Chaikittiratana and Wattanasakulpong 2022). 
Based on the Ritz method, in order to compute deterministic responses of the HTWT-based 
laminated composite thin-walled beams, this article will develop hybrid functions which are a 
combination of exponential functions and admissible ones satisfying the boundary conditions.

The deterministic models mentioned above do not involve the randomness of the beam mod-
el’s inputs. Nonetheless, in practice, it is known that the material properties and loads could be 
uncertain due to unexpected factors, which probably lead to change of behaviors of the thin- 
walled beams. Hence, it is essential to study various efficient probabilistic methods for the 
stochastic beam models. A literature survey reveals that though many researches have been per-
formed in examining stochastic responses of laminated composite plates with different approaches 
(Nguyen et al. 2017; Jagtap, Lal, and Singh 2012; Trinh et al. 2021; Borges et al. 2021; Kumar 
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et al. 2019; Peng et al. 2019; Umesh and Ganguli 2013; Chakraborty et al. 2016; Sasikumar et al. 
2015; Shaker et al. 2008; Parhi and Singh 2014), the number of studies on stochastic behaviors of 
laminated composite thin-walled beams is extremely limited. In general, in order to compute the 
stochastic responses of the beam, the crude Monte Carlo Simulation (MCS) method is the sim-
plest one. However, when the beam’s outcome of interest takes minutes or hours to compute, the 
surrogate model is preferred. This surrogate model can save computational costs by learning pat-
terns from much fewer data points and provide the highly similar outputs of MCS with a higher 
number of simulations. In recent years, the artificial neural network (ANN) and deep feedforward 
neural network (DNN) based surrogate modeling have seen a growing trend and have been 
applied to many engineering problems involving uncertainties. Guo, Zhuang, and Rabczuk (2019) 
proposed a deep collocation method that is based on the DNN to study the bending of 
Kirchhoff’s plates. Samaniego et al. (2020) opted for the DNN to approximate the solution of the 
partial differential equations of a mechanical system. Zhuang et al. (2021) used an improved 
DNN method based on a deep autoencoder to minimize the total potential energy and thus, com-
pute the bending, vibration and buckling behaviors of Kirchhoff’s plates. Tran et al. (2023) made 
use of the ANN and balancing composite motion optimization algorithm to study vibration and 
buckling responses of the functionally graded porous plates with uncertainties in material proper-
ties. Despite its ease of implementation, the ANN-based surrogate model requires further steps to 
compute sensitivity indices of the input variables. This drawback is not the case with the polyno-
mial chaos expansion (PCE) method (Tsokanas et al. 2022). Besides, when the size of the random 
input vector is reasonably small, the PCE method is more efficient in providing the stochastic 
responses of a mechanical system (Jakeman, Perego, and Severa 2018). Recently, Bui, Nguyen, 
and Nguyen (2023) investigated stochastic buckling and free vibration behaviors of functionally 
graded sandwich thin-walled beams based on the FTWT and PCE with spectral projection 
approach. A literature review shows that according to the authors’ knowledge, the effects of trans-
verse shear strains and uncertainty of mechanical loads and materials properties on flexural 
behaviors of laminated composite thin-walled beams using the sinusoidal HTWT have not been 
carried out, this gap needs to be considered further.

This article proposes a deterministic and stochastic model for flexural behaviors of laminated 
composite thin-walled I-beams with uncertainty in material properties and loads. The theory is 
based on a novel sinusoidal higher-order shear deformation thin-walled beam theory (STWT) 
with a sinusoidal variation of the transverse shear strains in the wall thickness. A hybrid series 
solution is developed for solving characteristic equations with different boundary conditions and 
various theories, including FTWT and STWT. Numerical results are presented to investigate the 
effects of the stochasticity, fiber angle, span-to-thickness ratio, and boundary conditions on the 
probabilistic deflections of laminated composite thin-walled beams with I-sections. Both the poly-
nomial chaos expansion method and artificial neural network method are used to learn a small 
amount of data and produce the stochastic static behaviors of laminated composite thin-walled I- 
beams. The accuracy and efficiency of both methods are determined by comparing them to the 
MCS. Additionally, Sobol’s sensitivity indices are computed to quantify the significance of ran-
dom input variables on the bending responses of laminated composite thin-walled beams. These 
probabilistic aspects of the STWT-based laminated composite thin-walled beams have not been 
studied in depth by past researches, and are presented in this article. The workflow of the sto-
chastic analysis is introduced to significantly reduce computational cost for the MCS.

2. Theoretical formulation

Consider a laminated composite thin-walled I-section beam with widths ðb1, b2, b3Þ and thick-
nesses ðh1, h2, h3Þ as in Figure 1 in which Cartesian coordinate system ðx1, x2, x3Þ, local coordinate 
system ðn, s, x3Þ and contour coordinate s along the profile of the section are used for the 
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theoretical formulation. The angle of orientation between ðn, s, x3Þ and ðx1, x2, x3Þ coordinate 
systems is namely a, the pole point P with coordinates ðxP

1 , xP
2 Þ is considered as the shear center 

of the section. Moreover, it is assumed that the displacements are small, the section contour does 
not deform in its own plane, and the transverse shear strains vary nonlinearly under a sinusoidal 
function in the wall thickness.

2.1. Displacements

At any points of the thin-walled beam cross-section under a small rotation /ðx3Þ about the pole 
axis, the displacements u1ðn, s, x3Þ and u2ðn, s, x3Þ in x1− and x2− directions can be derived from 
those at the shear center P with uP

1ðx3Þ and uP
2ðx3Þ as follows:

u1 n, s, x3ð Þ ¼ uP
1 x3ð Þ − x2 − nx1,s − xP

2

� �
/ x3ð Þ ¼ uP

1 x3ð Þ − X2 − xP
2

� �
/ x3ð Þ (1a) 

u2 n, s, x3ð Þ ¼ uP
2 x3ð Þ þ x1 þ nx2,s − xP

1
� �

/ x3ð Þ ¼ uP
2 x3ð Þ þ X1 − xP

1
� �

/ x3ð Þ (1b) 

where x2,s ¼ cos a and x1,s ¼ − sin a; X1 ¼ x1 þ nx2,s, X2 ¼ x2 − nx1,s; the comma in the sub-
script is used to indicate the differentiation with respect to the variable that follows. Obviously, as 
expected the kinematics in ðx1, x2Þ defined in Eq. (1) meet the non-deformability conditions of 
cross-section. Moreover, in order to derive the axial displacement in x3− direction u3ðn, s, x3Þ, the 
shear strains in the contour of thin-walled open-section beams ðcs3, cn3Þ can be expressed in terms 
of the transverse shear strains ðc13, c23Þ and a direct shear strain caused by the change rate of 
twist angle /,3 (Megson 2021) as follows:

Figure 1. Thin-walled coordinate systems.
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cs3 n, s, x3ð Þ ¼ c13 n, x3ð ÞX1,s þ c23 n, x3ð ÞX2,s þ 2n/,3 x3ð Þ ¼ us,3 þ u3,s (2a) 

cn3 n, s, x3ð Þ ¼ c13 n, x3ð ÞX2,s − c23 n, x3ð ÞX1,s ¼ un,3 þ u3,n (2b) 

where unðn, s, x3Þ and usðn, s, x3Þ are the displacements in the contour lines given by:

un n, s, x3ð Þ ¼ uP
1 x3ð Þx2,s − uP

2 x3ð Þx1,s − Rs n, sð Þ/ x3ð Þ (3a) 

us n, s, x3ð Þ ¼ uP
1 x3ð Þx1,s þ uP

2 x3ð Þx2,s þ Rn n, sð Þ/ x3ð Þ (3b) 

with Rsðn, sÞ ¼ rsðsÞ, Rnðn, sÞ ¼ rnðsÞ þ n; rsðsÞ and rnðsÞ are the lengths of the perpendiculars 
from P to the tangent and normal of the profile line center. Furthermore, the transverse shear 
strains ðc13, c23Þ are supposed to vary nonlinearly through the wall thickness under sinusoidal 
function as follows:

c13 n, x3ð Þ ¼ cos
pn
h

c
0ð Þ

13 x3ð Þ ¼ W nð Þc 0ð Þ
13 x3ð Þ (4a) 

c23 n, x3ð Þ ¼ cos
pn
h

c
0ð Þ

23 x3ð Þ ¼ W nð Þc 0ð Þ
23 x3ð Þ (4b) 

where h is the wall thickness; WðnÞ is the first derivative of the shear function !ðnÞ, cð0Þ13 , cð0Þ23 are 
mid-surface transverse shear strains given by:

c
0ð Þ

13 x3ð Þ ¼ u2 x3ð Þ þ uP
1,3 (5a) 

c
0ð Þ

23 x3ð Þ ¼ u1 x3ð Þ þ uP
2,3 (5b) 

where u1 and u2 are the rotations of the cross-section with respect to x1 and x3, respectively. By 
accounting for Eqs. (2)–(5) and mathematical manipulations, the axial displacement of the pre-
sent thin-walled beams can be obtained as follows:

u3 n, s, x3ð Þ ¼ u 0ð Þ
3 x3ð Þ þ c

0ð Þ
13 x3ð Þ�X1 n, sð Þ þ c

0ð Þ
23 x3ð Þ�X2 n, sð Þ − uP

1,3 x3ð ÞX1 n, sð Þ

− uP
2,3 x3ð ÞX2 n, sð Þ − /,z x3ð Þ�- n, sð Þ

(6) 

where �X1ðn, sÞ ¼ x1 þ !ðnÞx2,s, �X2 ¼ x2 − !ðnÞx1,s !ðnÞ ¼ h
p

sin pn
h ; �-ðn, sÞ ¼ -ðsÞ − nrsðsÞ; -ðsÞ

is a primary warping function defined by:

- sð Þ ¼
ðs

s0

rn sð Þds (7) 

The displacement field based on the STWT for thin-walled beams with open sections is finally 
obtained as follows:

u1 n, s, x3ð Þ ¼ uP
1 x3ð Þ − X2 n, sð Þ − xP

2

h i

/ x3ð Þ (8a) 

u2 n, s, x3ð Þ ¼ uP
2 x3ð Þ þ X1 n, sð Þ − xP

1

h i
/ x3ð Þ (8b) 

u3 n, s, x3ð Þ ¼ u 0ð Þ
3 x3ð Þ þ c

0ð Þ
13 x3ð Þ�X1 n, sð Þ þ c

0ð Þ
23 x3ð Þ�X2 n, sð Þ − uP

1,3 x3ð ÞX1 n, sð Þ

−uP
2,3 x3ð ÞX2 n, sð Þ − /,z x3ð Þ�- n, sð Þ

(8c) 
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2.2. Strains and stresses

The web and flanges of present laminated composite thin-walled beams are assumed to be com-
posed of nl orthotropic material layers with the same thickness. The stresses ðr33, rs3, rn3Þ at the 
kth− layer are expressed in terms of the strains ðe33, cs3, cn3Þ as follows:

r33

rs3

rn3

8
>><

>>:

9
>>=

>>;

¼

�P11
�P16 0

�P16
�P66 0

0 0 �P55

0

B
B
@

1

C
C
A

e33

cs3

cn3

8
>><

>>:

9
>>=

>>;

(9) 

where �P11 ¼ �Q11 −
�Q2

11
�Q22

, �P16 ¼ �Q16 −
�Q12

�Q26
�Q22

, �P66 ¼ �Q66 −
�Q2

26
�Q22

, �P55 ¼ �Q55; �Qij are the reduced stiffness 
components of materials (see Reddy (2003a) for more details); the non-zero strains can be written 
under a compact form as follows:

e33 n, s, x3ð Þ ¼ e
0ð Þ

33 þ ne
1ð Þ

33 þ ! nð Þe 2ð Þ
33 (10a) 

cs3 n, s, x3ð Þ ¼ nc
1ð Þ

s3 þW nð Þc 2ð Þ
s3 (10b) 

cn3 n, s, x3ð Þ ¼ W nð Þc 0ð Þ
n3 (10c) 

where

e
0ð Þ

33 s, x3ð Þ ¼ u 0ð Þ
3,3 þ c

0ð Þ
13,3 − uP

1,33

� �

x1 þ c
0ð Þ

23,3 − uP
2,33

� �

x2 − /,33- sð Þ (11a) 

e
1ð Þ

33 s, x3ð Þ ¼ uP
2,33x1,s − uP

1,33x2,s þ /,33rs (11b) 

e
2ð Þ

33 s, x3ð Þ ¼ c
0ð Þ

13,3x2,s − c
0ð Þ

23,3x1,s (11c) 

c
1ð Þ

s3 s, x3ð Þ ¼ 2/,3 (11d) 

c
2ð Þ

s3 s, x3ð Þ ¼ c
0ð Þ

13 x1,s þ c
0ð Þ

23 x2,s (11e) 

c
0ð Þ

n3 s, x3ð Þ ¼ c
0ð Þ

13 x2,s − c
0ð Þ

23 x1,s (11f) 

2.3. Hamilton’s principle for laminated composite thin-walled beams

Hamilton’s principle is used to derive the characteristic equations of the laminated composite 
thin-walled beams as follows:

ðt2

t1

dPS þ dPWð Þdt ¼ 0 (12) 

where dPS is the variation of strain energy of the thin-walled beam; dPW is the variation of 
work done by external force. The variation of strain energy dPS is given by:

dPS ¼

ð

X

r33de33 þ rs3dcs3 þ rn3dcn3ð ÞdX (13) 
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Substituting Eqs. (9) and (11) into Eq. (13) leads to:

dPS ¼

ðL

0

½T33dw0,3 þM22dc
0ð Þ

13,3 þM11dc
0ð Þ

23 þM2aduP,33 þM1advP,33

þMxd/,33 þ Q1ddc
0ð Þ

13 þ Q2ddc
0ð Þ

23 þM33d/,3�dx3

(14) 

where the stress resultants ðT33, M22, M11, M2a, M1a, Mx, Q1, Q2, M33Þ are defined as follows:

T33, M22, M11ð Þ ¼

ð

A

r33 1, �X1, �X2ð Þdsdn (15a) 

M2a, M1a, Mxð Þ ¼

ð

A

r33 −X1, −X2, −�-ð Þdsdn (15b) 

Q1 ¼

ð

A

W rs3x1,s þ rn3x2,sð Þdsdn (15c) 

Q2 ¼

ð

A

W rs3x2,s − rn3x1,sð Þdsdn (15d) 

M33 ¼

ð

A

2nrs3dsdn (15e) 

The stress resultants and displacement gradients are associated by:

T33

M22

M11

Q1

Q2

M2a

M1a

Mx

M33

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

¼

�L11 �L12 �L13 �L14 �L15 �L16 �L17 �L18 �L19

�L12 �L22 �L23 �L24 �L25 �L26 �L27 �L28 �L29

�L13 �L23 �L33 �L34 �L35 �L36 �L37 �L38 �L39

�L14 �L24 �L34 �L44 �L45 �L46 �L47 �L48 �L49

�L15 �L25 �L35 �L45 �L55 �L56 �L57 �L58 �L59

�L16 �L26 �L36 �L46 �L56 �L66 �L67 �L68 �L69

�L17 �L27 �L37 �L47 �L57 �L67 �L77 �L78 �L79

�L18 �L28 �L38 �L48 �L58 �L68 �L78 �L88 �L89

�L19 �L29 �L39 �L49 �L59 �L69 �L79 �L89 �L99

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

u 0ð Þ
3,3

c
0ð Þ

13,3

c
0ð Þ

23,3

c
0ð Þ

13

c
0ð Þ

23

uP
1,33

uP
2,33

/,33

/,3

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;

(16) 

where �Lij ði, j ¼ 1, :::, 9Þ are the stiffness components of the laminated composite thin-walled 
beams, which are given by:

�L11 ¼

ð

s

A11ds, �L12 ¼

ð

s

A11x1 þ E11x2,sð Þds, �L13 ¼

ð

s

A11x2 − E11x1,sð Þds 

�L14 ¼

ð

s

As16x1,sds, �L15 ¼

ð

s

As16x2,sds, �L16 ¼ −
ð

s

A11x1 þ B11x2,sð Þds 
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�L17 ¼

ð

s

−A11x2 þ B11x1,sð Þds, �L18 ¼

ð

s

−A11-þ B11rsð Þds, �L19 ¼

ð

s

2B16ds 

�L22 ¼

ð

s

x1 A11x1 þ 2E11x2,sð Þ þH11x2
2,s

h i
ds 

�L23 ¼

ð

s

x1 A11x2 − E11x1,sð Þ þ x2,s E11x2 − H11x1,sð Þ
� �

ds 

�L24 ¼

ð

s

As16x1 þ Ds16x2,sð Þx1,sds, �L25 ¼

ð

s

As16x1 þ Ds16x2,sð Þx2,sds 

�L26 ¼ −
ð

s

x1 A11x1 þ B11x2,sð Þ þ x2,s E11x1 þ F11x2,s
� �� �

ds 

�L27 ¼

ð

s

x1 −A11x2 þ B11x1,sð Þ þ x2,s −E11x2 þ F11x1,sð Þ
� �

ds 

�L28 ¼

ð

s

x1 −A11-þ B11rsð Þ þ x2,s −E11-þ F11rsð Þds 

�L29 ¼

ð

s

2 B16x1 þ F16x2,sð Þds 

�L33 ¼

ð

s

x2 A11x2 − E11x1,sð Þ − x1,s E11x2 − H11x1,sð Þ
� �

ds 

�L34 ¼

ð

s

As16x2 − Ds16x1,sð Þx1,sds, �L35 ¼

ð

s

As16x2 − Ds16x1,sð Þx2,sds 

�L36 ¼ −
ð

s

x1 A11x2 − E11x1,sð Þ þ x2,s B11x2 − F11x1,sð Þ
� �

ds 

�L37 ¼

ð

s

−x2 A11x2 − E11x1,sð Þ þ x1,s B11x2 − F11x1,sð Þ
� �

ds 

�L38 ¼

ð

s

−- A11x2 − E11x1,sð Þ þ rs B11x2 − F11x1,sð Þ
� �

ds 

�L39 ¼

ð

s

2 B16x2 − F16x1,sð Þds 
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�L44 ¼

ð

s

Hs66x2
1,s þHs44x2

2,s

� �
ds, �L45 ¼

ð

s

x1,sx2,s Hs66 − Hs44ð Þds, 

�L46 ¼ −
ð

s

As16x1 þ Bs16x2,sð Þx1,sds, �L47 ¼

ð

s

−As16x2 þ Bs16x1,sð Þx1,sds 

�L48 ¼

ð

s

−As16-þ Bs16rsð Þx1,sds, �L49 ¼

ð

s

2x1,sBs66ds 

�L55 ¼

ð

s

Hs66x2
2,s þ Hs44x2

1,s

� �
ds, �L56 ¼ −

ð

s

As16x1 þ Bs16x2,sð Þx2,sds 

�L57 ¼

ð

s

−As16x2 þ Bs16x1,sð Þx2,sds, �L58 ¼

ð

s

−As16-þ Bs16rsð Þx2,sds 

�L59 ¼

ð

s

2x2,sBs66ds, �L66 ¼ −
ð

s

x1 A11x1 þ B11x2,sð Þ þ x2,s B11x1 þ D11x2,sð Þ
� �

ds 

�L67 ¼

ð

s

−x2 A11x1 þ B11x2,sð Þ þ x1,s B11x1 þ D11x2,sð Þ
� �

ds 

�L68 ¼

ð

s

−- A11x1 þ B11x2,sð Þ þ rs B11x1 þ D11x2,sð Þ
� �

ds 

�L69 ¼

ð

s

2 B16x1 þ D16x2,sð Þds, �L77 ¼

ð

s

x2 A11x2 − B11x1,sð Þ þ x1,s −B11x2 þ D11x1,sð Þ
� �

ds 

�L78 ¼

ð

s

- A11x2 − B11x1,sð Þ þ rs −B11x2 þ D11x1,sð Þ
� �

ds 

�L79 ¼

ð

s

2 −B16x2 þ D16x1,sð Þds 

�L88 ¼

ð

s

−- −-A11 þ B11rsð Þ þ rs −B11-þ D11rsð Þ
� �

ds 

�L89 ¼

ð

s

2 −B16-þ D16rsð Þds, �L99 ¼

ð

s

4D66ds 

Aij, Bij, Dij, Eij, Fij, Hij, Bsij, Hsijð Þ ¼
Xnl

k¼1

ðnkþ1

nk

1, n, n2, !, n!, !2, nW, W2
� �

�Pijdn

0

B
@

1

C
A (17) 
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The variation of potential energy dPW of the laminated composite thin-walled beams sub-
jected to transverse load �f can be expressed as:

dPW ¼ −
ðL

0

�f duP
2 dx3 (18) 

2.4. Ritz-type series solution

By noticing that uð0Þ3 ðx3Þ, uP
1ðx3Þ, uP

2ðx3Þ, c
ð0Þ
13 ðx3Þ, c

ð0Þ
23 ðx3Þ and /ðx3Þ are considered as variables to 

be determined, based on the Ritz method, these components can be approximated as follows:

uP
1 , uP

2 , /
� �

x3ð Þ ¼
Xm

j¼1
vj x3ð Þ uP

1j, uP
2j, /j

n o
(19a) 

u 0ð Þ
3 , c 0ð Þ

13 , c 0ð Þ
23

n o

x3ð Þ ¼
Xm

j¼1
vj,3 x3ð Þ u3j, nj, gj

� �
(19b) 

where u3j, uP
1j, uP

2j, nj, gj and /j are the six unknowns to be solved; vjðx3Þ are shape functions. 
These shape functions in Eq. (19) should be constructed to satisfy the specified essential boundary 
conditions (BCs). For the present article, the shape functions are proposed under hybrid func-
tions which are composed of admissible functions and exponential ones. It is observed that these 
functions satisfy various BCs such as simply-supported (S-S), clamped-free (C-F) and clamped- 
clamped (C-C).

� S-S: vðx3Þ ¼
x3
L 1 − x3

L
� �

e
−jx3

L

� C-F: vðx3Þ ¼ ð
x3
L Þ

2e
−jx3

L

� C-C: vðx3Þ ¼ ð
x3
L Þ

2
ð1 − x3

L Þ
2e

−jx3
L

Substituting Eq. (19) into Eq. (12) accounting for Eqs. (13) and (18) leads to the characteristic 
equations for bending analysis of laminated composite thin-walled beams as follows:

Kd ¼ F (20) 

where K, F are the stiffness matrix and force vector, respectively; d ¼ u3 uP
1 uP

2 n g U
� �T is the 

displacement vector. The components of the stiffness matrix K are expressed by:

K ¼

K11 K12 K13 K14 K15 K16

K12 K22 K23 K24 K25 K26

K13 K23 K33 K34 K35 K36

K14 K24 K34 K44 K45 K46

K15 K25 K35 K45 K55 K56

K16 K26 K36 K46 K56 K66

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

(21) 

where

K11
ij ¼

�L11S22
ij , K12

ij ¼
�L16S22

ij , K13
ij ¼

�L17S22
ij , K14

ij ¼
�L12S22

ij þ
�L14S12

ij 
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K15
ij ¼

�L13S22
ij þ

�L15S12
ij , K16

ij ¼
�L18S22

ij þ
�L19S12

ij , K22
ij ¼

�L66S22
ij , K23

ij ¼
�L67S22

ij 

K24
ij ¼

�L26S22
ij þ

�L46S12
ij , K25

ij ¼
�L36S22

ij þ
�L56S12

ij , K26
ij ¼

�L68S22
ij þ

�L69S12
ij 

K33
ij ¼

�L77S22
ij , K34

ij ¼
�L27S22

ij þ
�L47S12

ij , K35
ij ¼

�L37S22
ij þ

�L57S12
ij 

K36
ij ¼

�L78S22
ij þ

�L79S12
ij , K44

ij ¼
�L22S22

ij þ
�L24 S12

ij þ S21
ij

� �
þ �L44S11

ij 

K45
ij ¼

�L23S22
ij þ

�L25S12
ij þ

�L34S21
ij þ

�L45S11
ij , K46

ij ¼
�L28S22

ij þ
�L29S12

ij þ
�L48S21

ij þ
�L49S11

ij 

K55
ij ¼

�L33S22
ij þ

�L35 S12
ij þ S21

ij

� �
þ �L55S11

ij , K56
ij ¼

�L38S22
ij þ

�L39S12
ij þ

�L58S21
ij þ

�L59S11
ij 

K66
ij ¼

�L88S22
ij þ

�L89 S12
ij þ S21

ij

� �
þ �L99S11

ij 

Srs
ij ¼

ðL

0

@rui
@xr

3

@suj

@xs
3

dx3 (22) 

2.5. Polynomial chaos expansion

The responses for computational models with input uncertainties can be approximated by using a 
series of orthogonal functions as follows:

�r qð Þ ¼
X1

i¼0
biXi qð Þ (23) 

where q is a vector of d independent random variables mapped to physical random parameters; 
Xi are multivariate orthogonal basis functions; bi are the unknown coefficients. In order to deter-
mine these coefficients bi, two main following approaches could be considered: polynomial chaos 
expansion (PCE) and stochastic collocation. In the PCE approach, the coefficients are estimated 
by fitting a suitable set of basis functions using either a projection approach or least-square 
regression. Meanwhile, the stochastic collocation approach constructs interpolation polynomials 
for known coefficients at specific collocation points (Dalbey et al. 2020). In this manuscript, the 
PCE method is developed using multivariate Hermite polynomials as basis functions and standard 
normal variables q as inputs (Xiu and Karniadakis 2002).

In practice, the number of series terms in Eq. (23) is reduced to a carefully chosen finite num-
ber, so that the model responses are sufficiently accurate while using a minimal computing 
resource. Given Nrv random variables and polynomial order p, the number of polynomial terms 
N is the permutation of p and Nrv, which can be expressed as: N ¼ ðNrvþpÞ!

Nrv!p!
, Eq. (23) therefore 

becomes:

�r qð Þ ¼
XN−1

i¼0
biXi qð Þ þ e (24) 

where the basis functions Xi are multivariate Hermite polynomials and the associated coefficients 
bi need to be determined to minimize the residual term.
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2.5.1. Spectral projection approach
In the spectral projection approach, the residual term must be orthogonal to the projection of the 
response in the selected space. Therefore, the inner product of the residual and each basis func-
tion is zero. By taking the inner product of both sides of Eq. (24) with Xj and enforcing orthog-
onality:

h�r, Xji ¼
XN

i¼0
bihXi, Xji (25) 

Because Xj are mutually orthogonal, Eq. (25) becomes:

bi ¼
h�r, Xii

hXi, Xii
¼

1
hXi, Xii

ð

�rXiqQ qð Þdq (26) 

In order to solve for bi in Eq. (26), a number of sampling responses �r is required. The multidi-
mensional integral representing the inner product of beam responses �r and the basis function X 

are calculated using the Gaussian quadrature numerical method. The order p of the basis function 
and the number or quadrature points ns are chosen based on the stochastic model precision 
requirement. For a beam model with Nrv random input variables and pth order Hermite basis 
functions, the number of quadrature points are given as ns ¼ ðpþ 1ÞNrv : This also means ns sam-
ples of beam model need to be generated and solved. On the account of this ns formula, the com-
putational cost of this spectral projection approach does not scale up well with a high order basis 
function and large number of random input parameters.

2.5.2. Least-square regression approach
Let R ¼ q1, :::, qNs

� �
be a set of NsðNs > NÞ realizations of input random vector, and R ¼

�r1, :::,�rNsf g be corresponding output evaluations ð�ri ¼ �rðqiÞ, i ¼ 1, :::, NsÞ: The vector of residuals 
can be estimated from Eq. (24) in the compact form:

! ¼ R − bTX (27) 

where X is the matrix whose elements are given by Xij ¼ XjðqiÞ, i ¼ 1, :::, Ns; j ¼ 1, :::, N: The 
coefficients b are estimated by minimizing the L2− norm (least-square regression) of the residual 
followed as:

b ¼ Arg minkR − bTXk
2
2 (28) 

Solving Eq. (28), the coefficients are given by:

b ¼ XTXð Þ
−1

XTR (29) 

2.6. Sensitivity analysis

In addition to the mere stochastic output of the beam model, the variance-based quantification of 
each random input parameter’s influence on the model output is also discussed in this article. 
The sources of variance in the model output can be attributed to individual inputs, and thus, the 
importance of each input can be ranked accordingly. Among various sensitivity analysis methods, 
the Sobol indices (Sobol 1993) are the most widely used one. The Sobol’s first-order and total- 
order indices are given by Saltelli et al. (2010) as follows:

First − order Sobol index : Si ¼
VarqiðEq�ið�rjqiÞÞ

Varð�rÞ
qk6¼i (30a) 
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Total − order Sobol index : STi ¼ 1 −
Varq�iðEqið�rjq�iÞÞ

Varð�rÞ
(30b) 

Both kinds of these Sobol indices are normalized by Varð�rÞ but the difference in meaning is 
first-order Sobol indices measure only the impact of a sole particular input variable qi, while 
total-order Sobol indices also take into account the impact of interactions between qi and other 
variables qk6¼i: These indices can be computed using crude Monte Carlo simulation with the com-
putational cost of ðNrv þ 2Þ � Ns or using PCE with no additional cost. The Sobol’s first-order 
and total-order indices can be estimated as follows:

Si ¼
Di

Varð�rÞ
(31a) 

STi ¼
DTi

Varð�rÞ
(31b) 

where Di ¼
P

j2Ci
b2

j hXjðqiÞ, XjðqiÞij, Ci comprises all indices j such that the multivariate function 
Xj only contains the variable qi; DTi ¼

P
j2CTi

b2
j hXjðqÞ, XjðqÞi, CTi comprises all indices j such 

that the multivariate function Xj must contain variable qi; index j depends on how the list of 
multivariate functions is sorted.

2.7. Artificial neural network (ANN)

The Artificial Neural Network (ANN) in this article consists of layers of interconnected neurons 
organized into three main layers: the input layer, hidden layer(s), and the output layer. This 
architecture is shown in Figure 2. The input layer receives the raw input data whose each variable 
is assigned into a node. Each connection between an input node and a neuron in the hidden layer 
contributes to the weighted sum of inputs for that neuron. The initial weight values are random 
to avoid identical and redundant neurons in the network. The weighted sum is then passed 
through an activation function. Activation functions are preferably non-linear so that the neural 
network can learn complex models and their data relationship better. The weighted sum and acti-
vation function steps are repeated for the output layer, producing the final output of the neural 

Figure 2. Architecture and workflow of the ANN with 1 and 2 hidden layers.
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network. The difference between this predicted output and the true output obtained from the 
beam model are assessed using a loss function. Usually, further training iterations or epochs are 
needed to adjust the weight and minimize the loss function. In the present study, the mean 
square error (MSE) is used as the loss function. The root mean square error (RMSE) of the test 
set is also computed in this article for future references.

The network uses the computed loss to update its weights and bias through a process known 
as backpropagation. This involves calculating the gradient of the loss with respect to the weights 
and adjusting the weights in the opposite direction of the gradient to minimize the loss. This art-
icle applies the Levenberg–Marquardt backpropagation algorithm to train the ANN from the sto-
chastic thin-walled beam data. The predicted output data of ANN and PCE are compared in 
terms of computing performance and accuracy.

3. Numerical results

The numerical studies in this section can be separated into two parts. First, the present thin- 
walled I-beam model with fixed material properties are analyzed and verified with other previous 
works. In the second part, the chosen beam’s material properties are randomly generated to be 
the stochastic input variables for the Monte Carlo Simulation (MCS), Polynomial Chaos 
Expansion (PCE), and Artificial Neural Network (ANN) numerical analysis.

The beams studied throughout this section are laminated composite thin-walled I-beams com-
posed of 16 angle plies with uniform thickness. Unless stated otherwise, these are made from 
glass-epoxy material whose mechanical properties are as follows: E1 ¼ 53:78GPa, E2 ¼ E3 ¼

17:93GPa, G12 ¼ G13 ¼ 8:96GPa, G23 ¼ 3:45GPa, �12 ¼ �13 ¼ 0:25: These material properties 
along with the applied uniformly distributed load (UDL) q are the six stochastic input parameters 
that are randomized based on the lognormal distribution and the coefficient of variation CoV ¼
0:1: This CoV is the ratio between the sample’s standard deviation and mean. Referring to Figure 
3, the dimensions of the top flange, bottom flange and the web are h1 ¼ h2 ¼ h3 ¼ 0:00208m and 
b1 ¼ b2 ¼ b3 ¼ 0:05m: The beam’s length-to-depth ratio varies between the forthcoming exam-
ples and can be from L=b3 ¼ 5 to L=b3 ¼ 50:

3.1. Deterministic beam model

Example 1: Convergence study 
This example examines the convergence of the current solution for analyzing the displacement 

of laminated composite I-beams under different boundary conditions, namely, simply supported 
(S-S), clamped-free (C-F), and clamped-clamped (C-C). The angle-ply stacking sequence for the 
I-beams’ flanges and web is ½45o= − 45o�4s, and these 16 laminate plies have a uniform thickness. 
The beam is under a UDL q ¼ 1kN=m: The results presented in Table 1 reveal that the proposed 
solutions converge with series number m ¼ 10 for S-S and C-F boundary conditions and m ¼ 8 
for C-C boundary condition. These series numbers will be employed in subsequent analyses 
accordingly.  

Example 2: Verification and parametric study 
For the purpose of verification, this section compare the predictions made by the present thin- 

walled beam model with the past experimental test (Colombi and Poggi 2006) and other authors’ 
results (Lee and Lee 2004; Lee 2005). The following tables and figures describe the static behav-
iors of isotropic steel beam and composite I-beams with different symmetrical lay-up ½ho= − ho�4s 
in both flanges and the web. 
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Figure 4 manifests the accuracy of the present thin-walled beam model in the matching of 
mid-span deflections with the test results conducted by Colombi and Poggi (2006). According to 
Colombi and Poggi, the standard hot rolled carbon steel profiles HEA 140 of quality Fe E 275 
were used for the experiments. There is no definite specifications of the carbon steel used and its 
material properties can vary based on several factors such as heat treatment, manufacturing pro-
cess and steel alloy composition. Therefore, the predictions computed in Figure 4 are for the iso-
tropic steel beams with the following assumed properties: E ¼ 190GPa, G ¼ 73GPa and v ¼ 0:3:

Table 2 presents the simply supported laminated composite thin-walled beam’s mid-span 
deflection under a UDL q ¼ 1kN=m: It is evident that the current solutions for FTWT align 
exceptionally with the findings of previous studies and the ABAQUS software (Lee 2005; Lee and 
Lee 2004). Moreover, Table 3 further confirms the accuracy of the present deterministic beam 
model under C-C and C-F BCs by demonstrating that the present FTWT results are highly 

Figure 3. Geometry of laminated composite thin-walled I-beams.

Table 1. Convergence of deterministic mid-span displacement for laminated composite thin-walled I-beam with different 
boundary conditions.

m

BC 2 4 6 8 10 12

S-S 13.000 13.398 13.484 13.478 13.479 13.479
C-C 2.744 2.735 2.738 2.740 2.740 2.739
C-F 44.312 45.679 45.806 45.799 45.802 45.802
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consistent with earlier study by Nguyen and Nguyen (2020). It can also be seen that the beam 
deflections increase as the ply angles increase, and the deflection of the ½0o=90o�4s beam is similar 
to that of the ½30o= − 30o�4s: However, due to the additional shear effect, the results for STWT in 
both Tables 2 and 3 are slightly higher than FTWT and CTWT. The discrepancies due to this 
shear effect particularly grow wider as the beam becomes thicker. To demonstrate this remark, 
Table 4 compares the FTWT and the STWT for the laminated composite thin-walled beams with 
L=b3 ¼ 5 and L=b3 ¼ 10 under all boundary conditions. The beam’s mid-span displacements 

Figure 4. Verification with experimental static test of the HEA 140 carbon steel beam (E ¼ 190GPa, G ¼ 73GPa, v ¼ 0:3).

Table 2. Verification of deterministic mid-span displacements for laminated composite thin-walled I-beam under a uniformly 
distributed load (cm, L=b3 ¼ 50, S-S BC).

Lay-ups

References

CTWT (Lee and  
Lee 2004)

FTWT  
(Lee 2005)

ABAQUS (Lee and  
Lee 2004)

Present  
(FTWT)

Present  
(STWT)

0½ �16 6.233 6.259 6.340 6.280 6.327
15= − 15½ �4s 6.899 6.923 6.989 6.940 6.981
30= − 30½ �4s 9.290 9.314 9.360 9.323 9.356
45= − 45½ �4s 13.421 13.446 13.479 13.450 13.480
60= − 60½ �4s 16.962 16.992 17.023 16.990 17.019
75= − 75½ �4s 18.411 18.449 18.490 18.440 18.468
0=90½ �4s 9.299 9.381 9.400 9.383 9.416

Table 3. Verification of deterministic mid-span displacements for laminated composite thin-walled I-beam under a uniformly 
distributed load (cm, L=b3 ¼ 50, C-F and C-C BCs).

C-F C-C

Lay-ups
Present  
(FTWT)

Present  
(STWT)

Nguyen and  
Nguyen (2020)

Present  
(FTWT)

Present  
(STWT)

Nguyen and  
Nguyen (2020)

0½ �16 21.332 21.472 21.274 1.292 1.344 1.274
15= − 15½ �4s 23.577 23.699 23.535 1.420 1.459 1.406
30= − 30½ �4s 31.685 31.783 31.666 1.890 1.922 1.884
45= − 45½ �4s 45.718 45.805 45.718 2.712 2.741 2.713
60= − 60½ �4s 57.755 57.839 57.777 3.420 3.447 3.427
75= − 75½ �4s 62.682 62.765 62.728 3.709 3.737 3.724
0=90½ �4s 31.888 31.986 31.889 1.904 1.935 1.904
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computed using STWT are considerably higher than when using FTWT. Furthermore, the 
higher-order shear effect on the laminated composite thin-walled beam’s mid-span displacement 
is computed for many cases of the beam’s lay-up and length-to-height ratios L=b3: This so-called 
higher-order shear effect is defined as the percentage difference between the beam responses 
yielded from the STWT and FTWT. It is observed from Figure 5 that the shear effect is the high-
est at L=b3 ¼ 5 and drastically drops as the L=b3 increases to 10 and subsequently, 15. After the 
point where L=b3 ¼ 15, the plots for all cases of beam lay-ups reach a plateau with the increasing 
value of the abscissa. Apart from the aforementioned pattern, it is clear that the shear effect on 
the beam under C-C boundary condition is roughly more than double the shear effect on the 
cantilever beam. These findings are beneficial in accurately predicting the laminated composite 
thick thin-walled beam’s behaviors under extremely high loads. These results indicate that the 
thick and short beams in bending are more likely to fail due to the transverse shear stress. 

3.2. Stochastic analysis 

The procedures for the stochastic analysis is presented in the Figure 6 flowchart. While Section 
3.1 emphasizes the accuracy of the sinusoidal thin-walled beam model, this section aims to maxi-
mize the efficiency of the computational model and thus, reduce the computing time. On average, 
it takes authors’ computer 100 s to run a case of thin-walled beam analysis. Most of this comput-
ing time is attributed to the evaluation of many integrals for the material coefficients and stiffness 
matrix. In order to make the MCS with 106 samples feasible, all these integrals are pre-computed 
and then later assembled every time a set of stochastic inputs is generated. The computing time 
displayed in Tables 5–7 are measured from the moment that the aforementioned integrals have 
been pre-computed to when all the desired outputs have been found. Apparently, the time meas-
ured here are subjected to the researchers’ computer system but it should provide a good refer-
ence for comparing the methods’ efficiency. The applied UDL q in this section are q ¼ 10kN=m 
for C-C boundary condition and q ¼ 1kN=m for S-S and C-F boundary conditions. 

Table 4. Comparison of the FTWT and the STWT when computing the deterministic mid-span displacements for laminated 
composite thin-walled I-beam under a uniformly distributed load (mm, L=b3 ¼ 5 and 10, q ¼ 100kN=m).

S-S C-C CF

Lay-ups
Present  
(FTWT)

Present  
(STWT)

Present  
(FTWT)

Present  
(STWT)

Present  
(FTWT)

Present  
(STWT)

L=b3 ¼ 5
0½ �16 1.097 1.570 0.581 1.037 3.524 4.925
15= − 15½ �4s 1.102 1.513 0.535 0.932 3.567 4.784
30= − 30½ �4s 1.258 1.587 0.503 0.820 4.134 5.113
45= − 45½ �4s 1.636 1.929 0.551 0.834 5.434 6.305
60= − 60½ �4s 1.980 2.264 0.613 0.887 6.610 7.453
75= − 75½ �4s 2.122 2.403 0.639 0.910 7.093 7.924
0=90½ �4s 1.286 1.615 0.526 0.843 4.221 5.195

L=b3 ¼ 10
0½ �16 11.867 13.761 3.822 5.647 39.525 45.138
15= − 15½ �4s 12.685 14.331 3.796 5.384 42.414 47.299
30= − 30½ �4s 16.180 17.495 4.242 5.510 54.442 58.342
45= − 45½ �4s 22.647 23.821 5.427 6.559 76.491 79.974
60= − 60½ �4s 28.276 29.412 6.524 7.619 95.643 99.013
75= − 75½ �4s 30.581 31.704 6.975 8.057 103.489 106.818
0=90½ �4s 16.363 17.680 4.348 5.617 55.025 58.926
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Example 3: Statistics of the laminated composite thin-walled beam outputs 
The accuracy and efficiency of the Polynomial Chaos Expansion (PCE) surrogate model are 

verified through Monte Carlo Simulation (MCS) with Ns ¼ 100, 000 samples (S-S and CF bound-
ary conditions) and Ns ¼ 1, 000, 000 samples (C-C boundary condition). It would have taken days 
to compute the 100,000 outputs for a case of beam using MCS, but in this article, the time-con-
suming integrals of material coefficients and stiffness matrix are pre-computed. This leads to a 
great reduction in computing time, as shown in Tables 5–7 but this workaround might not be 
possible for other stochastic mechanical models. For the PCE method, the third-order Hermite 
polynomials with six variables are employed. To construct the PCE model, 252 and 4,096 output 
samples from the beam solver are needed for the Least-square regression (Shaker et al. 2008) 
approach and Spectral projection (SP) approaches, respectively. Tables 5–7 compare the four first 
statistical moments (mean, standard deviation, skewness, and kurtosis) of the mid-span and end- 
span displacements obtained from the MCS and PCE models. 

Figure 5. High-order shear effect (%) on the mid-span displacement of laminated composite glass-epoxy beam with various 
span-to-height (L=b3) ratios and lay-ups (C-C and C-F BCs).
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The mean and standard deviation of the fundamental frequencies from both the MCS and 
PCE models show excellent agreements in all cases. Most of the skewness and kurtosis values also 
closely match, with only a few cases showing slight differences in these higher-order statistical 
moments. Both the LR and SP approaches using the PCE method prove to be far more efficient 
than the MCS by reducing the computing time significantly while possessing closely similar key 
statistical metrics. 

Figure 6. Flowchart for the stochastic static analysis of thin-walled I-beams using polynomial Chaos expansion and Monte Carlo 
simulation.
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To better visualize the output data, Figs. 7 and 8 show the probability density function (PDF) 
and cumulative distribution function (CDF) plots produced from the MCS and PCE methods for 
the quantity of interest (QoI). The PDF and CDF graphs for outputs from MCS and PCE are 
coincident in most beam displacement values. The only differences are at the peaks of the graphs 
for PDF and below the part where PðX � xÞ < 10−3 for CDF. This is due to the lack of samples 
at those certain points in the output data distribution. 

Zooming in the sample output data, Figs. 9–11 show the percentage difference between the 
MCS outputs and PCE-LR or SP outputs simulation-by-simulation. For every simulation, the ran-
dom input parameters for both MCS and PCE methods are identical. For the S-S and C-F 

Table 5. Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement (mm) for laminated composite 
thin-walled beams with different lay-ups and S-S boundary condition.

Lay-ups Statistical moments

L=b3 ¼ 20 L=b3 ¼ 50

LR SP MC LR SP MC

0=90½ �4s Mean 1.76 1.76 1.77 63.87 63.94 63.93
SD 0.24 0.24 0.24 9.00 8.99 9.04
Kurtosis 3.33 3.32 3.31 3.29 3.32 3.34
Skewness 0.42 0.42 0.42 0.42 0.42 0.43
Computing time (s) 0.58 3.95 73.72 0.77 3.10 81.27

15= − 15½ �4s Mean 1.91 1.91 1.91 70.41 70.41 70.41
SD 0.26 0.25 0.26 9.54 9.56 9.55
Kurtosis 3.30 3.24 3.28 3.31 3.29 3.27
Skewness 0.40 0.39 0.40 0.41 0.41 0.40
Computing time (s) 0.46 3.60 89.91 0.46 3.40 96.35

30= − 30½ �4s Mean 2.50 2.50 2.50 94.20 94.28 94.31
SD 0.31 0.31 0.31 11.62 11.60 11.66
Kurtosis 3.28 3.28 3.25 3.23 3.21 3.22
Skewness 0.38 0.38 0.38 0.37 0.36 0.36
Computing time (s) 0.36 3.20 88.50 0.41 3.14 98.31

45= − 45½ �4s Mean 3.55 3.56 3.56 136.05 135.92 136.01
SD 0.44 0.44 0.44 16.96 16.84 17.00
Kurtosis 3.29 3.23 3.31 3.35 3.26 3.29
Skewness 0.39 0.37 0.39 0.42 0.38 0.39
Computing time (s) 0.39 2.90 92.68 0.38 3.19 98.40

Table 6. Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement (mm) for laminated composite 
beams with different lay-ups and C-F boundary condition.

Lay-ups Statistical moments

L=b3 ¼ 10 L=b3 ¼ 20

LR SP MC LR SP MC

0=90½ �4s Mean 1.12 1.12 1.12 16.07 16.08 16.08
SD 0.15 0.15 0.15 2.24 2.24 2.23
Kurtosis 3.29 3.32 3.31 33.14 3.34 3.36
Skewness 0.40 0.42 0.41 4.19 0.43 0.43
Computing time (s) 0.79 3.84 79.19 1.10 3.30 79.62

15= − 15½ �4s Mean 1.20 1.20 1.20 17.62 17.63 17.62
SD 0.16 0.16 0.16 2.37 2.38 2.36
Kurtosis 3.31 3.28 3.28 32.70 3.27 3.29
Skewness 0.41 0.40 0.39 3.99 0.40 0.40
Computing time (s) 0.50 3.01 88.34 0.90 3.15 87.62

30= − 30½ �4s Mean 1.54 1.54 1.54 23.42 23.41 23.39
SD 0.19 0.19 0.19 2.88 2.89 2.88
Kurtosis 3.27 3.21 3.26 32.38 3.26 3.22
Skewness 0.37 0.37 0.38 3.68 0.39 0.38
Computing time (s) 0.43 2.80 89.26 0.80 3.02 103.35

45= − 45½ �4s Mean 2.17 2.17 2.17 33.63 33.65 33.64
SD 0.27 0.27 0.27 4.17 4.18 4.16
Kurtosis 3.26 3.24 3.28 32.61 3.26 3.30
Skewness 0.37 0.37 0.38 3.82 0.38 0.39
Computing time (s) 0.48 2.78 88.30 0.92 3.38 100.93
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Table 7. Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement (mm) for laminated composite 
beams with different lay-ups and C-C boundary condition.

Lay-ups Statistical moments

L=b3 ¼ 20 L=b3 ¼ 50

LR SP MC LR SP MC

0=90½ �4s Mean 4.69 4.69 4.69 135.07 135.09 135.09
SD 0.58 0.58 0.58 18.52 18.51 18.53
Kurtosis 3.24 3.26 3.25 3.31 3.32 3.33
Skewness 0.39 0.38 0.38 0.42 0.42 0.42
Computing time (s) 0.71 3.59 521.79 1.04 4.00 521.69

15= − 15½ �4s Mean 4.83 4.84 4.84 147.12 147.11 147.13
SD 0.60 0.60 0.61 19.64 19.68 19.66
Kurtosis 3.22 3.26 3.27 3.29 3.28 3.29
Skewness 0.37 0.38 0.38 0.41 0.40 0.41
Computing time (s) 0.48 3.57 574.66 0.94 3.93 590.87

30= − 30½ �4s Mean 5.81 5.81 5.81 193.60 193.49 193.50
SD 0.70 0.70 0.70 23.76 23.73 23.78
Kurtosis 3.21 3.25 3.22 3.18 3.24 3.24
Skewness 0.37 0.36 0.36 0.35 0.37 0.37
Computing time (s) 0.31 3.08 582.50 0.88 3.78 590.42

45= − 45½ �4s Mean 7.83 7.84 7.84 276.39 276.40 276.35
SD 0.95 0.96 0.96 34.30 34.26 34.29
Kurtosis 3.40 3.24 3.26 3.27 3.27 3.26
Skewness 0.40 0.37 0.38 0.38 0.39 0.38
Computing time (s) 0.33 3.25 582.67 0.91 3.15 590.90

Figure 7. Probability density function (PDF) of the MCS and PCE methods for the laminated composite thin-walled glass-epoxy 
beams’ displacement (mm) with S-S, C-F (Ns ¼ 105) boundary conditions (Ns ¼ 106).
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boundary conditions with Ns ¼ 100, 000, the error percentages are mostly from 0% to −0.2% 
with some outliers from þ1.5% to −1.0%. For the C-C boundary conditions with a bigger sample 

Figure 8. Cumulative distribution function (CDF) of the MCS and PCE methods for the laminated composite glass-epoxy thin- 
walled beam displacement (mm) with S-S, C-F (Ns ¼ 105) boundary conditions (Ns ¼ 106).

Figure 9. Percentage error in each simulation between the PCE surrogate responses and the deterministic glass-epoxy beam 
model responses computed from the same input parameters (Ns ¼ 105, ½45o= − 45o�4s , S-S boundary condition, L=b3 ¼ 20).
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Figure 10. Percentage error in each simulation between the PCE surrogate responses and the deterministic glass-epoxy beam 
model responses computed from the same input parameters (Ns ¼ 105, ½45o= − 45o�4s , C-F boundary condition, L=b3 ¼ 20).

Figure 11. Percentage error in each simulation between the PCE surrogate responses and the deterministic beam model 
responses computed from the same input parameters (Ns ¼ 106, ½45o= − 45o�4s , C-C boundary condition, L=b3 ¼ 20).

Figure 12. First order Sobol indices for six random input parameters of different thin-walled glass-epoxy beam lay-ups 
½ho= − ho�4s (C-F boundary condition, L=b3 ¼ 20).
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size Ns ¼ 106, the percentage error points tend to lie on the negative side, with most being less 
than −0.2%. 

It is not feasible for the structural designer to guarantee the absolute safety of the beam due to 
countless sources of uncertainties. Design calculations are based on the characteristic load and charac-
teristic strength which have a reasonably low probability of nonconforming. For instance, the charac-
teristic yield stress of steel is typically defined as the yield stress threshold below which no more than 
5% of the test values are anticipated to fall. It is resource-intensive to conduct the beam’s mechanical 
testing and produce the probability distribution of the load applied and the beam’s strength. 
Therefore, the PCE method presented in this article helps save time and cost by significantly reducing 
the number of beam test samples, but still give a comparable results to the crude MCS testing.  

Example 4: Sensitivity analysis 
The study also examines the influence of each random input on the variation of the model 

responses. The first-order Sobol index is used to measure the parameters’ influence on the vari-
ance of the model output without considering the effect of parameters’ interaction. Since the 
Sobol indices are not affected by the boundary conditions, only Sobol indices for cantilever beams 
are shown. Figure 12 compares the first-order Sobol indices for static analysis using the MCS and 
PCE methods across all beam lay-ups. It is evident that the Sobol indices computed from the 
polynomial expansion coefficients closely match those calculated from the MCS. The sensitivity 
study reveals that the PCE method is significantly more efficient than the MCS. While the PCE 
method can compute the Sobol indices with no extra computing cost, the MCS demands at least 
ðNrv þ 2Þ � Ns simulations based on several efficient algorithm proposed by Saltelli et al. (2010) 
and Ns

2 simulations based on the raw mathematical definition of Sobol indices. Figure 13

Figure 13. Total order Sobol indices for six random input parameters of different thin-walled beam lay-ups ½ho= − ho�4s (C-F 
boundary condition, L=b3 ¼ 20).

Table 8. Comparison between the ANN, PCE and MCS for NS ¼ 100, 000 samples of laminated composite thin-walled beams 
with L=b3 ¼ 20, ½45o

= � 45o
�4S lay-ups and C-F boundary condition.

Method Attribute
Training  

data (Ntrain) Mean SD Kurtosis Skewness Time (s) MSE RMSE

ANN 1 hidden layer, 9 neurons 252 33.6121 4.1693 3.2833 0.3902 26.5 1.05E-5 3.24E-3
1 hidden layer, 8 neurons 4096 33.6043 4.1668 3.2591 0.3818 25.2 8.76E-6 2.96E-3
2 hidden layers, 7 neurons each 252 33.6113 4.1700 3.2666 0.3848 40.1 5.62E-5 7.49E-3
2 hidden layers, 6 neurons each 4096 33.6139 4.1728 3.2711 0.3850 32.83 5.31E-5 7.29E-3

PCE Least-square regression 252 33.6358 4.1855 3.2831 0.3888 1.8 7.99E-06 2.80E-03
Spectral projection (SP) 4096 33.6359 4.1861 3.2870 0.3899 2.6 4.32E-06 2.10E-03

MCS Ns¼100,000 – 33.6449 4.1710 3.2858 0.3907 100.9 – –
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presents the total Sobol indices bar graphs with the same settings and beam configurations as 
Figure 12. It is observed that the differences between the first- and total Sobol sensitivity indices 
are small for all variables. 

Figure 14. Quantile-quantile plot for comparing the 100,000 test outputs of MCS and ANN with different hidden layers’ size 
(½45o= − 45o�4s , C-F boundary condition, L=b3 ¼ 20).

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 25



Comparing the influences of the input variables, G23 and v12 play an insignificant role in the 
beam static responses with the Sobol indices equal to zero. The influence of E1, E2 and G12 
change with the beam fiber-angle lay-ups and this information can be useful in the composite 
structure design. It is apparent that the variation in the applied UDL contributes the most to the 
beam’s displacement, but the fluctuation of the Sobol indices for q as the fiber angle increases is 
interesting to see. These findings allow the structural designer to determine the most influential 
material properties on the static behavior of various laminated composite thin-walled beams’ con-
figurations. Thus, fewer mechanical testing is required to ensure the beams’ quality. 

3.3. Artificial neural network (ANN) 

Example 5: Compare ANN with PCE and MCS 
This example makes a comparison between the ANN, PCE, and MCS’s accuracy and learning 

capability. The MCS with NS ¼ 100, 000 samples are the input training data and test data for the 
predictions of PCE and ANN. Table 8 presents the statistical moments, computing time, and the 
mean square error of the three methods with various attributes. The ANN is computed by setting 
the number of epochs equal to 300. The hyperparameters, such as the number of hidden layers 
and the number of neurons, are calibrated so that the MSE and RMSE are close to the results of 
PCE. The ANN with 1 hidden layer and 8 neurons is sufficient compared to PCE. Even though 
the mean, standard deviation (SD), kurtosis and skewness of the output distribution for ANN 
and PCE are almost the same as the MCS, the ANN method takes much more time than the 
PCE. The PCE’s advantage over ANN has been shown in Example 4, where Sobol’s sensitivity 
indices can be computed from the coefficients for free of computing cost. While the ANN can 
produce much faster predictions than the MCS, it does require ðNrv þ 2Þ � Ns more output data 
for the Sobol indices. Nonetheless, the PCE method suffers when the beam model contains a 
higher number of random input variables, which translates to a higher dimensional PCE model. 
The ANN otherwise can be conveniently tuned by changing many hyperparameters. Figure 14
displays the quantile-quantile plot between the outputs of MCS and ANN with different layer 
sizes. The output points in Figure 14a, b, and d create a thick line around the ANN¼MCS line, 
which means the errors are high, especially at the upper part of the tenth deciles. The accuracy is 
observably improved in Figure 14c, e, and f when the number of neurons increases. 

4. Conclusions 

This article presented a stochastic model for analyzing the static behaviors of laminated compos-
ite thin-walled beams with an I-section based on a novel sinusoidal higher-order shear deform-
ation thin-walled beam theory. The material properties of the laminated composite material are 
assumed to follow lognormal distributions, and their uncertainty is fed into a beam solver for the 
computation of sample stochastic outputs. The surrogate models based on Polynomial Chaos 
Expansion (PCE) and Artificial Neural Network (ANN) are developed to evaluate the stochastic 
responses efficiently. The benchmarks for accuracy and efficiency are the stochastic responses 
obtained from crude Monte Carlo simulation. The study also includes a sensitivity analysis to 
compare the importance of uncertainty in material properties to the stochastic responses. In con-
clusion, the present work’s findings can be distilled into the following points:

� The proposed STWT is found to be efficient and accurate in predicting flexural behaviors of 
laminated composite thin-walled beams with open sections. The laminated composite thin- 
walled I-beam’s displacements are higher than those from the CTWT and FTWT theories.
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� The higher-order shear deformation effect on the displacement of thin-walled laminated com-
posite beams is significant for thick beams ðL=b3 < 15Þ:

� The PCE method has been shown to be able to preserve the stochastic output distribution 
with a considerably fewer required number of simulations, thus with much lower computing 
expense in which the LR and SP approaches only required 252 and 4,096 samples, respectively, 
in comparison with 100,000 samples from the MCS.

� The PCE method requires no extra computing cost to determine the Sobol indices, while the 
MCS, in the best case, demands more sample runs proportional to the number of random 
input parameters Nrv and the chosen base number of samples Ns (ðNrv þ 2Þ � Ns).

� The sensitivity analysis helps detect and eliminate insignificant variables, which in turn speeds 
up the stochastic model even more. The numerical results showed that the applied external 
load is the most critical variable affecting the flexural behaviors of the laminated composite 
thin-walled beams.

� Both supervised-learning ANN and PCE can accurately predict a high number of composite I- 
beams’ outputs.

� The ANN costs more computational time than the PCE with a low number of random input 
variables.
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A B S T R A C T   

This paper examines the static and vibration analysis of functionally graded sandwich thin-walled microbeams 
using the modified couple stress theory. The material properties in both web and flanges vary continuously 
through their thickness. The equations of motion are derived and solved by the Ritz method. Verification studies 
are performed on the bending and vibration responses of FG sandwich thin-walled beams. The effects of material 
distribution, span-to-height’s ratio, and material length scale parameters on the responses of microbeams for 
various boundary conditions are investigated. The results of the analysis indicate that the deflections and natural 
frequencies of functionally graded sandwich thin-walled microbeams are greatly influenced by the variations of 
parameters mentioned earlier. The microbeams with the size effect are predicted to be much stiffer than their 
macro counterparts. Some benchmark results can be used as a reference for future studies.   

Introduction 

Owing to the high weight-to-stiffness ratio and performance of 
electro-thermo-mechanical properties, laminated composite and func-
tionally graded (FG) structures have been employed in many engineer-
ing fields such as aerospace, automotive engineering, construction and 
many others. Inthe aerospace sector where the materials must undergo 
intense mechanical and thermal conditions, FG materials have proven to 
be applicable in numerous components. To name a few, some examples 
are the rocket nozzle, the spacecraft truss structure, the heat exchange 
panels, the reflector, the rocket engine and various micro-electro- 
mechanical systems [1–3]. The recent developments in the FG mate-
rials promise some important applications for thin-walled beams. In 
general, the behaviours of thin-walled beams can be predicted by clas-
sical thin-walled beam theory (CTWBT), first-order thin-walled beam 
theory (FTWBT) and higher-order thin-walled beam theory (HTWBT). 
Many papers related to thin-walled composite beams have been studied 
with different analytical and numerical methods as well as beam models; 
only some typical references are mentioned here [4–10]. The CTWBT 
initiated by Vlasov [11] was applied for FG thin-walled beams [12–15]. 
This theory neglects the shear effects and therefore, it underestimates 
the deflection and overestimates the frequencies/buckling loads. The 

FTWBT accounts for the shear effects and thus predicts more accurately 
than the CTWBT. Based on the FTWBT, a number of papers have been 
dedicated to predicting the structural behaviours of FG thin-walled 
beams including the sandwich ones, some of which are cited here 
[16–24]. Kvaternik et al. [25] compared the thin-walled beam models 
developed from the Carrera Unified Formulation and Vlasov theory. Phi 
et al. [26] investigated the free vibration of FG thin-walled beams with 
open sections where the material properties vary along the contour di-
rection. Librescu et al. [27] modeled the spinning thin-walled beam with 
a non-uniform cross-section. Fazelzadeh and Hosseini [28] investigated 
the aerothermoelastic behaviour of rotating FG thin-walled blades. 
Farsadi [29] optimized the static and dynamic responses of variable 
thickness rotating blades made of FG materials with porosities. The 
aforementioned literature review shows that although considerable 
number of studies have been carried out on static and dynamic responses 
of FG thin-walled beams, there is a limited number of works on their 
size-dependent behaviours. In order to take the size effects into account, 
advanced theories with material length scale parameters (MLSPs), in 
which the modified coupled stress theory (MCT) is the most popular one, 
have been proposed. The MCT initiated by Yang et al. [30] accounts for 
the size effects with only one MLSP. Thanks to its simplicity, many 
size-dependent FG microbeam and microplate models based on the MCT 
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have been developed [24,31–39]. Besides MCT, the modified strain 
gradient theory (MSGT) is also applied for microbeams [40–43]. 
Moreover, many experimental studies have also been conducted for 
different microbeam set-ups and provided a basis of comparison for 
theoretical studies [44–50]. Although many papers have been devoted 
to the analysis of FG microplates/microbeams, there are very few studies 
for FG thin-walled nanobeams. Soltani et al. [51–53] used CTWBT and 
non-local elasticity theory of Eringen to study the stability of FG nano 
I-beams. However, there is no other investigation for FG thin-walled 
microbeams, this interesting and complicated topic needs to be stud-
ied further. 

This paper employs the FTWBT and MCT to investigate the static and 
vibration analysis of the FG sandwich thin-walled microbeams. The 
governing equations of motion are derived and then a hybrid series 
solution is developed. Verification studies are performed on the bending 
and vibration responses of FG sandwich thin-walled beams. A para-
metric study is carried out to depict the effects of material distribution 
and MLSP on their deflections and natural frequencies. 

Theoretical formulation 

Considering a FG sandwich thin-walled microbeam with length L and 
open sections, three sets of coordinate systems are examined in Figs. 1 
and 2. The following assumptions are made: the strains are small, the 
section contour does not deform in its own plane, the shear and warping 
strains are uniform and local buckling and pre-buckling deformations 
are negligible. 

Modified couple stress theory (MCT) 

The total energy of system is composed of the strain energy ΠS, po-
tential energy ΠW and kinetic energy ΠK as follows: 

Π = ΠS + ΠW − ΠK (1) 

Based on the MCT, the strain energy of the system ΠS is given by: 

ΠU =

∫

V

(
σijεij +mijχij

)
dV (2)  

where εij, χij are strains and symmetric rotation gradients; σij is Cauchy 

stress; mij is the high-order stress corresponding with strain gradients χij. 
The components of strain εij and strain gradients χij are expressed in 
terms of the displacements ui as follows: 

εij =
1
2
(
ui,j + uj,i

)
(3a)  

χij =
1
4
(
un,mjeimn + un,miejmn

)
(3b)  

where eimn is the permutation symbol; the comma in the subscript in-
dicates the differentiation with respect to the variable that follows. 

The stress components σij and mij are computed from constitutive 
equations as follows: 

σij = λεkkδij + 2μεij (4a)  

mij = 2μl2χij (4b)  

where λ, μ are Lamé constants; δij is the Knonecker delta; lis the MLSP 

Fig. 1. Thin-walled coordinate systems.  

Fig. 2. Geometry of FG thin-walled beams.  
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which can be determined by experimental works [54]. 
The potential energy of the system ΠW subjected to a transverse load 

q can be expressed as: 

ΠW = −

∫L

0

quP
2 dx3 (5)  

where uP
2 is the transverse displacement at P. 

The kinetic energy of the system ΠK is expressed by: 

ΠK =
1
2

∫

V

ρ(x3)
(
u̇2

1 + u̇2
2 + u̇2

3

)
dV (6)  

where ρ(x3) is the mass density; u̇1 = u1,t, u̇2 = u2,t , u̇3 = u3,t are the 
velocities in the x1 − , x2− and x3 − directions, respectively. 

Kinematics 

The vertical and horizontal displacements u1(n, s, x3) and u2(n, s, x3)

at any points in the contour coordinate system under a small rotation ϕ 
about the pole axis can be expressed in terms of those at the pole uP

1(x3)

and uP
2(x3) in the x1− and x2 − directions, respectively, as follows: 

u1(n, s, x3) = uP
1 (x3) −

(
X2 − xP

2

)
ϕ(x3) (7a)  

u2(n, s, x3) = uP
2 (x3) +

(
X1 − xP

1

)
ϕ(x3) (7b)  

where X1 = x1 + nx2,s and X2 = x2 − nx1,s. The displacements in the 
contour lines un(n, s, x3) and us(n, s, x3) can be derived from those in Eq. 
(7) as follows: 

un(n, s, x3) = uP
1 (x3)X2,s − uP

2 (x3)X1,s − Rs(n, x3)ϕ(x3) (8a)  

us(n, s, x3) = uP
1 (x3)X1,s + uP

2 (x3)X2,s + Rn(n, x3)ϕ(x3) (8b)  

where Rs(n, s) = rs(s) and Rn(n, s) = rn(s) + n in which rs(s)and rn(s) are 
the lengths of the perpendiculars from P to the tangent and normal of the 
profile line center. 

The shear strains (γs3, γn3) can be expressed via the transverse shear 
strains (γ13, γ23) and a direct shear strain caused by the change rate of 
twist angle ϕ,3 [55] as follows: 

γs3(n, s, x3) = γ13(n, x3)X1,s + γ23(n, x3)X2,s + 2nϕ,3(x3) = us,3 + u3,s (9a)  

γn3(n, s, x3) = γ13(n, x3)X2,s − γ23(n, x3)X1,s = un,3 + u3,n (9b) 

It is assumed that γ13and γ23 are constant in the wall thickness, i.e. 
γ13(n, x3) = γ(0)13 (x3), γ23(n, x3) = γ(0)23 (x3) where γ(0)13 , γ

(0)
23 are mid-surface 

shear strains. 
The axial displacement can be found by substituting Eq. (8) into Eq. 

(9) and then integrating with respect to s and n: 

u3(n, s, x3) = u(0)
3 (x3) + θ2(x3)X1(n, s) + θ1(x3)X2(n, s) − ϕ,3(x3)Fω(n, s)

(10)  

where θ1(x3) = γ(0)23 − uP
2,3 and θ2(x3) = γ(0)13 − uP

1,3 are the rotations with 
respect to the x1− and x2 − axes; Fω = Fω − nrs where Fω(s) is a warping 
function defined by: 

Fω(s) =
∫s

s0

rn(s)ds (11) 

The kinematics of FTWBT at any point of the section can be expressed 
by: 

u1(n, s, x3) = uP
1 (x3) −

(
x2 − nx1,s − xP

2

)
ϕ(x3) (12a)  

u2(n, s, x3) = uP
2 (x3) +

(
x1 + nx2,s − xP

1

)
ϕ(x3) (12b)  

u3(n, s, x3) = u(0)
3 (x3) + θ2(x3)

(
x1 + nx2,s

)
+ θ1(x3)

(
x2 − nx1,s

)
− ϕ,3(x3)Fω

(12c) 

It should be noted that the present FTWBT only depends on six 
variables. By settingγ(0)13 = 0, γ(0)23 = 0, the CTWBT can be recovered. 

Strains 

Using the displacements in Eq. (12), the non-zero linear strains are 
given by: 

ε33(n, s, x3) = ε(0)33 + nε(1)33 (13a)  

γs3(n, s, x3) = γ(0)s3 + nγ(1)s3 (13b)  

γn3(n, s, x3) = γ(0)n3 (13c)  

where 

ε(0)33 (s, x3) = u(0)
3,3 + θ2,3x1 + θ1,3x2 − ϕ,33Fω (14a)  

ε(1)33 (s, x3) = θ2,3x2,s − θ1,3x1,s + ϕ,33rs (14b)  

γ(0)s3 (s, x3) = γ(0)13 x1,s + γ(0)23 x2,s (14c)  

γ(1)s3 (s, x3) = 2ϕ,3 (14d)  

γ(0)n3 (s, x3) = γ(0)13 x2,s − γ(0)23 x1,s (14e) 

Moreover, the symmetric rotation gradients can be calculated by: 

χij =
1
2
(
θi,j + θj,i

)
(15)  

where θi is defined as: 

θ1 =
1
2
(
u3,2 − u2,3

)
=

1
2

[
θ1 − uP

2,3 −
(
X1 − xP

1

)
ϕ,3

]
(16a)  

θ2 =
1
2
(
u1,3 − u3 ,1

)
=

1
2

[
uP

1,3 − θ2 −
(
X2 − xP

2

)
ϕ,3

]
(16b)  

θ3 =
1
2
(
u2,1 − u1,2

)
= ϕ (16c) 

Substituting Eq. (16) into Eq. (15), the non-zero rotation gradients 
are expressed as follows: 

χ11 = −
1
2

ϕ,3 (17a)  

χ22 = −
1
2

ϕ,3 (17b)  

χ33 = ϕ,3 (17c)  

χ13 =
1
4

[
θ1,3 − uP

2,33 −
(
X1 − xP

1

)
ϕ,33

]
(17d)  

χ23 =
1
4

[
uP

1,33 − θ2,3 −
(
X2 − xP

2

)
ϕ,33

]
(17e)  

Stresses 

The constitutive equations can be written as: 
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⎧
⎨

⎩

σ33
σs3
σn3

⎫
⎬

⎭
=

⎡

⎣
Q11 0 0
0 Q66 0
0 0 Q55

⎤

⎦

⎧
⎨

⎩

ε33
γs3
γn3

⎫
⎬

⎭
(18a)  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m11
m22
m33
m23
m13

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= 2μl2

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ11
χ22
χ33
χ23
χ13

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(18b)  

where Q11 = E(n), Q66 = Q55 = μ =
E(n)

2(1+ν); E(n) is the Young’s modulus; 
ν is the Poisson’s ratio, which is assumed to be constant. The effective 
mass density ρ and E are expressed by: 

ρ = ρcVc + ρm(1 − Vc) (19a)  

E = EcVc + Em(1 − Vc) (19b)  

where the subscripts c and m indicate the ceramic and metal, Vc is the 
volume fraction of ceramic for I- and C-sections, which are given as 
follows:  

• For C1 section (FG): 

Vc =

[
n
hj
+ 0.5

]p

, − 0.5hj ≤ n ≤ 0.5hj (20)    

• For C2, I2 sections and I1 section’s web (FG sandwich): 

Vc =

[
− |n| + 0.5hj

0.5
(
1 − αj

)
hj

]p

, − 0.5hj ≤ n ≤ − 0.5αjhjor,0.5αjhj ≤ n ≤ 0.5hj,

(21a)  

Vc = 1, − 0.5αjhj ≤ n ≤ 0.5αjhj, (21b)    

• For I1-section’s flanges (FG sandwich): 

Flanges : Vc =

[
n + 0.5hj
(
1 − αj

)
hj

]p

, − 0.5hj ≤ n ≤
(
0.5 − αj

)
hj (22a) 

Fig. 3. Material distribution of thin-walled FG sandwich microbeams.  

Table 1 
Shape functions and essential BCs.  

BC φj(x3) x3 = 0 x3 = L 

S-S 
z
L

(
1 −

z
L

)
e
− jz
L 

uP
1 = uP

2 = ϕ = 0 uP
1 = uP

2 = ϕ = 0 

C-F 
( z
L

)2
e
− jz
L 

uP
1 = uP

2 = ϕ = 0 
uP

1,3 = uP
2,3 = ϕ,3 = 0 

u(0)
3 = θ2 = θ1 = 0  

C–C 
( z
L

)2 (
1 −

z
L
)2e

− jz
L  

uP
1 = uP

2 = ϕ = 0 
uP

1,3 = uP
2,3 = ϕ,3 = 0 

u(0)
3 = θ2 = θ1 = 0 

uP
1 = uP

2 = ϕ = 0 
uP

1,3 = uP
2,3 = ϕ,3 = 0 

u(0)
3 = θ2 = θ1 = 0  

Table 2 
Convergence of fundamental frequencies and mid-span deflections of FG sandwich thin-walled C1-beams (p = 5).  

b3 

/l 
BC m      

2 4 6 8 10 12 

Non-dimensional fundamental frequency 

1 S-S 8.157 8.051 8.020 8.020 8.020 8.020 
C-F 2.900 2.861 2.859 2.859 2.859 2.859 
C–C 18.186 18.121 18.118 18.116 18.115 18.115 

0 S-S 2.039 2.012 2.005 2.005 2.005 2.005 
C-F 0.725 0.715 0.714 0.714 0.714 0.714 
C–C 4.546 4.529 4.529 4.529 4.529 4.529 

Non-dimensional mid-span displacement 

1 S-S 26.205 26.993 27.164 27.151 27.153 27.153 
C-F 89.072 91.847 92.131 92.115 92.123 92.122 
C–C 5.704 5.696 5.714 5.722 5.723 5.722 

0 S-S 86.280 88.895 89.461 89.418 89.424 89.423 
C-F 293.611 302.730 303.642 303.599 303.640 303.635 
C–C 18.550 18.514 18.561 18.589 18.589 18.590  
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Vc = 1, − 0.5hj ≤ n ≤
(
0.5 − αj

)
hj,

(
0.5 − αj

)
hj ≤ n ≤ 0.5hj (22b)   

where p is the power-law index, hj (j = 1, 2,3) are the thicknesses of the 
top flange, bottom flange and web; αj (j = 1,2, 3) are the thickness ratio 
of the ceramic for the top flange, bottom flange and web, respectively. 

The notations of h1, h2, h3, α1, α2,α3 in various sections are shown in 
Fig. 3. 

Variational formulation 

The characteristic equations of the system can be derived from Eq. 
(1) based on Hamilton’s principle as follows: 

Table 3 
Verification on the mid-span deflections (mm) of FG sandwich C1- beams.  

BC Theory p 

0 0.5 1 2 5 10 

L/b3 = 20, Uniformly distributed load q = 500N/m 

S-S Present 0.394 0.507 0.592 0.712 0.892 1.008  
Nguyen et al. (Shear) [19] 0.396 0.510 0.596 0.716 0.897 1.014  
Nguyen et al. (No shear) [19]] 0.390 0.502 0.586 0.705 0.883 0.998 

C-F Present 1.337 1.722 2.011 2.418 3.030 3.424  
Nguyen et al. (Shear) [19]] 1.343 1.730 2.021 2.429 3.044 3.440  
Nguyen et al. (No shear) [19]] 1.325 1.706 1.993 2.396 3.003 3.393 

C–C Present 0.082 0.105 0.123 0.148 0.185 0.210  
Nguyen et al. (Shear) [19]] 0.084 0.108 0.126 0.152 0.190 0.215  
Nguyen et al. (No shear) [19]] 0.078 0.100 0.117 0.141 0.177 0.200 

L/b3 = 50, Uniformly distributed load q = 500N/m 

S-S Present 15.249 19.637 22.939 27.572 34.554 39.047  
Nguyen et al. (Shear) [19]] 15.261 19.654 22.958 27.596 34.583 39.080  
Nguyen et al. (No shear) [19]] 15.223 19.605 22.900 27.527 34.496 38.982 

C-F Present 51.834 66.752 77.972 93.726 117.455 132.731  
Nguyen et al. (Shear) [19]] 51.872 66.802 78.030 93.796 117.543 132.829  
Nguyen et al. (No shear) [19]] 51.759 66.655 77.859 93.590 117.285 132.539 

C–C Present 3.069 3.952 4.617 5.550 6.955 7.859  
Nguyen et al. (Shear) [19]] 3.082 3.969 4.637 5.573 6.984 7.893  
Nguyen et al. (No shear) [19]] 3.045 3.921 4.580 5.505 6.899 7.797  

Table 4 
Verification on the fundamental frequencies of FG thin-walled S-S C1-beams (L/b3 = 40).  

Theory ω p 

0 0.5 1 2 5 10 

Present ω1 3.0659 2.7541 2.5543 2.3112 2.0047 1.8348 
ω2 4.3456 3.8292 3.5581 3.2963 3.0128 2.8087 
ω3 10.2076 9.1571 8.5057 7.7367 6.7841 6.2312 
ω4 12.0947 10.7398 9.9695 9.1286 7.9979 7.3273 

Nguyen et al. [13] ω1 3.0668 2.7612 2.5642 2.3227 2.0148 1.8421 
ω2 4.3475 3.8641 3.6385 3.4141 3.1054 2.8575 
ω3 10.2254 9.2060 8.5828 7.8407 6.8811 6.2951 
ω4 12.1029 10.8223 10.1441 9.2903 8.0589 7.3684 

Nguyen et al. [19] 
(Shear) 

ω1 3.0659 2.7541 2.5544 2.3114 2.0048 1.8349 
ω2 4.3462 3.8270 3.5533 3.2895 3.0075 2.8059 
ω3 10.1965 9.1416 8.4879 7.7173 6.7663 6.2169 
ω4 12.0939 10.7356 9.9661 9.1447 8.0110 7.3327 

Nguyen et al. [19] 
(No shear) 

ω1 3.0668 2.7549 2.5551 2.3119 2.0054 1.8354 
ω2 4.3475 3.8653 3.6402 3.4168 3.1088 2.8599 
ω3 10.2254 9.2126 8.5910 7.8480 6.8848 6.2971 
ω4 12.1028 10.7996 10.1011 9.2302 8.0168 7.3391  

Table 5 
Verification on fundamental frequencies of FG thin-walled S-S C2- beams (L/b3 = 40).  

Theory ω p 

0 0.5 1 2 5 10 

Present ω1 3.0659 2.8667 2.7484 2.6137 2.4585 2.3796 
ω2 4.3456 3.7623 3.4420 3.1188 2.8245 2.7139 
ω3 10.2076 9.4192 8.9713 8.4818 7.9459 7.6852 
ω4 12.0947 10.8030 10.0971 9.3697 8.6553 8.3493 

Nguyen et al. [13] ω1 3.0668 2.8676 2.7492 2.6145 2.4592 2.3803 
ω2 4.3475 3.7636 3.4431 3.1197 2.8252 2.7146 
ω3 10.2254 9.4364 8.9881 8.4980 7.9612 7.7001 
ω4 12.1029 10.8096 10.1029 9.3747 8.6598 8.3535  
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∫t2

t1

(δΠS + δΠW − δΠK)dt = 0 (23) 

The variation of the strain energy δΠS of the system is defined by: 

δΠS =

∫

V
(σ33δε33 + σs3δγs3 + σn3δγn3)dV

+

∫

V
(m11δχ11 + m22δχ22 + m33δχ33 + 2m13δχ13 + 2m23δχ23)dV

(24)  

where the shear correction coefficient is assumed to be unity. 
Substituting Eqs. (13) and (17) into Eq. (24) leads to have: 

δΠS =

∫L

0

[
T33δu(0)

3,3 + M22δθ2,3 + M11δθ1,3 + Mϖδϕ,33

+V11δ
(

uP
1,3 + θ2

)
+ V22δ

(
uP

2,3 + θ1

)
+ M33δϕ,3

]
dx3

+

∫L

0

[
Mχ

33δϕ,3 + Vχ
11δ

(
uP

1,33 − θ2,3

)
+ Vχ

22δ
(

θ1,3 − uP
2,33

)
+ Mχ

ϖδϕ,33

]
dx3

(25)  

where the stress resultants (T33,M22,M11,Mϖ ,V11,V22,M33) and (Mχ
33,

Mχ
ϖ ,V

χ
11,V

χ
22) are defined as follows: 

(T33,M22,M11,Mϖ) =

∫

A

(1,X1,X2, nrs − Fω)σ33dsdn (26a)  

(V11,V22,M33) =

∫

A

(
σs3x1,s + σn3x2,s, σs3x2,s − σn3x1,s, 2nσs3

)
dsdn (26b)  

(Mχ
33,Vχ

11,V
χ
22) =

∫

A

(
m33 −

m11

2
−

m22

2
,
m23

2
,
m13

2

)
dsdn (26c)  

Mχ
ϖ = −

∫

A

[
m13

(
X1 − xP

1

)
+m23

(
X2 − xP

2

)]
dsdn (26d) 

The stress resultants given above are related to the displacement as 
follows: 

Table 6 
Verification on the deflections of FG thin-walled I1- beams under concentrated load P at mid-span.  

BC Reference L/b3 = 10 L/b3 = 20 

p = 0 1 2 5 p = 0 1 2 5 

S-S Present 82.9632 101.2863 109.8149 120.2931 80.3469 98.1423 106.4453 116.6634  
Nguyen et al. (Shear) [20] 82.9651 101.0141 109.4870 120.0059 80.3458 97.8696 106.1140 116.3724  
Nguyen et al. (No shear) [20] 79.4759 96.8193 104.9908 115.1634 79.4735 96.8217 104.9908 115.1618 

C-F Present 166.1572 202.8527 219.9295 240.9113 160.7956 196.4121 213.0255 233.4717  
Nguyen et al. (Shear) [20] 166.0264 202.1436 219.0958 240.1466 160.7613 195.8234 212.3202 232.8442  
Nguyen et al. (No shear) [20] 159.0095 193.7156 210.0585 230.4101 159.0071 193.7164 210.0609 230.4101 

C–C Present 23.3205 28.3885 30.7710 33.6108 20.7168 25.2846 27.4160 30.0292  
Nguyen et al. (Shear) [20] 23.2508 28.2537 30.5755 33.4169 20.6627 25.1701 27.2635 29.8981  
Nguyen et al. (No shear) [20] 19.8706 24.1872 26.2140 28.7219 19.8169 24.1543 26.1739 28.7235  

Table 7 
Verification on the mid-span deflections of FG thin-walled I2-beams under concentrated load at mid-span with different boundary conditions.  

BC Reference L/b3 = 10 L/b3 = 20 

p = 0 1 2 5 p = 0 1 2 5 

S-S Present 82.963 118.814 138.803 166.876 80.347 115.064 134.430 161.615  
Nguyen et al. (Shear) [20] 82.965 118.813 138.799 166.879 80.346 115.064 134.424 161.614  
Nguyen et al. (No shear) [20] 79.476 113.816 132.962 159.863 79.473 113.815 132.964 159.859 

C-F Present 166.157 237.953 277.989 334.219 160.796 230.275 269.020 323.436  
Nguyen et al. (Shear) [20] 166.026 237.761 277.765 333.951 160.761 230.227 268.963 323.367  
Nguyen et al. (No shear) [20] 159.009 227.716 266.027 319.841 159.007 227.715 266.028 319.839 

C–C Present 23.321 33.365 38.974 46.851 20.717 29.659 34.650 41.658  
Nguyen et al. (Shear) [20] 23.251 33.212 38.689 46.655 20.663 29.603 34.589 41.588  
Nguyen et al. (No shear) [20] 19.871 28.363 33.039 39.844 19.8169 24.1543 26.1739 28.7235  

Table 8 
Verification on the non-dimensional fundamental frequencies of FG thin-walled S-S I1- beams (L/b3 = 40).  

Section Theory p α3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M1 [13] (α1 = 0.9,α2 = 0.1) Present 1 1.516 1.509 1.504 1.498 1.493 1.489 1.485 1.481 1.478 1.474 1.471 
5 1.511 1.498 1.486 1.476 1.468 1.461 1.455 1.450 1.446 1.442 1.438 

Nguyen et al. [13] 1 1.530 1.518 1.515 1.508 1.503 1.497 1.491 1.487 1.482 1.478 1.475 
5 1.559 1.539 1.522 1.506 1.493 1.482 1.472 1.464 1.456 1.450 1.444 

M2 [13] (α1 = 0.1,α2 = 0.9) Present 1 1.334 1.328 1.322 1.316 1.311 1.306 1.301 1.297 1.292 1.288 1.284 
5 1.165 1.154 1.144 1.134 1.125 1.116 1.108 1.100 1.093 1.086 1.079 

Nguyen et al. [13] 1 1.327 1.322 1.316 1.311 1.306 1.301 1.297 1.292 1.288 1.284 1.281 
5 1.153 1.143 1.133 1.125 1.116 1.108 1.101 1.094 1.087 1.081 1.074  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T33
M22
M11
V11
V22
M33
Mϖ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L11 L12 L13 0 0 0 L17
L12 L22 L23 0 0 0 L27
L13 L23 L33 0 0 0 L37
0 0 0 L44 L45 L46 0
0 0 0 L45 L55 L56 0
0 0 0 L46 L56 L66 0
0 0 0 0 0 0 L77

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0)
3,3

θ2,3

θ1,3

uP
1,3 + θ2

uP
2,3 + θ1

ϕ,3

ϕ,33

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27a)  

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Mχ
33

Vχ
11

Vχ
22

Mχ
ϖ

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎣

H11 0 0 0
0 H22 0 H24
0 0 H33 H34
0 H24 H34 H44

⎤

⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ,3

uP
1,33 − θ2,3

θ1,3 − uP
2,33

ϕ,33

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(27b)  

where the stiffness components are defined by: 

Fig. 4. Effects of b3/l on the mid-span deflections of FG thin-walled C1-beams under uniformly distributed load (L /b3 = 20).  
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L11 =

∫

s

A11ds,L12 =

∫

s

(
A11x1 +B11x2,s

)
ds,L13 =

∫

s

(
A11x2 − B11x1,s

)
ds

L17 =

∫

s

(B11rs − A11Fω)ds,L22 =

∫

s

(
A11x2

1 +2B11x1x2,s +D11x2
2,s

)
ds

L23 =

∫

s

[
A11x1x2 +B11

(
x2x2,s − x1x1,s

)
− D11x1,sx2,s

]
ds

L27 =

∫

s

[
− A11x1Fω +B11

(
x1rs − x2,sFω

)
+D11rsx2,s

]
ds

L33 =

∫

s

(
A11x2

2 − 2B11x1,sx2 +D11x2
1,s

)
ds

L37 =

∫

s

[
− A11x2Fω +B11

(
x2rs + x1,sFω

)
− D11rsx1,s

]
ds

L44 =

∫

s

(
A66x2

1,s +A55x2
2,s

)
ds,L45 =

∫

s

(A66 − A55)x1,sx2,sds,L46 =

∫

s

2B66x1,sds

L55 =

∫

s

(
A66x2

2,s +A55x2
1,s

)
ds,L56 =

∫

s

2B66x2,sds,L66 =

∫

s

4D66ds

L77 =

∫

s

(
A11F2

ω − 2B11rsFω +D11r2
s

)
ds

H11 = 3l2
∫

A

μdnds,H22 =
l2

4

∫

A

μdnds,H24 = −
l2

4

∫

A

μ
(
X2 − xP

2

)
dnds

H33 =
l2

4

∫

A

μdnds,H34 = −
l2

4

∫

A

μ
(
X1 − xP

1

)
dnds

H44 =
l2

4

∫

A

μ
[(

X1 − xP
1

)2
+
(
X2 − xP

2

)2
]
dnds

(
Aij,Bij,Dij

)
=

∫

s

(
1,n,n2)Qijds

(28) 

The variation of potential energy ΠW of the system subjected to a 
transverse load q can be expressed as: 

δΠW = −

∫L

0

qδuP
2 dx3 (29) 

The variation of kinetic energy ΠK of the system is given by: 

where the terms of mass mi are given as follows: 

{m1,m2,m3,m4,m5} =

∫

A

ρ
{

1,X2 − xP
2 ,X1 − xP

1 ,
(
X2 − xP

2

)2
,
(
X1 − xP

1

)2
}

dnds

(31a)  

{m6,m7,m8,m9} =

∫

A

ρX1{1,X1,X2,Fω}dnds (31b)  

{m10,m11,m12} =

∫

A

ρX2{1,X2,Fω}dnds (31c)  

{m13,m14} =

∫

A

ρ
{

Fω,F
2
ω
}

dnds (31d)  

Hybrid series solution 

The displacement field is approximated via unknowns 
(uP

1j(t), uP
2j(t), u3j(t), θ2j(t), θ1j(t) and ϕj(t)) and shape functions (ψ j(x3)) as 

follows: 

{
uP

1 , u
P
2 ,ϕ

}
(x3, t) =

∑m

j=1
ψj(x3)

{
uP

1j, uP
2j,ϕj

}
(t) (32a)  

{
u(0)

3 , θ1, θ2

}
(x3, t) =

∑m

j=1
ψj,3(x3)

{
u3j, θ1j, θ2j

}
(t) (32b) 

It should be noted that hybrid shape functions are proposed in 
Table 1 by a combination of exponential and admissible trigonometric 
functions to satisfy various BCs such as simply-supported (S-S), clamped- 
free (C-F) and clamped-clamped (C–C). 

Substituting Eq. (32) into Eqs. (25), (29) and (30), and then plugging 
the subsequent results into Eq. (23) leads to the characteristic equations 
for bending and vibration analysis of FG sandwich thin-walled micro-
beams as follows: 

Kd + Md̈ = F (33)  

where K,M,F are the stiffness matrix, mass matrix and force vector, 
respectively; d =

[
uP

1 uP
2 u3 θ2 θ1 Φ

]T is the displacement vec-
tor. It is noted that the stiffness matrix K can be divided into that of 
strain part Kε and that of strain gradient Kχ , i.e. K = Kε + Kχ as follows: 

Kε =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Kε11 Kε12 0 Kε14 Kε15 Kε16

Kε12 Kε22 0 Kε24 Kε25 Kε26

Kε13 Kε23 Kε33 Kε34 Kε35 Kε36

Kε14 Kε24 Kε34 Kε44 Kε45 Kε46

Kε15 Kε25 Kε35 Kε45 Kε55 Kε56

Kε16 Kε26 Kε36 Kε46 Kε56 Kε66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34a)  

Kχ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Kχ11 0 0 Kχ14 0 Kχ16

Kχ12 Kχ22 0 0 Kχ25 Kχ26

0 0 0 0 0 0
Kχ14 0 0 Kχ44 0 Kχ46

0 Kχ25 0 0 Kχ55 Kχ56

Kχ16 Kχ26 0 Kχ46 Kχ56 Kχ66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34b) 

δΠK =

∫

Ω
ρ(n)(u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3)dΩ

=

∫L

0

{
δu̇P

1

(
m1u̇P

1 − m2ϕ̇
)
+ δu̇P

2

(
m1u̇P

2 + m3ϕ̇
)
+ δu̇(0)

3

(
m1u̇(0)

3 + m6θ̇2 + m10θ̇1 − m13ϕ̇,3

)

+δθ̇2

(
m6u̇(0)

3 + m7θ̇2 + m8θ̇1 − m9ϕ̇,3

)
+ δθ̇1

(
m10u̇(0)

3 + m8θ̇2 + m11θ̇1 − m12ϕ̇,3

)

+δϕ̇
[
− m2u̇P

1 + m3u̇P
2 + (m4 + m5)ϕ̇

]
+ δϕ̇,3

[
− m13u̇(0)

3 − m9θ̇2 − m12θ̇1 + m14ϕ̇,3

]}
dx3

(30)   
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where 

Kε11
ij = L44S11

ij ,K
ε12
ij = L45S11

ij ,K
ε14
ij = L44S11

ij ,Kε15
ij = L45S11

ij ,K
ε16
ij = L46S11

ij

Kε22
ij = L55S11

ij ,K
ε24
ij = L45S11

ij ,K
ε25
ij = L55S11

ij ,Kε26
ij = L56S11

ij

Kε33
ij = L11S22

ij ,K
ε34
ij = L12S22

ij ,K
ε35
ij = L13S22

ij ,Kε36
ij = L17S22

ij

Kε44
ij = L22S22

ij + L44S11
ij ,K

ε45
ij = L23S22

ij + L45S11
ij

Kε46
ij = L27S22

ij + L46S11
ij ,K

ε55
ij = L33S22

ij + L55S11
ij

Kε56
ij = L37S22

ij + L56S11
ij ,K

ε66
ij = L77S22

ij + L66S11
ij

Kχ11
ij = H22S22

ij ,K
χ14
ij = − H22S22

ij ,Kχ16
ij = H24S22

ij

Kχ22
ij = H23S22

ij ,K
χ25
ij = − H23S22

ij ,Kχ26
ij = − H34S22

ij

Kχ44
ij = H22S22

ij ,K
χ46
ij = − H24S22

ij ,Kχ55
ij = H23S22

ij

Kχ55
ij = H23S22

ij ,K
χ56
ij = H34S22

ij ,Kχ66
ij = H11S11

ij + H44S22
ij

Srs
ij =

∫L

0

∂rψi

∂xr
3

∂sψj

∂xs
3

dx3

(35) 

The components of mass matrix M are given by: 

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M11 0 0 0 0 M16

0 M22 0 0 0 M26

0 0 T M33 M34 M35 M36

0 0 T M34 M44 M45 M46

0 0 T M35 T M45 M55 M56

T M16 T M26 T M36 T M46 T M56 M66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36)  

where 

M11
ij = m1S00

ij ,M
16
ij = − m2S00

ij ,M
22
ij = m1S00

ij ,M26
ij = m3S00

ij ,M
33
ij = m1S11

ij

M34
ij = m6S11

ij ,M
35
ij = M10S11

ij ,M36
ij = − m13S11

ij ,M44
ij = m7S11

ij ,M
45
ij = m8S11

ij

M46
ij = − m9S11

ij ,M
55
ij = m11S11

ij ,M
56
ij = − m12S11

ij ,M
66
ij = m14S11

ij + (m4 + m5)S00
ij

(37) 

The non-zero components of load vector F = [ 0 f 0 0 0 0 ]T 

are given by: 

fi =

∫L

0

qψidx3 (38) 

Fig. 5. Effects of b3/l on the fundamental frequency of FG thin-walled C1-beams (L /b3 = 10).  

X.-B. Bui et al.                                                                                                                                                                                                                                   



Aerospace Science and Technology 142 (2023) 108664

10

Numerical results 

In this section, several numerical examples for FG thin-walled 
sandwich microbeams with and without the size-effect are presented. 
The geometries of I- and C-sections are given in Fig. 3 by h = h1 = h2 =

h3; b3 = 40h For C1 and C2-section, b1 = b2 = 20h while for I1 and I2- 
section, b1 = 20h, b2 = 10h. Unless stated otherwise, the thickness ra-
tios of ceramic material are given as: for I1, α1 = 0.9,α2 = 0.1,α3 = 0.4, 
for I2, α1 = α2 = α3 = 0.1 and for C2, α1 = α2 = α3 = 0.3. The following 
material properties are used for the static analysis: Ec = 320.7 GPa, Em=

Fig. 6. Effects of b1/l on the first three natural frequencies of FG thin-walled C1-beams (L /b3 = 10, p = 1).  

Table 9 
Size effects on the mid-span deflections of FG thin-walled C1-section microbeams under uniformly distributed load.  

BC b3 /

l 
L/b3 = 10 L/b3 = 20 

p = 0 1 2 5 p = 0 1 2 5 

S-S 0 40.682 61.198 73.563 92.187 39.463 59.364 71.358 89.424  
1 12.501 18.805 22.604 28.327 11.983 18.025 21.667 27.153  
2 25.858 38.898 46.756 58.595 25.042 37.670 45.281 56.745  
4 35.563 53.497 64.305 80.586 34.492 51.885 62.367 78.158 

C-F 0 137.612 207.009 248.835 311.834 133.997 201.570 242.296 303.640  
1 42.090 63.315 76.107 95.377 40.654 61.154 73.510 92.123  
2 87.326 131.362 157.903 197.883 85.012 127.882 153.719 192.639  
4 120.218 180.842 217.380 272.417 117.110 176.165 211.757 265.371 

C–C 0 9.383 14.117 16.965 21.483 8.209 12.341 14.834 18.592  
1 2.982 4.485 5.392 6.758 2.526 3.799 4.566 5.723  
2 5.965 8.963 10.774 13.507 5.214 7.843 9.426 11.815  
4 8.182 12.309 14.788 18.540 7.163 10.786 12.965 16.249  
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105.69 GPa, ν = νc = νm = 0.3 and the vibration analysis: Ec = 380 GPa, 
Em= 70 GPa, ν = νc = νm = 0.3, ρc = 3960kg/m3, ρm = 2702kg /m3. 
The MLSP is assumed to be l = 15μmfor the analysis of all subsequent 
sections. The non-dimensional deflections and frequencies of micro-
beams are revealed as follows. 

Non-dimensional deflection under point load (P): 

uP
2 = 1000

Echb3

PL3 uP
2 (39) 

Non-dimensional deflection under uniform distributed load (q): 

uP
2 = 1000

Echb3

qL4 uP
2 (40) 

Non-dimensional frequency: 

ω =
L2

b3

̅̅̅̅̅̅
ρm

Em

√

ω (41)  

Convergence study 

FG thin-walled C1-beams (p = 5, L/b3 = 20and 40) under uniformly 
distributed load q with various BCs are analysed. Their fundamental 
frequencies and mid-span deflections are presented in Table 2. The beam 
height-to-material length scale ratio b3/l = 0 refers to macrobeam while 
b3/l = 1is for microbeam. It can be seen that in all cases, the series 
number m = 10 ensures the convergence of the present solution. For that 
reason, m = 10 will be used in the subsequent sections. 

Verification studies 

Since there is no available results on the FG sandwich thin-walled 
microbeams, the verification is carried out with those of macrobeams 
(b3/l = 0). 

Example 1. FG thin-walled C1- and C2-beams are considered. Tables 3 
and 4 display the mid-span deflection (mm) under a uniformly distrib-
uted load q = 500N/m and fundamental frequencies of the C1-beam. 
The first four natural frequencies of the C2-beam with various mate-
rial power index p are given in Table 5. In Table 3, the bending results 
show good agreements with those given by Nguyen et al. [19] for both 
cases of L/b3 = 20 and 50. As predicted, the deflections increase with 

the increase of the power index p. In Tables 4 and 5, the fundamental 
frequencies are compared with those from Nguyen et al. [13] and 
Nguyen et al. [19]. It can be seen that the results align well with those 
from previous studies, especially the ones using shear deformable 
theory. 

Example 2. FG thin-walled sandwich I1- and I2-beams with L/b3 = 10 
and 20 are considered and their maximum displacements under a 
concentrated load at mid span are presented in Tables 6 and 7. Good 
agreement is observed between the present results and those accounting 
for shear effect given by Kim and Lee [21] and Nguyen et al. [20]. 
Furthermore, Table 8 compares the fundamental frequencies between 
the present model and those from Nguyen et al. [13]. Again, excellent 
agreement between these results is found for different values of ceramic 
thickness ratio αj and power index p. 

Parametric study 

In this section, the results are computed for the FG thin-walled mi-
crobeams with various b3/l = 1, 2,4 along with those from macrobeam 
b3/l = 0 to investigate the size effect. 

Example 3. The mid-span deflections and fundamental frequencies of 
FG thin-walled C1-beams are shown in Tables 9 and 10. As seen in 
Table 8, in the cases where b3/l = 1, 2, 4, the size-dependent effect is 
significant. The size effect makes the beam stiffer which results in a 
smaller mid-span deflection and larger frequencies. It can also be seen 
from Figs. 4 and 5 that under all boundary conditions, the beam’s 
bending and vibration responses experience a drastic change from b3/

l = 1 to b3/l = 2 but the slope quickly becomes less steep when b3/l > 2. 
To better understand the influences of the flange-width-to –MLSP ratio 
(b1/l) on the dynamic behaviours of these FG C1 microbeams, the first 
three natural frequencies are shown in Fig. 6. Since the microbeam’s 
geometrical shape is preserved and is set with b3 = 2b1, the b1/l ratio’s 
effects on the frequencies at all modes are proportional to the b3/l ratio, 
which can be deduced by comparing Figs. 5 and 6. Additionally, it is 
interesting to see the very sharp drop of the frequencies in the third 
mode compared to first one in all boundary conditions when b1/l < 5. 
Besides, the second frequencies approach to those of macro beams when 
b1/l = 20, which is much faster than the other two modes. 

Table 10 
Size effects on the lowest frequencies of FG thin-walled S-S C1-section microbeams (L/b3 = 10).  

b3 /

l 
ω p 

0 0.5 1 2 5 10 

0 ω1 2.530 2.267 2.106 1.917 1.685 1.549 
ω2 3.053 2.743 2.544 2.302 1.997 1.828 
ω3 9.406 8.475 7.874 7.136 6.193 5.661 
ω4 9.509 8.553 7.944 7.207 6.275 5.746 

1 ω1 11.982 10.809 10.049 9.110 7.903 7.219 
ω2 13.597 12.269 11.408 10.343 8.972 8.195 
ω3 45.890 41.402 38.490 34.896 30.270 27.651 
ω4 49.831 44.968 41.810 37.910 32.886 30.037 

2 ω1 6.595 5.945 5.525 5.007 4.344 3.969 
ω2 9.432 8.511 7.914 7.175 6.224 5.685 
ω3 25.859 23.315 21.667 19.638 17.035 15.565 
ω4 34.818 31.422 29.216 26.492 22.980 20.989 

4 ω1 4.231 3.809 3.537 3.204 2.779 2.541 
ω2 7.977 7.199 6.694 6.070 5.265 4.809 
ω3 16.682 15.020 13.948 12.634 10.959 10.020 
ω4 28.861 26.050 24.224 21.968 19.057 17.404  
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Fig. 7. Effects of b3/land p on the fundamental frequency of FG sandwich thin-walled C2-beams (L /b3 = 10) under various boundary conditions.  
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Fig. 8. The first two mode shapes of FG thin-walled C2-section macro- and micro- beams (p = 1, L/b3 = 10, S-S boundary condition).  

Table 11 
Size effects on the fundamental frequencies of FG C2-section microbeams (L/b3 = 10).  

BC b3/l p 

p = 0 0.5 1 2 5 10 

S-S 0 2.530 2.327 2.212 2.086 1.951 1.887 
1 11.982 11.205 10.743 10.217 9.610 9.302 
2 6.595 6.167 5.912 5.623 5.289 5.119 
4 4.231 3.956 3.793 3.607 3.393 3.284 

C-C 0 5.393 5.020 4.802 4.557 4.280 4.141 
1 25.804 24.130 23.135 22.002 20.696 20.032 
2 14.637 13.687 13.123 12.481 11.740 11.363 
4 9.458 8.844 8.479 8.064 7.585 7.342 

C-F 0 1.053 0.945 0.885 0.823 0.762 0.735 
1 4.305 4.025 3.859 3.670 3.453 3.342 
2 2.358 2.205 2.114 2.011 1.891 1.831 
4 1.511 1.413 1.355 1.288 1.212 1.173  
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Example 4. This example investigates the vibration of FG thin-walled 
C2-beam. The present solution in Table 11 shows that when taking the 
size-dependent effect into account, the fundamental frequencies at b3/

l = 1 are more than 4 times greater than at b3/l = 0. As b3/l ratio in-
creases, the vibration responses decrease and become closer to those of 
the macrobeam model. This pattern applies for all values of power index 
p and all three boundary conditions as can be seen in Table 10 and Fig. 7. 
It is also worth pointing out that in Fig. 7, at b3/l = 0, there is only a 
slight decrease in fundamental frequency when the power index p 
changes from 0 to 1. Nonetheless, at b3/l = 1, a big difference in the 
fundamental frequencies compared between the microbeam and mac-
robeam model can be observed. Fig. 8 shows the first two mode shapes 
when b3/l = 0 and b3/l = 1. It is noticeable that the first mode of the 
macrobeam is torsion mode. The second mode of marcobeam can be 
observed to be very similar to the first one of microbeams which are 
bending mode. The second mode of microbeam is also bending mode. 
The understanding of the beam vibrational mode can help detect defects 
and prevent structural failures. 

Example 5. The size-dependent effect is investigated on the FG thin- 
walled I1- and I2-beams subjected to a concentrated load at mid-span 
and their mid-span displacements are provided in Tables 12 and 13. 
The lower values demonstrate a stiffer beam, the microbeams again 
show an increase in stiffness compared to its macro beam counterpart. 
The lower b3/l ratio is, the stiffer the microbeam becomes. As shown in 
Table 12, the mid-span displacement when b3/l = 0 is four to five times 
greater than whenb3/l = 1. Fig. 9 further demonstrates the variation of 
the mid span displacement with different values of power index p and 
b3/l ratios. 

Example 6. Vibration analysis of the FG sandwich I1- and I2- 
microbeams is carried out. Tables 14 and 15 display the first four nat-
ural frequencies of simply-supported beams when b3/l = 0, 1, 2, 4. At p 
= 0, both sections are fully made of ceramic material and therefore, the 
results for both sections are identical. Nonetheless, across all values of p, 
the size-dependent effects on the microbeam are conspicuous as 
observed in previous examples. The beam becomes stiffer and thus, has 
higher dimensionless fundamental frequencies when the b3/l ratio gets 
smaller. Besides, Fig. 10 shows the first two mode shapes of the micro- 
and macro-I1 S-S beams. Both the mode shapes of the macro I1-beam are 
torsion mode while those of micro I1-beam are bending mode. In Ta-
bles 14 and 15, the frequencies in all modes of both I1- and I2- micro-
beam at b3/l = 1 are 5 to 12 times more than those of the macrobeam at 
b3/l = 0. 

Conclusions 

By using the first-order shear deformation theory and modified 
couple stress theory, this paper studied for the first time the size- 
dependent behaviours of functionally graded sandwich thin-walled C 
and I-beams. The effects of boundary conditions, material distribution, 
beam length-to-height ratio and material length scale parameter were 
investigated. The following findings were drawn from the numerical 
results:  

• The size-dependent effect made the FG thin-walled microbeams 
considerably stiffer, which in turn reduced the beam’s bending 
transverse deflections and increased the beam’s fundamental 
frequencies.  

• The mid-span displacements of the C1 and I2 microbeams converged 
to the values of their macro-beam counterparts at b3/l = 20 under all 
three boundary conditions.  

• The fundamental frequency of the C1 and C2 microbeams converged 
to their macrobeam values quickly under C-F condition at b3/l = 20 

Fig. 9. Effects of b3/land p on the mid-span displacement of the FG sandwich 
thin-walled I2-beams (L /b3 = 10) under various boundary conditions. 
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Table 12 
Size effects on the mid-span deflections of FG thin-walled I1-section microbeams under concentrated load at mid-span.  

BC b3 /

l 
L/b3 = 10 L/b3 = 20 

p = 0 1 2 5 p = 0 1 2 5 

S-S 0 82.963 118.814 138.803 166.876 80.347 98.142 106.445 116.663  
1 23.664 33.889 39.590 47.599 22.620 27.298 29.354 31.773  
2 50.620 72.491 84.688 101.818 48.952 59.403 64.125 69.799  
4 71.483 102.372 119.597 143.787 69.231 84.371 91.351 99.879 

C-F 0 166.157 202.853 219.929 240.911 160.796 196.412 213.026 233.472  
1 47.307 57.068 61.350 66.380 45.262 54.622 58.738 63.579  
2 101.263 122.821 132.542 144.202 97.956 118.867 128.318 139.673  
4 143.087 174.283 188.641 206.135 138.546 168.838 182.814 199.870 

C–C 0 23.321 28.389 30.771 33.611 20.717 25.285 27.416 30.029  
1 6.889 8.299 8.915 9.633 5.908 7.126 7.671 8.290  
2 14.244 17.237 18.592 20.184 12.638 15.327 16.455 17.993  
4 20.045 24.371 26.899 28.627 17.848 21.739 24.020 25.721  

Table 13 
Size effects on the mid-span deflections of FG I2-section microbeams under concentrated load at mid-span.  

BC b3 /

l 
L/b3 = 10 L/b3 = 20   

p = 0 1 2 5 0 1 2 5 

S-S 0 82.963 118.814 138.803 166.876 80.347 115.064 134.431 161.617  
1 23.664 33.889 39.590 47.599 22.620 32.393 37.843 45.497  
2 50.620 72.491 84.688 101.818 48.952 70.103 81.897 98.463  
4 71.483 102.372 119.597 143.787 69.232 99.152 115.827 139.259 

C-F 0 166.157 237.953 277.989 334.219 160.796 230.276 269.020 323.436  
1 47.307 67.746 79.144 95.153 45.262 64.818 75.723 91.040  
2 101.263 145.017 169.416 203.684 97.956 140.281 163.883 197.033  
4 143.087 204.914 239.391 287.814 138.546 198.410 231.793 278.679 

C–C 0 23.321 33.365 38.974 46.851 20.713 29.668 34.652 41.675  
1 6.889 9.866 11.525 13.857 5.907 8.462 9.884 11.882  
2 14.242 20.389 23.814 28.632 12.643 18.102 21.161 25.421  
4 20.066 28.614 33.572 40.320 17.851 25.553 29.860 35.902  
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Fig. 10. The first two mode shapes of FG thin-walled I1-section macro- and micro- beams (p = 1, L/b3 = 10, S-S boundary condition).  
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but converged much slower under S-S and C–C condition at b3 /l =
100.  

• The first two mode shapes of the C2 macrobeam and microbeam 
were torsion and bending mode. 

The present model was found to be simple and efficient in predicting 
the static and dynamic responses of functionally graded sandwich thin- 
walled microbeams. 
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Abstract This paper presents a novel approach for assessing the uncertainty in vibration and static responses
of laminated composite beams resulting from uncertainty in material properties and distributed loads. The
proposed method utilizes surrogate models developed using polynomial chaos expansion (PCE) based on a
relatively small sample size. These training samples are computed using a high-order shear beam model in
which the governing equations are derived using Hamilton’s principle, and solved by Ritz’s approach using a
trigonometric series approximation. The proposed PCE model’s coefficients are estimated using the spectral
projection and linear regression techniques. The first four statistical moments and probability distributions of
themid-span displacement and the fundamental frequency of laminated composite beams are predicted. Global
sensitivity analysis is also conducted to assess how material property variation and stochastic loads affect the
beam’s deflection and the fundamental frequency. The accuracy and efficiency of the proposed PCEmodels are
compared with those from Monte Carlo simulation (MCS). A remarkable reduction in the computational cost
of PCE models compared to MCS is observed without compromising the predictions’ accuracy. As most real-
world systems are subjected to multiple sources of uncertainty, this study provides a state-of-the-art method to
quantify such uncertain parameters more efficiently and allow for a better reliability assessment in composite
beam design.

Keywords Bending · Vibration · Stochastic behaviours · Laminated composite beams · Higher-order shear
deformation theory

1 Introduction

Composite materials have steadily increased their applications across various engineering disciplines. This can
be attributed to their mechanical benefits, including superior strength- and stiffness-to-weight ratios compared
to conventionalmaterials. The static and dynamic behaviors ofmacro [1–5] and nano [6, 7] composite structural
elements have captured the attention of numerous researchers, leading to further investigations involving
various loading conditions, namely mechanical [8, 9], electric, magnet [10–13] and thermal loads [14–18].
Moreover, different methods and solutions such as the finite element method [19–21], analytical series solution
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[1, 2, 4, 18, 22–24] have been proposed to accurately predict laminated composite (LC) structures’ responses.
Nonetheless, due to the complex fabrication processes and random load fluctuations, these composite structures
exhibit inherent variability in their theoretical performance predictions and actual experimental values. The
uncertainty sources can be material, geometrical, and loading parameters. These uncertainties significantly
influence vibration and static response characteristics such as frequencies and displacements. The deterministic
approaches with no uncertainty accounted for are adjusted with a safety factor in design. Meanwhile, the
probabilistic modeling approaches study the stochastic responses and assess the structures’ performance based
on the input uncertainties. A literature review shows that though there have been many researches concerning
stochastic structural mechanics, the study on stochastic analysis of LC beams is extremely limited.

In order to investigate stochastic behaviors of structures with uncertainties, the most straightforward and
intuitive method is the crude Monte Carlo Simulation method (MCS) which simply runs the structural model
repetitively to achieve the desired level of accuracy. However, in cases where the physical model is complex,
employing the MCS becomes impractical for its substantial computational time. Therefore, to overcome this
drawback, many numerical methods for stochastic analysis, such as the stochastic finite element method
[25, 26], perturbation method [27, 28], support vector machine [29], and polynomial chaos expansion (PCE)
method [30] have been proposed to reduce the computational cost and maintain accuracy. The main idea of
PCE approach is to approximate the stochastic outputs by representing them as a series in an orthogonal
space, including the chosen basis polynomials and their corresponding coefficients. It allows for efficient and
accurate calculation of statistics and probability distributions for computationalmodels involving random input
parameters.

Herein presents an overview of the previously published works on applying stochastic analysis methods
for mechanical systems. Based on the MCS, Nguyen et al. [31] investigated the effects of uncertain material
properties on the buckling responses of LC plates based on the isogeometric analysis. Elishakoff and Archaud
[32] proposed a modified MCS method that significantly reduces simulation size to analyze the buckling
of imperfect beams on softening foundations. Recently, Avíla and Squarcio [33] presented the Neuman-
Monte Carlo methodology for the stochastic bending analysis of the Levinson–Bickford beam. Naskar et al.
[34] proposed a stochastic approach to study the natural frequencies of thin-walled LC beams with spatially
varying matrix cracking damage in a multi-scale framework in which a concept of stochastic representative
volume element has been introduced and verified against the traditional MCS. As for the perturbation-based
methods, Li et al. [35] analyzed the effect of random system properties on the critical thermal buckling
temperature of LC plates with temperature-dependent properties using the perturbation technique. Onkar
et al. [36] proposed a stochastic buckling analysis of LC plates with randommaterial properties under uniaxial
compressive loading. It is based on the layerwise platemodel to solve both pre-buckling and buckling problems,
while the stochastic analysis has been done based on the mean-centered first-order perturbation technique.
Meanwhile, the PCE has been used extensively for various mechanical problems. Peng et al. [30] presented
an uncertainty analysis method for LC plates using a data-driven PCE method under insufficient input data
related to uncertain design parameters. Based on this approach, Verma and Singh [37] studied the thermal
buckling responses of LC plates with random geometric and material properties. Chandra et al. [38] presented
a stochastic dynamic response analysis of LC plates using generalized polynomial chaos expansion due to
randommean temperature increment. Then a stochastic finite elementmethodwas developed based on the first-
order shear deformation theory (FSDT). Chakraborty et al. [39] presented an improved PCE approach based on
a polynomial correlated function expansion for stochastic vibration analysis of LC plates. Bhattacharyya [40]
used the Bayesian learning-based PCE to analyze the global reliability sensitivity of a general system. Despite
the broad applications of PCE in many areas, its implementation in analyzing the stochastic responses of LC
beams under stochastic loads is extremely limited and therefore needs to be explored further. Particularly, how
material properties variation and load variability influence LC beams’ fundamental frequency and mid-span
displacement have yet to be sufficiently assessed. For those reasons, it calls for a deeper exploration of future
research.

This paper aims to develop surrogate models using polynomial chaos expansion for uncertainty quantifi-
cation and sensitivity analysis of LC beams with random material properties and stochastic loads. These input
uncertainties are given by defined lognormal distributions. The proposed PCE models consist of multivariate
Hermite polynomials and unknown associated coefficients. A set of realizations of random input parameters is
generated from which the deterministic beam model gives the corresponding realizations of output responses.
These realizations are then used to estimate the PCE coefficients by either the spectral projection using the
Gaussian quadrature rule or the ordinary least-square regression approach. The deterministic beam model is
derived based on a higher-order shear deformation theory (HSDT) that satisfies the traction-free boundary
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Fig. 1 Geometry of a laminated composite beam

condition on the top and bottom surfaces of the LC beams. Numerical results are presented to investigate the
effects of the stochasticity, fiber angle, span-to-thickness ratio, and boundary conditions on the probabilistic
deflection and natural frequencies of the LC beams. Additionally, Sobol’s sensitivity indices are computed
to rank the most significant random variables affecting both static and vibration responses of the LC beams.
All numerical and statistical results are validated with those obtained from one million samples of the Monte
Carlo simulation.

2 Theoretical formulation

Consider a LC beam with length L and rectangular cross-section b× h as shown in Fig. 1. It is made of n plies
of orthotropic materials in different fibre angles with respect to the x-axis.

2.1 Kinematic, strain and stress

The displacement field of LC beams based on the higher-order shear deformation theory is given by ([22]):

u(x , z) � u(x) − zw,x +

(
5z

4
− 5z3

3h2

)
ϕ(x) � u(x) − zw,x + ψ(z)ϕ(x) (1)

w(x , z) � w(z) (2)

where u(x), w(x) are axial and transverse displacements at mid-plane of the LC beams, respectively; ϕ(x)
is the rotation of a transverse normal about the y-axis; ψ(z) is the shear function that reveals a higher-order
variation of axial displacement; the comma indicates partial differentiation with respect to the coordinate
subscript that follows.

The non-zero strains of LC beams derived from Eqs. (1, 2) are given by:

εx � ε(0)
x + zε(1)

x + ψε(2)
x (3)

γxz � ψ,zϕ (4)

where

ε(0)
x � u,x , ε(1)

x � −w,xx , ε(2)
x � ϕ,x (5)
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The elastic strain and stress relation of kth-layer in global coordinates is given by:

{
σx

σxz

}(k)

�
(
Q11 0
0 Q55

)(k){
εx

γxz

}(k)

(6)

where the Q
(k)
i j are the plane stress-reduced stiffness coefficients in global coordinates (see [22] for details).

2.2 Energy formulation

Hamilton’s principle is used to derive characteristic equations of the LC beams in which the total potential
energy � of the LC beams is composed of the strain energy U , work done by external forces V and kinetic
energy K .

t2∫
t1

δ�dt �
t2∫

t1

(δU + δV − δK )dt � 0 (7)

The variation of strain energy of the LC beams is given by:

δU �
∫
V

(σxδεx + σxzδγxz)dV �
L∫

0

(
Nxδε

(0)
x + M (1)

x δε(1)
x + M (2)

x δε(2)
x + Qxδϕ

)
dx

�
L∫

0

(
Nxδu,x − M (1)

x δw,xx + M (2)
x δϕ,x + Qxδϕ

)
dx

(8)

where the stress resultants
(
Nx , M

(1)
x , M (2)

x , Qx

)
are defined by:

Nx �
h/2∫

−h/2

σxbdz �Au,x − Bw,xx + Bsϕ,x (9)

M (1)
x �

h/2∫
−h/2

zσxbdz � Bu,x − Dw,xx + Dsϕ,x (10)

M (2)
x �

h/2∫
−h/2

ψσxbdz � Bsu,x − Dsw,xx + Hsϕ,x (11)

Qx �
h/2∫

−h/2

ψ,zσxzbdz � Asϕ (12)

where the stiffness coefficients of the LC beams are determined as follows:

(
A, B, D, Bs , Ds , Hs) �

h/2∫
−h/2

Q 11
(
1, z, z2,ψ , zψ ,ψ2)bdz (13)

As �
h/2∫

−h/2

Q 55ψ
2
,zbdz (14)
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The variation of work done by a transvers distributed force f of LC beams is written in the following form:

δV � −
L∫

0

f δwdx (15)

The variation of kinetic energy of the LC beams is expressed by:

δK �
∫
V

ρ(u̇δu̇ + ẇδẇ)dV

�
L∫

0

[
I0u̇δu̇ − I1

(
u̇δẇ,x + ẇ,xδu̇

)
+ I2ẇ,xδẇ,x + J1

(
u̇δϕ̇ + ϕ̇δu̇

)

−J2
(
ẇ,xδϕ̇ + ϕ̇δẇ,x

)
+ K2ϕ̇δϕ̇ + I0ẇδẇ

]
dx

(16)

where dot-superscript denotes the differentiation with respect to the time t ; ρ is the mass density of each layer,
and I0, I1, I2, J1, J2, K2 are the inertia coefficients defined by:

(I0, I1, I2, J1, J2, K2) �
h/2∫

−h/2

ρ
(
1, z, z2,ψ , zψ ,ψ2)bdz (17)

Substituting Eqs. (8), (15) and (16) into Eq. (7) leads to:

t2∫
t1

L∫
0

[(
Au,x − Bw,xx + Bsϕ,x

)
δu,x − (

Bu,x − Dw,xx + Dsϕ,x
)
δw,xx

+
(
Bsu,x − Dsw,xx + Hsϕ,x

)
δϕ,x + Asϕδϕ

]
dx −

L∫
0

qδwdx

−
L∫

0

[
I0u̇δu̇ − I1

(
u̇δẇ,x + ẇ,xδu̇

)
+ I2ẇ,xδẇ,x + J1

(
u̇δϕ̇ + ϕ̇δu̇

)

−J2
(
ẇ,xδϕ̇ + ϕ̇δẇ,x

)
+ K2ϕ̇δϕ̇ + I0ẇδẇ

]
dxdt � 0

(18)

2.3 Ritz method

Based on the Ritz method ([41]), the displacement field in Eq. (18) is approximated in the following forms:

u(x , t) �
m∑
j�1

Nu
j (x)u j e

iωt (19)

w(x , t) �
m∑
j�1

Nw
j (x)w j e

iωt (20)

ϕ(x , t) �
m∑
j�1

Nϕ
j (x)ϕ j e

iωt (21)

where ω is the natural frequency, i2 � −1 the imaginary unit; u j ,w j ,ϕ j are unknown values to be determined;
Nu

j (x), N
w
j (x) and Nϕ

j (x) are shape functions. It is known that the accuracy and convergence of theRitzmethod
depend on the choice of these approximate functions ([1, 22]). Trigonometric shape functions which satisfy
different boundary conditions (BCs): simply-supported (S–S), clamped-free (C–F) and clamped–clamped
(C–C), are given as follows ([22]):
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• S–S: Nu � cos jπx
L , Nw � sin jπx

L , Nϕ � cos jπx
L

• C–F: Nu � sin (2 j−1)π
2L x , Nw � 1 − cos (2 j−1)π

2L x , Nϕ � sin (2 j−1)π
2L x

• C–C: Nu � sin 2 jπx
L , Nw � sin2 jπx

L , Nϕ � sin 2 jπx
L

Substituting Eqs. (19, 20, 21) into Eq. (18) leads to:⎛
⎝
⎡
⎣ K11 K12 K13

TK12 K22 K23

TK13 TK23 K33

⎤
⎦ − ω2

⎡
⎣ M11 M12 M13

TK12 M22 M23

TK13 TM23 M33

⎤
⎦
⎞
⎠
⎧⎪⎨
⎪⎩
u
w

’

⎫⎪⎬
⎪⎭ �

⎧⎨
⎩
0
f
0

⎫⎬
⎭ (22)

where the components of stiffness matrix K, mass matrix M and force vector f are given by:

K 11
i j � A

L∫
0

Nu
i , x N

u
j , xdx , K 12

i j � −B

L∫
0

Nu
i , x N

w
j , xxdx , K 13

i j � Bs

L∫
0

Nu
i , x N

ϕ
j , xdx

K 22
i j � D

L∫
0

Nw
i , xx N

w
j , xxdx , K 23

i j � −Ds

L∫
0

Nw
i , xx N

ϕ
j , xdx

K 33
i j � −Hs

L∫
0

Nϕ
i , x N

ϕ
j , xdx + As

L∫
0

Nϕ
i N

ϕ
j dx , fi �

L∫
0

f Nϕ
j dx

M11
i j � I0

L∫
0

Nu
i N

u
j dx , M12

i j � −I1

L∫
0

Nu
i N

w
j , xdx , M13

i j � −J1

L∫
0

Nu
i N

ϕ
j dx

M22
i j � I0

L∫
0

Nw
i Nw

j dx + I2

L∫
0

Nw
i ,x N

w
j ,xdx , M23

i j � −J2

L∫
0

Nw
i ,x N

ϕ
j dx , M33

i j � K2

L∫
0

Nϕ
i N

ϕ
j dx (23)

2.4 Polynomial chaos expansion

For computational models involving random input parameters, the uncertainty in model responses can be
characterized by representing them as a series of orthogonal functions as follows ([42]):

r(q) �
∞∑
i�0

βi
i (q) (24)

where q is a vector of d independent random variables mapped to physical random parameters; 
i are multi-
variate orthogonal basis functions;βi are coefficients to be determined. In order to determine these components,
two main following approaches can be considered: polynomial chaos expansion (PCE) and stochastic collo-
cation, in which the PCE estimates the coefficients in a suitable set of basis functions using either spectral
projection or linear regression, whereas the stochastic collocation approach forms the interpolation polyno-
mials for the known coefficients under collocation points ([43]). For the present manuscript, the PCE method
with both projection and linear regression methods will be developed. The multivariate Hermite polynomials
are used as the basis functions, and q is used as a vector of standard normal variables.

In practice, Eq. (24) is typically truncated using a finite number of terms. If the number of random variables
is d , the qualified order of polynomial is p, and for the total-degree truncation scheme, the number of full
polynomial terms N is the permutation of p and d + p, determined as follows: N � (d+p)!

d!p! ([42]), Eq. (24)
therefore becomes:

r(q) �
N−1∑
i�0

βi
i (q) + ε (25)

in which the basis functions 
i are considered under multivariate Hermite polynomials, and their associated
coefficients βi should be determined so that the residual ε is minimized. Among different methods, spectral
projection and linear regression approaches are applied in this paper.



Spectral projection and linear regression approaches

2.4.1 Spectral projection approach

For spectral projection, the residualminimum requires that itmust be orthogonalwith the projection of response
in the selected space or the inner product of the residual and each basis function is zero. From Eq. (25), taking
the inner product of both sides with respect to 
 j and enforcing orthogonality yields:

〈
r ,
 j

〉 �
N−1∑
i�0

βi
〈

i ,
 j

〉
(26)

Because 
 j are mutually orthogonal, Eq. (26) becomes:

βi � 〈r ,
i 〉
〈
i ,
i 〉 � 1

〈
i ,
i 〉
∫

r
iρQ(q)dq (27)

It is noted that all coefficients can be theoretically obtained by solving Eq. (27); however, the random
response r is unknown. Moreover, Eq. (27) involves a multidimensional integral evaluated numerically
using either probabilistic techniques (sampling) or deterministic techniques (quadrature rules, sparse grid
approaches). In the present paper, the probabilistic Gauss-Hermite quadrature will be used to compute βi .
Note that the normalization factor 〈
i , 
i 〉 in Eq. (27) can be analytically estimated. It is worth to noticing
that if the order of the output r is p, the highest order of the integrands in Eq. (27) is at least 2p, so the
minimum number of Gauss point for each dimension is Ngp � p +1 and the total number of quadrature points

is (p + 1)d . Hence, if the model response r
(
q1j1 ...q

d
jd

)
is obtained from the Ritz solution, (p + 1)d determin-

istic problems need to be solved. In consequence, this method is quite expensive for multidimensional and
higher-order problems.

2.4.2 Linear regression approach

Let � � {
q1, ..., qNs

}
be a set of Ns(Ns > N ) realizations of input random vector, and R � {

r1, ..., r Ns
}
be

corresponding output evaluations
(
r i � r

(
qi
)
, i � 1, ..., Ns

)
. The vector of residuals can be estimated from

Eq. (25) in the compact form:

ϒ � R − βT� (28)

where � is the matrix whose elements are given by 
i j � 
 j
(
qi
)
, i � 1, ..., Ns ; j � 1, ..., N . The

coefficients β are estimated by minimizing the L2− norm (least-square regression) of the residual followed
as:

β � Arg min
∥∥∥R − βT�

∥∥∥2
2

(29)

Solving Eq. (29), the coefficients are given by:

β �
(
�T�

)−1
�TR (30)

2.5 Sensitivity analysis

Apart from the LC beams’ responses concerning the input uncertainty, the degree to which each random
variable contributes to the model output uncertainty is of great interest. The sensitivity analysis is a branch of
study that quantifies how much the uncertainty of each random input variable, either as an individual or with
other variable interaction, contributes to the model output uncertainty. The sensitivity analysis can be carried
out effectively by the variance-based method, which has been developed by Sobol [44] and has been further
studied by Satelli et al. [45, 46] and Sudret [47]. Sobol’s first-order and total-order indices are given by Satelli
et al. [45] as follows:

First-order Sobol index : Si � Varqi (Eq∼i (r |qi ))
Var (r )

qk ��i (31)
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Table 1 Random input material properties and statistical distribution

Material properties and load Mean COV Distribution

MAT I [18] MAT II [22]

E1(GPa) 138 100 0.1 Lognormal
E2 � E3(GPa) 6.9 4 0.1 Lognormal
G12 � G13(GPa) 4.14 2 0.1 Lognormal
G23(GPa) 3.45 0.8 0.1 Lognormal
ν12 � ν13 0.25 0.25 0.1 Lognormal
ρ(kg/m3) 1550.1 – 0.1 Lognormal
q(N/m) – 106 0.1 Lognormal

Total-order Sobol index : ST i � 1 − Varq∼i (Eqi (r |q∼i ))

Var (r )
(32)

Both kinds of these Sobol indices are normalised by Var (r ) but the difference in meaning is first-order
Sobol indices measure only the impact of a sole particular input variable qi , while total-order Sobol indices
also take into account the impact of interactions between qi and other variables qk ��i .These indices can be
computed using crude Monte Carlo simulation with the computational cost of (d + 2)Ns or using PCE with no
additional cost. The Sobol’s first-order and total-order indices can be estimated as follows:

Si � Di

Var (r )
(33)

ST i � DTi

Var (r )
(34)

where Di � ∑
j∈�i

β2
j

〈

 j (qi ), 
 j (qi )

〉
j , �i comprises all indices j such that the multivariate function 
 j only

contains the variable qi ; DTi � ∑
j∈�T i

β2
j

〈

 j (q), 
 j (q)

〉
, �T i comprises all indices j such that the multivariate

function 
 j must contain variable qi ; index j depends on how the list of multivariate functions is sorted.

3 Numerical results

Several numerical examples are performed in this section to investigate the accuracy and efficiency of the
present theory. The effects of material properties uncertainty on the bending and free vibration behaviors
of LC beams are observed with different lay-ups and boundary conditions. Two types of material MAT I
[18] and MAT II [31] shown in Table 1 are considered for the vibration and bending analysis, respectively.

The non-dimensional fundamental frequency and mid-span displacement are given as: ω̂ � ωL2

b3

√
ρ
E2

and

ŵ � 100E2bh3

qL4 w.

3.1 Convergence study

In order to investigate the convergence of the present solution with an increasing number of series, both non-
dimensional first fundamental frequencies (MAT I) and mid-span displacements (MAT II) of [0o/90o/0o] LC
beams are computed with increasing Ritz series numbers and different boundary conditions. It can be seen
from Table 2 that the convergence of the present Ritz-based trigonometric series solution is fairly achieved at
m � 8. Therefore, m � 8 would be used in subsequent calculations.

Additionally, to verify the convergence of the present solution with respect to the polynomial order p,
Table 3 introduces fundamental frequencies of [0o/90o/0o] LC beams withMAT I and for the linear regression
(LR), spectral projection (SP), and MCS methods. The first four statistical moments, including the mean μ,
standard deviation σ , kurtosis, and skewness are calculated for C–C boundary conditions. The span-to-depth
ratio L/h � 10 is considered and the order of polynomial p is increased from 2 to 5. In the LR method,
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Table 2 Convergence of the non-dimensional fundamental frequency (MAT I) and non-dimensional mid-span displacement
(MAT II) of [0o/90o/0o] laminated composite beams

BC m

2 4 6 8 10 12

Non-dimensional fundamental frequency
S–S 10.76 10.76 10.76 10.76 10.76 10.76
C–C 18.07 17.70 17.59 17.54 17.52 17.51
C–F 4.18 4.15 4.14 4.14 4.14 4.14
Non-dimensional mid-span displacement
S–S 1.11 1.10 1.10 1.10 1.10 1.10
C–C 0.48 0.52 0.53 0.53 0.53 0.53
C–F 3.13 3.36 3.41 3.43 3.44 3.45

Table 3 Convergence of fundamental frequency (Hz) of [0o/90o/0o] laminated composite beams with respect to the polynomial
order p of the PCE (L/h � 10, C–C)

Polynomial order p Properties LR SP MCS

2 μ 1549.373 1549.321 1549.233
σ 89.566 89.628
Kurtosis 3.037 3.045
Skewness 0.165 0.176

3 μ 1549.286 1549.233 89.719
σ 89.656 89.687
Kurtosis 3.051 3.059
Skewness 0.172 0.178

4 μ 1549.364 1549.425 3.061
σ 89.565 89.568
Kurtosis 3.058 3.055
Skewness 0.176 0.177

5 μ 1549.285 1549.432 0.172
σ 89.595 89.635
Kurtosis 3.056 3.049
Skewness 0.175 0.173

a higher-order polynomial gives a higher number of terms N , and the number of simulation runs in the LR
method Ns is set to be 3 N . Besides, for the SP method, the number of Gauss quadrature points Ngp is equal
to the order of polynomial plus one for each variable (i.e.,Ngp � p + 1) and the Ns is equal to Nd

gp. For
both LR and SP, the higher-order polynomial clearly gives a higher degree of accuracy but also requires more
computing time. Based on the results in Table 3, this study considers the polynomial order of 3 to be sufficient
and will be used in the subsequent sections. The convergence study of the static analysis gives a similar trend
and also achieves sufficient accuracy when the polynomial order is 3. As a result, for the LC beam responses
of LR, SP and MCS methods in all subsequent Tables, the numbers of simulations are Ns � 252, Ns � 4096
and Ns � 106, respectively.

3.2 Verification of the model accuracy

Before demonstrating the efficiency of the proposed stochastic analysis for the LC beams, the accuracy of
the beam solver model with and without uncertainties in material properties is investigated. Symmetric and
asymmetric cross-ply LC beams with different layer-ups of the same thickness are considered. It is noted that
the deterministic solution results in Table 4 and 5 are derived from the mean values of the input parameters in
Table 1. To verify the vibration behaviors of the LC beams, Table 4 presents the mean, standard deviation, and
deterministic fundamental frequencies of [0o/90o/0o] and [0o/90o] LCbeamswith L � 0.381m,h � 0.0381m
and MAT I. The mean values obtained from the MCS, LR and SP are compared with those obtained from
previous works of Nguyen et al. [18] and Jun et al. [15]. It can be seen that there are excellent agreements
between the models.

Similarly, the reliability of the present theory in predicting static behaviors is carried out in Table 5 for
both cross-ply 0°/90°/0° and 0°/90° LC beams made of the MAT II with L � 0.381m, h � 0.0381m. The
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Table 4 Mean and standard deviation of fundamental frequency (Hz) of [0o/90o/0o] and [0o/90o] laminated composite beams
with C–C boundary conditions (L � 0.381m, h � 0.0381m, MAT I)

Theory 0°/90°/0° 0°/90°

μ σ μ σ

Deterministic 1546.8 – 1000.7 –
Nguyen et al. [18] 1552.4 – 1001.2 –
Jun et al. [15] – – 999.6 –
Present (LR) 1549.4 89.6 1003.0 58.3
Present (SP) 1549.2 89.5 1002.9 58.2
Present (MCS) 1549.2 89.6 1003.0 58.3

Table 5 Mean and standard deviation of mid-span displacement (mm) of [0o/90o/0o] and [0o/90o] laminated composite beams
with C–C boundary conditions (L � 0.381m, h � 0.0381m, MAT II)

Theory 0°/90°/0° 0°/90°

μ σ μ σ

Deterministic 0.504 – 0.955 –
Nguyen et al. [22] 0.506 – 0.956 –
Khdeir and Reddy [24] 0.507 – 0.957 –
Present (LR) 0.507 0.059 0.961 0.111
Present (SP) 0.507 0.059 0.960 0.111
Present (MC) 0.507 0.059 0.960 0.111

mean, standard deviation and deterministic results of the transverse mid-span displacement are compared with
those derived from Nguyen et al. [22] and Khdeir and Reddy [24] based on the HSDT. In comparison, good
agreements with the earlier works are again found. In the following sections, where the uncertainties inmaterial
properties are accounted for, the MCSwith one million simulation Ns � 106 is deemed the reference for result
verification of the LR and SP methods.

3.3 Static analysis

The static behaviors of LC beams with various boundary conditions, span-to-depth ratios, and fiber angles are
investigated in this section. These beams are made of MAT II and subjected to a uniformly distributed load.
In this stochastic analysis, there are six lognormal-distributed random variables with a coefficient of variation
(COV) of 0.1, where COV is the ratio between the standard deviation and mean of an input variable. In order to
verify the accuracy of LR and SPmethods, asmentioned above, four statisticalmoments consisting of themean,
standard deviation, skewness, and kurtosis of the mid-span displacement are computed and compared with
those of the Monte Carlo simulations. Regarding the computational cost, the MCS, LR, and SP, respectively,
require 106, 252 and 4096 simulations of the beam analysis model.

It can be seen from Tables 6, 7, 8 that the results obtained from LR and SP agree well with the MCS.
Although the SP method runs 16 times more simulations than the LR, the improvement in accuracy is only
noticeable in a few cases of thin beam (L/h � 20)where the lay-ups are [45o/−45o] and [−45o/45o/−45o].
These results ascertain the accuracy of the LR and SP methods. Furthermore, the average computing time is
also displayed for each method. The time taken to pre-compute the integrals of stiffness and mass matrices is
excluded. Even though this recorded time can vary considerably depending on the computer specifications or
programming languages, the ratios between the run-time of MCS and PCE methods are evaluated. Both LR
and SP approaches for the PCE method take the authors’ computer less than a second, while the MCS requires
slightly over a minute. This remark demonstrates the efficiency of the current PCE method. In addition, the
LC beam deflections under various boundary conditions are plotted in Figs. 2, 3 shows the probability density
function (PDF) and probability of exceedance (PoE) curves of the mid-span displacements. The PDF graph
shows identical data distribution across three methods, whereas in the PoE figures, all three methods only give
the matching results up to P

(
X > 10−4

)
. This discrepancy is due to the lack of samples whose probability of

occurrence is less than 10–4. In Fig. 4, the PoE curves of the output distribution computed by MCS, SP and
LR are plotted 10 times and all of them show visible variation pass the point where P

(
X < 10−4

)
.
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Table 6 Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement (mm) for laminated composite
beams with different lay-ups (MAT II) and S–S boundary condition

Lay-ups Statistical moments L/h � 5 L/h � 20

LR SP MC LR SP MC

[0o/90o] Mean 0.573 0.573 0.573 26.228 26.222 26.223
SD 0.066 0.066 0.066 3.256 3.254 3.255
Kurtosis 3.219 3.215 3.211 3.248 3.251 3.255
Skewness 0.351 0.351 0.346 0.370 0.372 0.377

[45o/ − 45o] Mean 1.671 1.670 1.670 91.799 91.821 91.808
SD 0.202 0.202 0.202 11.417 11.424 11.413
Kurtosis 3.244 3.232 3.265 3.260 3.252 3.254
Skewness 0.372 0.365 0.375 0.380 0.381 0.378

[0o/90o/0o] Mean 0.289 0.289 0.289 5.851 5.852 5.852
SD 0.034 0.034 0.034 0.773 0.774 0.773
Kurtosis 3.221 3.223 3.236 3.306 3.301 3.306
Skewness 0.354 0.350 0.356 0.408 0.411 0.409

[45o/ − 45o/45o] Mean 1.671 1.670 1.671 91.798 91.798 91.802
SD 0.202 0.202 0.202 11.407 11.423 11.430
Kurtosis 3.253 3.247 3.250 3.249 3.255 3.271
Skewness 0.373 0.371 0.372 0.375 0.381 0.385

Average computing time (s) 0.5 0.8 65.4 0.5 0.8 61.7

Table 7 Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement (mm) for laminated composite
beams with different lay-ups (MAT II) and C–C boundary condition

Lay-ups Statistical moments L/h � 5 L/h � 20

LR SP MC LR SP MC

[0o/90o] Mean 0.230 0.230 0.230 5.764 5.766 5.765
SD 0.026 0.026 0.026 0.696 0.696 0.697
Kurtosis 3.216 3.213 3.217 3.244 3.236 3.242
Skewness 0.351 0.346 0.344 0.364 0.362 0.369

[45o/ − 45o] Mean 0.517 0.517 0.517 19.116 19.112 19.106
SD 0.061 0.061 0.061 2.356 2.356 2.352
Kurtosis 3.244 3.221 3.220 3.272 3.256 3.253
Skewness 0.362 0.356 0.357 0.380 0.379 0.376

[0o/90o/0o] Mean 0.184 0.184 0.184 1.802 1.802 1.802
SD 0.022 0.022 0.022 0.215 0.215 0.215
Kurtosis 3.210 3.217 3.222 3.222 3.236 3.230
Skewness 0.349 0.356 0.354 0.359 0.361 0.364

[45o/ − 45o/45o] Mean 0.517 0.517 0.517 19.115 19.115 19.107
SD 0.061 0.061 0.061 2.357 2.359 2.356
Kurtosis 3.233 3.227 3.233 3.243 3.263 3.252
Skewness 0.373 0.379 0.378 0.373 0.379 0.378

Average computing time (s) 0.4 0.9 61.2 0.5 0.9 63.0

3.4 Vibration analysis

In this section, the fundamental frequencies (Hz) of LC beamswith various boundary conditions, span-to-depth
ratio, and fiber angles are given in Tables 9, 10, 11. These beams made of the MAT I have six lognormal-
distributed random variables with a COV of 0.1. Similar to the static analysis, four statistical moments of mean,
standard deviation, skewness, and kurtosis of the fundamental frequency (Hz) are computed and verified with
those of the Monte Carlo simulations. While both the LR and SP methods give matching results for the mean
and standard deviation, there is an apparent discrepancy of the skewness and kurtosis between the LR method
and the other two. Tables 9, 10, 11 show that the kurtosis and skewness obtained from the LR method in the
cases of 45°/− 45° and 0°/90° beams differ from the kurtosis and skewness of the SP and MCS methods. This
difference in the skewness and kurtosis does not mean the whole output distributions from thesemethods differ.
Concerning efficiency, like the static analysis section above, the PCEmethods show considerable improvement
in the average computing time compared to the MCS for all cases of the LC beams.
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Table 8 Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement (mm) for laminated composite
beams with different lay-ups (MAT II) and C-F boundary condition

Lay-ups Statistical moment L/h � 5 L/h � 20

LR SP MC LR SP MC

[0o/90o] Mean 1.824 1.825 1.824 88.711 88.719 88.717
SD 0.214 0.214 0.214 11.004 11.023 11.027
Kurtosis 3.233 3.226 3.223 3.237 3.244 3.242
Skewness 0.355 0.355 0.354 0.367 0.370 0.371

[45o/ − 45o] Mean 5.523 5.522 5.524 311.433 311.427 311.449
SD 0.671 0.670 0.671 38.729 38.727 38.747
Kurtosis 3.256 3.253 3.259 3.253 3.253 3.257
Skewness 0.376 0.375 0.374 0.378 0.377 0.378

[0o/90o/0o] Mean 0.813 0.813 0.813 19.358 19.363 19.360
SD 0.095 0.095 0.094 2.584 2.585 2.587
Kurtosis 3.206 3.222 3.202 3.297 3.309 3.302
Skewness 0.349 0.348 0.344 0.408 0.413 0.414

[45o/ − 45o/45o] Mean 5.522 5.522 5.522 311.447 311.381 311.389
SD 0.671 0.670 0.670 38.707 38.727 38.702
Kurtosis 3.243 3.261 3.246 3.250 3.265 3.265
Skewness 0.371 0.373 0.371 0.375 0.380 0.379

Average computing time (s) 0.4 0.9 62.4 0.5 0.8 59.4

Fig. 2 Probability density function (PDF) and Probability of exceedance (PoE) of three numerical methods (MCS, LR, SP) of
the mid-span displacement (mm) for [45o/ − 45o/45o] laminated composite beam (L/h � 20, S–S boundary condition)

Fig. 3 Probability density function (PDF) and Probability of exceedance (PoE) of three numerical methods (MCS, LR, SP) of
the mid-span displacement (mm) for [45o/ − 45o/45o] laminated composite beam (L/h � 20, C–C boundary condition)
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(a) MCS

(b) LR

(c) SP

Fig. 4 Variation in probability of exceedance (PoE) of mid-span displacement (mm) for the [0o/90o/0o] laminated composite
beam (L/h � 5, C–C boundary condition)
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Table 9 Mean, standard deviation, kurtosis and skewness of fundamental frequency (Hz) of laminated composite beams with
different lay-ups (MAT I) and S–S boundary condition

Lay-ups Statistical moments L/h � 5 L/h � 20

LR SP MC LR SP MC

[0o/90o] Mean 891.230 891.265 891.345 251.138 251.107 251.122
SD 52.197 52.210 52.186 15.478 15.465 15.436
Kurtosis 3.046 3.054 3.054 2.942 3.072 3.057
Skewness 0.170 0.176 0.174 0.222 0.187 0.185

[45o/ − 45o] Mean 574.380 574.405 574.391 152.486 152.481 152.472
SD 34.893 34.908 34.892 9.380 9.374 9.389
Kurtosis 3.061 3.056 3.060 2.887 3.058 3.065
Skewness 0.180 0.177 0.179 0.207 0.183 0.185

[0o/90o/0o] Mean 1433.000 1433.202 1433.094 529.764 529.855 529.840
SD 83.171 83.156 83.169 35.966 35.948 35.927
Kurtosis 3.059 3.060 3.054 3.070 3.075 3.068
Skewness 0.169 0.175 0.170 0.201 0.202 0.191

[45o/ − 45o/45o] Mean 574.429 574.418 574.417 152.500 152.484 152.484
SD 34.925 34.890 34.910 9.391 9.387 9.371
Kurtosis 3.056 3.064 3.059 3.063 3.057 3.073
Skewness 0.179 0.181 0.180 0.182 0.187 0.183

Average computing time (s) 1.4 1.9 117.5 1.3 2.5 120.3

Table 10 Mean, standard deviation, kurtosis and skewness of fundamental frequency (Hz) of laminated composite beams with
different lay-ups (MAT I) and C–C boundary condition

Lay-ups Statistical moments L/h � 5 L/h � 20

LR SP MC LR SP MC

[0o/90o] Mean 1558.420 1558.239 1558.318 552.984 552.986 552.989
SD 87.957 87.872 87.812 33.448 33.478 33.501
Kurtosis 3.042 3.055 3.053 2.668 3.057 3.056
Skewness 0.171 0.171 0.169 0.185 0.183 0.180

[45o/ − 45o] Mean 1119.291 1119.101 1119.239 341.336 341.318 341.307
SD 66.516 66.533 66.471 20.931 20.892 20.888
Kurtosis 3.044 3.047 3.059 2.937 3.058 3.052
Skewness 0.170 0.175 0.175 0.120 0.178 0.176

[0o/90o/0o] Mean 1903.023 1902.896 1903.137 1052.855 1053.112 1053.129
SD 110.435 110.430 110.547 65.283 65.372 65.372
Kurtosis 3.056 3.058 3.061 3.063 3.065 3.056
Skewness 0.173 0.171 0.179 0.181 0.178 0.178

[45o/ − 45o/45o] Mean 1119.214 1119.171 1119.285 341.353 341.308 341.353
SD 66.382 66.429 66.480 20.911 20.920 20.945
Kurtosis 3.053 3.043 3.055 3.061 3.049 3.058
Skewness 0.170 0.173 0.173 0.181 0.177 0.181

Average computing time (s) 1.3 3.5 114.2 0.8 1.2 117.1

Instead of comparing the PDF and PoE as above, Fig. 5 shows the quantile–quantile plots of 106 sample
outputs obtained from MCS compared with the outputs of LR and SP methods in each of the two graphs. In
a quantile–quantile plot, the two samples plotted have the same distribution when the plot is linear and lies
along the 45-degree reference line. The straight lines shown in Fig. 5 further confirm that compared with the
computationally-expensive MCS, the output distribution of LR and SP methods are accurate despite the much
fewer simulations. In addition, the PoE curves of the output from all three methods are plotted ten times in
Fig. 6 to demonstrate how the lack of samples pass the point P

(
X < 10−4

)
causes the variation in the vibration

output distribution. This also explains the deviation of data points from the 45-degree reference line at the
lower- and upper-extreme quantiles in Fig. 5.
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Table 11 Mean, standard deviation, kurtosis and skewness of fundamental frequency (Hz) of laminated composite beams with
different lay-ups (MAT I) and C-F boundary condition

Lay-ups Statistical moments L/h � 5 L/h � 20

LR SP MC LR SP MC

[0o/90o] Mean 338.969 338.930 338.967 89.918 89.933 89.922
SD 20.346 20.336 20.345 5.548 5.553 5.558
Kurtosis 3.061 3.057 3.049 2.724 3.073 3.071
Skewness 0.180 0.181 0.177 0.045 0.190 0.191

[45o/ − 45o] Mean 211.651 211.635 211.629 54.453 54.456 54.458
SD 12.952 12.956 12.939 3.351 3.354 3.353
Kurtosis 3.049 3.062 3.063 2.770 3.049 3.062
Skewness 0.178 0.181 0.185 0.032 0.178 0.183

[0o/90o/0o] Mean 617.404 617.420 617.421 193.115 193.109 193.121
SD 37.323 37.290 37.282 13.374 13.389 13.375
Kurtosis 3.055 3.056 3.060 3.069 3.077 3.080
Skewness 0.172 0.175 0.175 0.203 0.207 0.206

[45o/ − 45o/45o] Mean 211.646 211.644 211.633 54.454 54.461 54.460
SD 12.955 12.942 12.944 3.353 3.354 3.353
Kurtosis 3.043 3.047 3.047 3.062 3.051 3.059
Skewness 0.179 0.180 0.177 0.182 0.182 0.179

Average computing time (s) 0.4 1.0 112.0 0.5 1.1 119.8

Fig. 5 Quantile–quantile plot of Linear regression (LR) and Spectral projection (SP) methods with respect to the Monte Carlo
Simulation (MCS) for the fundamental frequencies of [45o/ − 45o] laminated composite beam (L/h� 5, C–C boundary condition)

3.5 Sensitivity analysis

This section discusses the impact of each random input variable on the beam’s deflection and fundamental
frequency. In all cases, total-order Sobol indices computed are very similar to the first-order Sobol indices
which infer that there is almost no interaction between the random input variables. Therefore, only the first-
order Sobol indices are presented in Figs. 7 and 8. While these Sobol indices can be derived effortlessly from
the PCE coefficients, they theoretically require two nested loops of N 2

s beam solver runs in the crude MCS
method. Several improved MCS algorithms proposed [45] can reduce the complexity to (Nrv + 2)Ns which
is still nowhere near the efficiency of the PCE method presented in this paper. In both figures, the three bars
represent the first-order Sobol indices of the variable underneath computed using the MCS, PCE-SP and PCE-
LR methods. The values above each group of bars are, respectively, for the MCS, PCE-SP and PCE-LR from
top to bottom. It can be seen from both Figs. 7 and 8 that the PCE-SP and PCE-LR methods give the same
results, all of which agree well with the MCS. Figure 7 indicates the variation of applied distributed load q
affects the beam’s deflection the most.

Interestingly, to a lesser extent, the variation of the material’s shear modulus G12 also influences the
model outputs in the case of [45o/ − 45o] lay-up while in the case of [0o/90o] lay-up, the second most
impactful variable is E1. All the other four variables in both cases of lay-ups are considered insignificant and
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(a) MCS

(b) LR

(c) SP

Fig. 6 Variation in probability of exceedance (PoE) of fundamental frequencies (Hz) for the [0o/90o/0o] laminated composite
beam (L/h � 20, C-F boundary condition)
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Fig. 7 First-order Sobol indices of the random input variables with respect to the mid-span displacement (mm) of the LC beam
model obtained from MCS and PCE (L/h � 5, S–S boundary condition)

Fig. 8 First-order Sobol indices of the random input variables with respect to the first fundamental frequency (Hz) of the LC
beam model obtained from MCS and PCE (L/h � 5, C–F boundary condition)

can be ignored to reduce the computational cost. Figure 8 shows a similar pattern for the vibration analysis
of the beam. For both [45o/ − 45o/45o] and [0o/90o/0o] lay-ups, the material mass density ρ affects the
fundamental frequencies the most. The second most important variable is G12 for [45o/ − 45o/45o] lay-up
and E1 for [0o/90o/0o] lay-up. There is a small difference compared to the static analysis that in the case
of [45o/ − 45o/45o] lay-up, E2 plays a minor role in altering the beam’s vibration responses. Knowing the
lay-up arrangement, the sensitivity analysis is thus valuable for filtering the critical variables in a beam model,
reducing the size of the random input vector and saving computing time.

4 Conclusion

This paper investigated the stochastic static and vibration characteristics of laminated composite beams consid-
ering the uncertainty inmaterial properties and applied loads. The random input parameters aremodeled within
a given range of the lognormal distributions. A metamodel-based polynomial chaos expansion with spectral
projection and linear regression approaches was constructed using a few training samples simulated from the
deterministic beam model. The higher-order shear deformation theory and Hamilton’s principle are employed
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to derive the beam’s governing equations which are then solved by Ritz’s method. The results from the PCE are
validated against the crudeMonte Carlo simulation regarding different statistical metrics and input parameters’
sensitivity. The following conclusions could be drawn from the observations of the numerical results:

• The proposed PCE method has been demonstrated to accurately capture the stochastic output distribu-
tion while significantly reducing the number of required simulations and substantially reducing computing
expenses.

• The linear regression approach requires fewer simulations than the spectral projection approach.
• The proposedmethods can estimate Sobol’s indices in global sensitivity analysiswithout incurring additional
computing costs beyond those necessary for constructing the PCE model.

• The variability in the applied load influences the mid-span displacement most, while mass density variation
significantly affects the vibration characteristics of LC beams.

The proposed use of PCE in this paper for laminated composite beams can be extended to stochastic
analysis of other composite structures. This approach is particularly valuable in cases where the complexity
of calculations or the cost of practical experiments hinder efficient data collection.
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Abstract—A novel two-variable model for static analysis of 
laminated composite beams is proposed in this paper. The 
kinematics of the beam having only two variables are expanded 
in a hybrid form under polynomial and trigonometric series in 
thickness and axial directions, respectively. Lagrange's equations 
are then used to derive characteristic equations of the beams. 
Numerical results for laminated composite beams are compared 
with previous studies and are used to investigate the effects of 
length-to-depth ratio, fibre angles and material anisotropy on the 
deflection and stresses of laminated composite beams.

Index Terms — Laminated composite beams; Bending; Elastic­
ity solution.

I. In t r o d u c t i o n

Laminated composite materials are fabricated by assembling 
multiple layers of fibrous materials to achieve the superior 
engineering properties such as bending stiffness, strength-to- 
weight ratio and thermal performance. As a result, laminate 
composite has been widely applied in aerospace engineering, 
mechanical engineering as well as construction technology. In 
order to maximise the potential advantage of this multilayered 
material, numerous studies and computation modelling have 
been conducted to fine-tune the static and dynamic behaviours 
of laminated composite beams.Various beam theories have 
been developed in order to predict accurately their structural 
responses and capture anisotropy of laminated composite 
materials. Classical beam theory (CBT) is the simplest one in 
analyzing responses of laminated composite beams. Nonethe­
less, this theory underestimates deflections and overestimates 
natural frequencies of the beams due to neglecting effects 
of transverse shear deformation. In order to account for this 
effect, thanks to its simplicity in formulation and program­
ming, the first-order shear deformation beam theory (FSBT) 
is commonly used by researchers and commercial softwares 
for the analysis of laminated composite beams ([1], [2], [3], 
[4], [5]). However, in this theory, the inadequate distribution of
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transverse shear stress in the beam thickness requires a shear 
correction factor to calculate the shear force. This adverse in 
practice could be overcome by using higher-order deformation 
beam theory (HSBT) ([6], [7], [8], [9], [10], [11], [12], [13], 
[14], [15]) or Quasi-3D beam theory (Quasi-3D) ([16], [17], 
[18], [19], [20], [21], [22]) owing to the higher-order variation 
of axial displacement or both axial and transverse displace­
ments, respectively. In such approach, stresses of the beam can 
be directly computed from constitutive equations without shear 
coefficient requirement. Many higher-order shear deformation 
theories have been developed with different approaches in 
which its kinematics could be expressed in terms of polyno­
mial ([23], [24], [25], [26], [27]), trigonometric ([28], [29], 
[30], [31], [32], [33], [34]), exponential ones ([35], [36]), 
hyperbolic ([37], [38], [39]) and hybrid higher-order shear 
functions ([40], [41]). A literature review shows that a vast 
number of researches on development HSBT and Quasi-3D 
have been developed, however the accuracy of these theories 
strictly depends on the choice of shear functions and number of 
variables defining the problem. The development of new beam 
theories as well as suitable solution methods is a complicated 
problem and needs to study further.

The objective of this paper is to develop a bi-directional 
elasticity solution for static analysis of laminated composite 
beams. Based on the elasticity equations, the proposed theory 
only requires two unknowns in which the axial and transverse 
displacements are approximated in series terms in its two 
in-plane directions for different boundary conditions and La­
grange’s equations are used to derive characteristic equations. 
Numerical results are presented to investigate the effects of 
length-to-depth ratio, fibre angle and material anisotropy on 
the deflections and stresses of laminated composite beams.

II. Th e o r e t i c a l  f o r m u l a t i o n

Considering a laminated composite beam with rectangular 
section b x h and length L, the beam is composed of n layers 
of orthotropic materials.

978-1-7281-9982-5/20/S31.00 ©2020 IEEE 624
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A. Kinematic, strain and stress

Denoting u and w are axial and transverse displacements 
at location (x, z) of the beam. The linear displacement-strain 
relations of the beam are given by:

du
€x — 7Zdx

(la)

dw
(lb)

€z = ^
du dw

(1c)'Jxz — H-dz dx

Based on an assumption of the plan stress in the plane (x, z) 
of the beam, i.e ay = ayz = axy =  0, the elastic constitutive 
equation at the kth -layer in the global coordinate system is 
expressed by:

C ll Cl3 0 ( £x 1
Ci3 C33 0 l  Cz \ (2)
0 0 C55  ̂ Ixz )

C. Bi-directional Ritz solution

Based on the Ritz method, the axial and transverse dis­
placements at location (x, z) of the beam can be generally 
approximated in the following forms:

R S
u(x, z,t) =  ^ ^ 2  frs  (x, z)urs

r= 1 s= 1 
R S

(6a)

w(x, z , t ) = ^  ^ 2  Trs (x, z)wrs (6b)
r=1s=1

where urs,wrs are unknown displacement values to 
be determined; f rs(x,z), prs(x,z) are the bi-directional 
shape functions which are composed of admissible hybrid 
exponential-trigonometric function in the x-axis and poly­
nomial function in the z-axis as follows:

ax
az
axz

where C11, C13 and C55 are the reduced in-plane and out- 
of-plane elastic stiffness coefficients of the laminated compos­
ite beam in the global coordinates (see [22] for more details).

B. Energy formulation

The total static energy n  of the beam under an external 
transverse loading comprises the strain energy U and work 
done by the external load V. The strain energy U of the beam 
is given by:

U =

+

I (ax Cx + az Cz +  axzTxz ) dV
Jv2 _ .

C55
du \  2 dudw f  dw^ 2 
~d~z I + 2 ~d~zlhi+  V

dV

(3)

1

S-S : frs(x,z) =  cos
L

<Prs(x,z) =  sm ^2e-rx/Lzs- 1 
L

(7a)

C-F : frs(x,z) =  s in^ e— / V - 1
2L

<Prs(x,z) =  (1 - c o s | 0  e-rxl Lzs- 1 (7b)

C-C : frs(x,z) nx —rx/L s — 1=  sin —— e 7 z 
L

<Prs(x,z) =  sin2
L

(7c)

It is noted that the shape functions in Eqs. (7) satisfy kinetic 
boundary conditions of the beams (S-S: siply supported beams, 
C-F: clamped-free beams, C-C: clamped-clamped beans). The 
characteristic equations of the beam can be obtained by sub­
stituting Eqs. (6) into Eq. (5) and using Lagrange’s equations:

The work done by a transverse load q at the bottom surface 
of the beam is given by:

V = — / qwdx (4)
J 0

a n

dqrs
(8)

The total energy of the beam is therefore expressed by:

+ C55

— f

<9w\2 dudw ( dwx 2
dz ) dz dx V dx

dV

qwdx (5)

where qrs = (urs,wrs) are displacement vector of the 
beam. The characteristic equations of the beam are obtained 
as follows:

K 11 K 12 ] /  u 1 /  0
TK 12 K 22 J \  w J =  \  F (9)

where the components of stiffness matrix K  and load vector
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F are defined as follows:

K 11rspq

K 12rspq

K 22rspq

Fr

+

+

+

/  /  C7n> 0 J-h/2
, L ph/2

/ / C55
0 - h/2
, L ph/2

/ / ^Z0 J-h/2
pL ph/2
/  /  <?55
0 -h /2
L /.h/2

/ / C33
0 -h /2
/• L ph/2

/  /  C55
0 -h /2

= q<firs dx
0

III. Nu m e r i c a l  e x a m p l e s

0'iprs d ’ljjpq

dx dx

diprs d'lppq

dz dz

diprs d(ftpq

dx dz

diprs d(ftpq

dz dx

dprs d(ftpq

dz dz

dlfirs d(ftpq

dx dx

bdxdz 

bdxdz, 

bdxdz 

bdxdz, 

bdxdz 

bdxdz,

(10)

A range of numerical examples are performed in this section 
to verify the efficiency of the present theory with different 
boundary conditions. The laminated composite beam is sub­
jected to a uniformly distributed load applied on the bottom 
surface and in the z—direction of the beam. Laminates are 
assumed to have equal thicknesses and are made of the same 
orthotropic materials whose properties are given as follows: 
material I (E1/E 2 =  40, E2 = E3, G12 = G13 =  0.6E2, 
G23 =  0.5E2, v 12 = v13 =  v23 =  0.25), material II 
(E1/E2 = 25, E2 = E3, G12 = G13 = O.5E2, G23 = O.2E2, 
v12 = v13 = v23 =  0.25). Except special mentions, for 
convenience, the following nondimensional parameters are 
used in numerical examples:

w

&z

l00wE2bh3

q L A
X

b .L h
r z(2’2)? &xz

bh? L h

~paxz( 0>0) (11)

In order to verify the convergence of solution field, Ta­
ble I presents variations of non-dimensional mid-span trans­
verse displacement with respect to the number of series in 
x—direction (R) and z—direction (S) of 0o/90o/0o symmetric 
laminated composite beams. The results are calculated with 
with L/h  =  5, Material I and E1/E 2 = 40 for S-S, C-F and 
C-C boundary conditions. It can be seen that the responses 
converge quickly in x—direction and number of series in this 
direction R = 1 0  can be the point of convergence of the 
displacement for the boundary conditions, whereas the beam 
appears softer and converges with an increase of the number 
of series in z-direction. As an example for further verification, 
R =10 and S = 4 will be used in the following computations.

Static responses of cross-ply laminated composite beams is 
investigated in Tables II and III. The nondimensional trans­
verse displacements at x = L/2  are calculated for 0o/90o/0o 
symmetric and 0o/90o un-symmetric composite beams with 
different boundary conditions and span-to-thickness ratios

TABLE I
Co n v e r g e n c e  s t u d ie s  f o r  n o r m a l iz e d  m id -s pa n  t r a n s v e r s e  

d is p l a c e me n t  o f  0o/90o/0o l a m in a t e d  c o mp o s it e  b e a ms  ( L / h  =  5, 
MATERIAL I, E 1/ E 2 =  40).

BC S R
2 4 6 8 10 12

S-S 1 0.9050 0.8794 0.8821 0.8827 0.8825 0.8826
2 1.2946 1.2836 1.2867 1.2873 1.2871 1.2872
3 1.2852 1.2765 1.2790 1.2793 1.2791 1.2793
4 1.4654 1.4568 1.4594 1.4596 1.4594 1.4595
5 1.4644 1.4559 1.4586 1.4587 1.4585 1.4586
6 1.4647 1.4555 1.4582 1.4584 1.4581 1.4582
7 1.4648 1.4556 1.4582 1.4584 1.4582 1.4583

c -f 1 2.2812 2.4497 2.5823 2.5810 2.5908 2.6161
2 3.5129 3.8151 3.9580 3.9567 3.9663 3.9729
3 3.5036 3.8114 3.9529 3.9528 3.9626 3.9693
4 3.9105 4.2195 4.3625 4.3616 4.3713 4.3778
5 3.9102 4.2183 4.3618 4.3620 4.3715 4.3777
6 3.9163 4.2293 4.3739 4.3740 4.3833 4.3897
7 3.9166 4.2295 4.3740 4.3741 4.3834 4.3897

c -c 1 0.6891 0.7536 0.8154 0.8482 0.8468 0.8469
2 0.7495 0.8344 0.8962 0.9292 0.9278 0.9278
3 0.7403 0.8287 0.8896 0.9222 0.9207 0.9207
4 0.8256 0.9306 0.9919 1.0251 1.0235 1.0238
5 0.8251 0.9294 0.9913 1.0243 1.0227 1.0235
6 0.8306 0.9351 0.9970 1.0308 1.0285 1.0292
7 0.8309 0.9353 0.9972 1.0309 1.0287 1.0293

TABLE II
N o n d im e n s io n a l m id -s p a n d is p l a c e me n t s o f  0o/90o/0o a n d  0o/90o 

l a m in a t e d  c o mp o s it e  b e a ms  (m a t e r ia l  I I)

BC Theory 00/9Q0/Q0 0°/90°
L/h=5 10 50 L/h=5 10 50

S-S HSBT [22] 2.414 1.098 0.666 4.785 3.697 3.345
HSBT [6] 2.412 1.096 0.666 4.777 3.688 3.336
HSBT [7] 2.398 1.090 0.661 4.750 3.668 3.318
Quasi-3D [22] 2.405 1.097 0.666 4.764 3.694 3.345
Quasi-3D [17] 2.405 1.097 0.666 4.828 3.763 3.415
Quasi-3D [21] - 1.097 - - 3.731 -
Present 2.418 1.105 0.666 4.918 3.730 3.346

c -f HSBT [22] 6.830 3.461 2.257 15.308 12.371 11.365
HSBT [6] 6.824 3.455 2.251 15.279 12.343 11.337
HSBT [7] 6.836 3.466 2.262 15.334 12.398 11.392
Quasi-3D [22] 6.844 3.451 2.256 15.260 12.339 11.343
Quasi-3D [21] - 3.459 - - 12.475 -
present 7.077 3.496 2.257 15.889 12.452 11.333

c -c HSBT [22] 1.538 0.532 0.147 1.924 1.007 0.680
HSBT [6] 1.537 0.532 0.147 1.922 1.005 0.679
Quasi-3D [22] 1.543 0.532 0.147 1.916 1.005 0.679
Quasi-3D [21] - 0.532 - - 1.010 -
Present 1.629 0.540 0.147 2.150 1.041 0.677

TABLE III
N o n d ime n s io n a l  s t r es s es  o f  0o/90o/0o a n d  0o/90o l a m in a t e d

COMPOSITE BEAMS (S-S, MATERIAL II)

Stress Theory 0°/90°/0° 0°/90°
L/h=5 10 50 L/h=5 10 50

HSBT [22] 1.0669 0.8500 0.8705 0.2361 0.2342 0.2336
HSBT [42] 1.0670 0.8503 - 0.2361 0.2342 -
HSBT [17] 1.0669 0.8500 0.7805 0.2362 0.2343 0.2336
Quasi-3D [22] 1.0732 0.8504 0.7806 0.2380 0.2346 0.2336
Quasi-3D [17] 1.0732 0.8506 0.7806 0.2276 0.2246 0.2236
Quasi-3D [21] - 0.8501 - - 0.2227 -
present 1.1820 0.8668 0.7796 0.2564 0.2392 0.2335

&xz HSBT [22] 0.4057 0.4311 0.4523 0.9205 0.9565 0.9878
HSBT [42] 0.4057 0.4311 - 0.9187 0.9484 -
HSBT [17] 0.4057 0.4311 0.4514 0.9211 0.9572 0.9860
Quasi-3D [22] 0.4013 0.4286 0.4521 0.9052 0.9476 0.9869
Quasi-3D [17] 0.4013 0.4289 0.4509 0.9038 0.9469 0.9814
Quasi-3D [21] - - - - 0.9503 -
present 0.4182 0.4613 0.4946 0.8068 0.8558 0.8869
Quasi-3D [22] 0.1833 0.1787 0.1804 0.2966 0.2911 0.3046
Quasi-3D [17] 0.1833 0.1803 0.1804 0.2988 0.2982 0.2983
Present 0.1262 0.1117 0.0880 0.0550 0.0683 0.0122
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TABLE IV
NONDIMENSIONAL MID-SPAN DISPLACEMENTS OF 0o 1910° LAMINATED 

COMPOSITE BEAMS (MATERIAL II)

BC Theory Fiber angle e
0° 15° 30° 45° 60° 75° VO o 0

S-S Quasi-3D [22] 1.7930 1.8626 2.0140 2.1762 2.3030 2.3796 2.4049
Quasi-3D [43] 1.7930 1.8626 2.0140 2.1762 2.3030 2.3796 2.4049
Present 1.7933 1.8622 2.0119 2.1767 2.3091 2.3908 2.4180

C-F Quasi-3D [22] 5.2683 5.4840 5.8705 6.2780 6.5930 6.7820 6.8442
Quasi-3D [43] 5.2774 5.4898 5.8804 6.2879 6.6029 6.7919 6.8541
Present 5.4658 5.6682 6.0602 6.4790 6.8093 7.0103 7.0769

C-C Quasi-3D [22] 1.0866 1.1485 1.2616 1.3801 1.4711 1.5253 1.5431
Quasi-3D [43] 1.0998 1.1537 1.2670 1.3856 1.4766 1.5309 1.5487
Present 1.1842 1.2325 1.3446 1.4638 1.5559 1.6111 1.6293

TABLE V
NONDIMENSIONAL m id -s pa n  d is p l a c e me n t s  o f  0°/9/0° 

COMPOSITE BEAMS (MATERIAL II)
LAMINATED

BC Theory Fiber angle e
0° 15° 30° 45° 60° 75° VO o 0

S-S Quasi-3D [22] 0.6370 0.6554 0.6608 0.6634 0.6650 0.6658 0.6661
Quasi-3D [43] 0.6370 0.6554 0.6608 0.6634 0.6650 0.6658 0.6661
Present 0.6369 0.6554 0.6608 0.6635 0.6652 0.6662 0.6665

C-F Quasi-3D [22] 2.1599 2.2225 2.2402 2.2480 2.2529 2.2554 2.2562
Quasi-3D [43] 2.1602 2.2228 2.2405 2.2483 2.2531 2.2557 2.2565
Present 2.1593 2.2218 2.2396 2.2477 2.2528 2.2557 2.2566

C-C Quasi-3D [22] 0.1367 0.1408 0.1431 0.1449 0.1462 0.1470 0.1473
Quasi-3D [43] 0.1367 0.1408 0.1431 0.1449 0.1462 0.1470 0.1472
Present 0.1362 0.1403 0.1425 0.1444 0.1458 0.1466 0.1469

L/h=5 and 50. The results are examined with earlier those 
derived from the HSBTs (Nguyen et al. [22], Khdeir and 
Reddy [6], Murthy et al. [7]), Quasi-3Ds (Nguyen et al. 
[22], Mantari and Canales [21], Zenkour [17]). It can be 
seen that there are differences of the transverse displacements 
between the present model and those from the HSBTs and 
Quasi-3Ds for the thickness beam (L/h =  5), however 
the theories are similar with an increase of the span-to- 
thickness ratio. It can be explained by the fact that with an 
increase of L/h,  the transverse deformation effects become 
smaller and the theories converge to the conventional ones. 
Moreover, it is interesting to observe that the present beam 
model clearly predicts lower stiffness than the previous ones 
for symmetric and un-symmetric laminated composite beams 
under all boundary conditions. Moreover, the nondimensional 
axial, transverse shear and transverse normal stresses of sym­
metric and unsymmetric cross-ply composite beams with S-S 
boundary condition are reported in Table III and compared 
with other works based on the HSBTs and Quasi-3Ds. In 
comparison, the effect of transverse normal and transverse 
strains are again found for the normalized axial stress <rx. 
For the transverse normal stress <rz and transverse shear stress 

, there exist deviations of the present theory and other one, 
especially for transverse normal stress. However, as expected 
the present solution tends to approach to the free-traction 
condition on the top surface of the beams.

As a mean to study effects of transverse normal and shear 
strains on the displacement and stresses further, Tables IV and 
V introduce variations of the nondimensional center transverse 
displacement with respect to the boundary conditions, span- 
to-thickness ratio and different fiber angles of 0oW°/0o and

0°/d° laminated composite beams. The results are compared to 
those obtained from Quasi-3Ds of Nguyen et al. [22] and Vo et 
al. [43]. Considerable differences between the present model 
and Quasi-3D ones are again observed for thick laminated 
composite beams (L/h =  5) and no significant deviations 
are found between the theories for thin beams (L/h =  50). 
Moreover, the increase of fiber angles makes the beam softer 
and leads to the increase of the transverse displacement.

IV. Co n c l u s i o n s

The authors proposed a new two-unknown model for static 
analysis of laminated composite beams. The axial and trans­
verse displacements of the beam are expanded in a hybrid 
form under polynomial and trigonometric series. Lagrange's 
equations are used to derive characteristic equations of the 
beams. Numerical results for laminated composite beams with 
different boundary conditions are compared with previous 
studies and to investigate the effects of length-to-depth ratio, 
fibre angles and material anisotropy on the deflection and 
stresses of laminated composite beams. The obtained results 
showed that the proposed beam model is found to simple 
and efficient in predicting bending responses of laminated 
composite beams with various boundary conditions.
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on a Quasi-3D Theory

Xuan-Bach Bui, Trung-Kien Nguyen, T. Truong-Phong Nguyen,
and Van-Trien Nguyen

Abstract Stochastic vibration responses of laminated composite beams based on a1

quasi-3D shear deformation theory are proposed in this paper. The mechanical prop-AQ1 2

erties of constituent materials are assumed to be uncertain, thus the free vibration3

responses can be modeled as random variables. A very large number of simulations is4

performed for propagating the overall uncertainty in the material properties to vibra-5

tion behaviours by Monte Carlo simulation method. The higher-order shear deforma-6

tion beam theory with nonlinear variations of both axial and transverse displacements7

is used and a trigonometric-series solution is developed to solve characteristic equa-8

tions of motions. Novel numerical results are obtained to investigate the effects of9

uncertain material properties on the natural frequencies of the laminated composite10

beams.11

Keywords Stochastic responses · Laminated composite beams · Vibration12

1 Introduction13

Thanks to the performance in high strength- and stiffness-to-weight ratios, multi-14

layered composite materials under beam structures have been used in many engi-15

neering fields such as mechanical engineering, aerospace engineering, construction,16

etc. Practically however, the mechanical performance of composite materials can17

be inconsistent, that probably results in the fabrication process or other unexpected18

factors. It is therefore necessary to account for these uncertainties in the behaviour19

analysis of laminated composite beams. Large applications of laminated composite20

beams led to the development of computational theories and methods with different21

approaches, only some representative references are herein cited [1–9]. For stochastic22

analysis, several methods have been used to model and propagate the uncertainty23

in stochastic computational simulations. Monte Carlo simulation method is known24

as the most straightforward and intuitive one which simply run the computational25
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model as many times as the accuracy required [10–12]. Nonetheless, when the phys-26

ical model is complicated, the Monte Carlo method demands much computing time27

and infeasible to obtain desired sample outputs. In other word, stochastic numerical28

methods based on polynomial chaos expansion that speeds up the computing process29

while maintaining the accuracy have attracted considerable attention in predicting30

stochastic responses of laminated composite plates [13–16]. Though the polynomial31

chaos expansion requires a priori less computational cost, this approach appears to32

be complicated to implement and program. A literature review showed that there33

were still gaps in current research on stochastic behaviours of laminated composite34

beams and therefore, it motivates the investigation in this paper.35

The objective of this paper is to propose stochastic vibration behaviours of lami-36

nated composite beams considering uncertainties in the material properties. It is37

based on a higher-order shear deformation theory which accounts for a higher-order38

variation of both axial and transverse displacements. The uncertainty of material39

properties are described through a probability distribution. This uncertainty will be40

propagated through the Ritz-method-based quasi-3D beam model to obtain the statis-41

tics of the outputs. The Monte Carlo simulation method will be used to propagate42

the uncertainty of material properties. Numerical results are presented to investigate43

the effects of uncertain material properties on the natural frequencies of laminated44

composite beams.45

2 Theoretical Formulation46

Consider a laminated composite beam with length L and rectangular cross-section47

b × h as shown in Fig. 1. It is made of n plies of orthotropic materials in different48

fibre angles with respect to the x-axis.49

2.1 Displacements, Strains and Stresses50

The displacement field of the present theory is given by:51

u(x, z, t) = u0(x, t)− zw0,x + f (z)θ0(x, t) (1a)5253

w(x, z, t) = w0(x, t)+ g(z)wz0(x, t) (1b)5455

where u0, w0, wz0, θ0 are four variables to be determined;g(z) = f ′(z)where f (z) =56

5z
4 − 5z3

3h2 is the nonlinear shear function satisfying the condition f ′(z = ±h/2) = 0;57

the comma in subscript is used to indicate the differentiation of coordinate that58

follows.59

The non-zero strains related to the displacements in Eq. (1) are given by:60
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b

L

h

x

z

y

Fig. 1 Geometry of a laminated composite beam

εx (x, z) = u,x = u0,x − zw0,xx + f θ0,x (2a)6162

εz(x, z) = g
′′
(z)w0z (2b)6364

γxz(x, z) = g(z)
(
wz0,x + θ0

)
(2c)6566

Moreover, the assumption of a plane stress state in (x, z)-plan leads to the stress–67

strain relation as follows:68

⎧
⎪⎨

⎪⎩

σx

σz

σxz

⎫
⎪⎬

⎪⎭
=
⎛

⎝
Q ′

11 Q ′
13 0

Q ′
13 Q ′

33 0
0 0 Q ′

55

⎞

⎠

⎧
⎪⎨

⎪⎩

εx

εz

γxz

⎫
⎪⎬

⎪⎭
(3)6970

where Q′
11,Q ′

13, Q ′
33, Q ′

55 are reduced stiffness constants of materials. These coef-71

ficients are related to the stiffness components of materials in global coordinates C ′
i j72

as follows [9]:73

Q′
11 = C ′

11 + C
′2
16C ′

22 − 2C ′
12C ′

16C ′
26 + C

′2
12C ′

66

C
′2
26 − C ′

22C ′
66

(4a)7475

Q ′
13 = C ′

13 + C ′
16C ′

22C ′
36 + C ′

12C ′
23C ′

66 − C ′
16C ′

23C ′
26 − C ′

12C ′
26C ′

36

C
′2
26 − C ′

22C ′
66

(4b)7677

Q ′
33 = C ′

33 + C
′2
36C ′

22 − 2C ′
23C ′

26C ′
36 + C

′2
23C ′

66

C
′2
26 − C ′

22C ′
66

(4c)7879
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Q ′
55 = C ′

55 − C
′2
45

C ′
44

(4d)8081

2.2 Energy Formulation82

The total energy of the laminated composite beams is composed of the strain energy83

�S and kinetic energy �K . The strain energy of the laminated composite beams is84

given by:85

�S = 1

2

∫

V

(σxεx + σzεz + σxzγxz)dV

= 1

2

L∫

0

[
A11u2

0,x + D11w
2
0,xx + Hs

11θ
2
0,x − 2B11u0,xw0,xx + 2Bs

11u0,x θ0,x − 2Ds
11w0,xxθ0,x

+N s
33w

2
0z + 2T s

13u0,xwz0 − 2Ms
13w0,xxwz0 + 2Es

13θ0,xwz0 +As
55

(
θ0 + wz0,x

)2]
dx

(5)8687

where the stiffness components of laminated composite beams are defined as follows:88

(
Ai j , Bi j , Di j , Bs

i j , Ds
i j , H s

i j

) =
h/2∫

−h/2

(1, z, z2, f, z f, f 2)Q′
i j bdz (6a)8990

(
As

i j , Es
i j , T s

i j ,Ms
i j , N s

i j

) =
h/2∫

−h/2

(
g2, f g,z, g,z, zg,z, g2

,z

)
Q′

i j bdz (6b)9192

The kinetic energy of the laminated composite beams is given by:93

�K = 1

2

∫

V

ρ(z)
(

u̇2 + ẇ2
)

dV

= 1

2

L∫

0

[
I0u̇2

0 + I2ẇ
2
0,x + K2 θ̇

2
0 − 2I1u̇0ẇ0,x + 2J1u̇0 θ̇0 − 2J2ẇ0,x θ̇0 +I0ẇ

2
0 + 2L1ẇ0ẇz0 + L2w

2
z0

]
dx

(7)

94

95

where the superscript dot is used to indicate the differentiation of the variable with96

the time t ; ρ is the mass density; (I0, I1, I2, J1, J2, K2, L1, L2) are terms of inertia97

defined as follows:98
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Stochastic Vibration Responses of Laminated Composite Beams … 5

(I0, I1, I2, J1, J2, K2, L1, L2) =
h/2∫

−h/2

ρ
(
1, z, z2, f, z f, f 2, g, g2)bdz (8)99100

By combining Eqs. (5) and (7), the total energy of the laminated composite beams101

is given by:102

� = 1

2

L∫

0

[
A11u2

0,x + D11w
2
0,xx + Hs

11θ
2
0,x − 2B11u0,xw0,xx + 2Bs

11u0,xθ0,x − 2Ds
11w0,xxθ0,x

+N s
33w

2
0z + 2T s

13u0,xwz0 − 2Ms
13w0,xxwz0 + 2Es

13θ0,xwz0 +As
55

(
θ0 + wz0,x

)2]
dx

− 1

2

L∫

0

[
I0u̇2

0 + I2ẇ
2
0,x + K2 θ̇

2
0 − 2I1u̇0ẇ0,x + 2J1u̇0 θ̇0 − 2J2ẇ0,x θ̇0 +I0ẇ

2
0 + 2L1ẇ0ẇz0 + L2w

2
z0

]
dx

(9)

103104

2.3 Trigonometric-Series Solutions105

The solution field u0, w0, θ0, wz0 can be approximated under series of shape functions106

and associated variables as follows:107

{u0(x, t), θ0(x, t)} =
m∑

j=1

ψ j (x)
{
u j (t), θ j (t)

}
(10a)108109

{w0(x, t), wz0(x, t)} =
m∑

j=1

ϕ j (x)
{
w j (t), wz j (t)

}
(10b)110111

where u j , w j , θ j , wz j are variables to be determined; ψ j (x), ϕ j (x) are shape func-112

tions. The approximations in Eq. (10) are known as Ritz’s one in which it is noted113

that the accuracy of this approach depends on the construction of shape functions.114

These functions should be continuous, complete and orthogonal. In the present115

study, the functions of approximation ψ j (x), ϕ j (x) are selected under trigonometric116

ones that satisfy kinematic boundary conditions. Three typical boundary conditions117

(simply-supported: S-S, clamped-clamped: C-C, clamped-free: C-F) are considered118

as Table 1.119

Substituting Eq. (10) into Eq. (9) and using Lagrange’s equations lead to:120

K p + M p̈ = F(t) (11)121122

where p = [
u0 w0 wz0 theta0

]T
; K and M are stiffness and mass matrix,123

respectively, which are given by:124
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Stochastic Vibration Responses of Laminated Composite Beams … 7

K =

⎡

⎢⎢
⎣

K 11 K 12 K 13 K 14

T K 12 K 22 K 23 K 24

T K 13 T K 23 K 33 K 34

T K 14 T K 24 T K 34 K 44

⎤

⎥⎥
⎦, M =

⎡

⎢⎢
⎣

M11 M12 M13 0
T M12 M22 M23 M24

T M13 T M23 M33 0
0 T M24 0 M44

⎤

⎥⎥
⎦ (12)125126

The components of stiffness and mass matrix are determined as follows:127

K 11
i j = A11

L∫

0

ψi,xψi,x dx, K 12
i j = −B11

L∫

0

ψi,xϕi,xx dx, K 13
i j = Bs

11

L∫

0

ψi,xψ j,x dx, K 14
i j = T s

13

L∫

0

ψi,xϕ j dx

(13a)

128129

K 22
i j = D11

L∫

0

ϕi,xxϕ j,xx dx, K 23
i j = −Ds

11

L∫

0

ϕi,xxψ j,x dx, K 24
i j = −Ms

13

L∫

0

ϕi,xxϕ j dx (13b)130131

K 33
i j = Hs

11

L∫

0

ψi,xψ j,x dx + As
55

L∫

0

ψiψ j dx, K 34
i j = Es

13

L∫

0

ψi,xϕ j dx + As
55

L∫

0

ψiϕ j,x dx (13c)132133

K 44
i j = N s

33

L∫

0

ϕiϕ j dx + As
55

L∫

0

ϕi,xϕ j,x dx (13d)134135

M11
i j = I0

L∫

0

ψiψ j dx, M12
i j = −I1

L∫

0

ψiϕ j,x dx, M13
i j = J1

L∫

0

ψiψ j dx (13e)136137

M22
i j = I0

L∫

0

ϕiϕ j dx + I2

L∫

0

ϕi,xϕ j,x dx, M23
i j = −J2

L∫

0

ϕi,xψ j dx, M24
i j = L1

L∫

0

ϕiϕ j dx (13f)138139

M33
i j = K2

L∫

0

ψiψ j dx, M44
i j = L2

L∫

0

ψiψ j dx (13g)140141

It is worth noticing that the free vibration responses can be derived by expressing142

p(t) = peiωt and solving the characteristic equation
(
K − ω2 M

)
p = 0 in which ω143

is natural frequencies of the laminated composite beams; i2 = −1 is imaginary part.144

2.4 Monte Carlo Simulation145

The material properties of laminated composite beams are supposed to be random146

according to a required distribution. In order to propagate the variability in material147

properties to the vibration responses of laminated composite beams, Monte Carlo148

simulation method will be used. This technique requires a generation of random149

numbers set from material properties and then these are used to obtain the vibration150

responses and its statistics. The following statistics of the responses of the laminated151

composite beams are used for computations:152
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8 X.-B. Bui et al.

E[X ] =
∞∫

−∞
x f (x)dx (14a)153154

SD = √
σ =
√∑n

i=1 (xi − μ)2

n − 1
(14b)155156

where E[X ] is expectation of the variable set X ; x is the value in the sample space;157

f (x) is probability density function (PDF); σ is standard deviation of the set of158

random numbers; n is number of samples. In addition to the expectation and variance,159

higher-order statistics such as the skewness μ̃3 and kurtosis K urt , confidence interval160

C I are also measured as follows:161

μ̃3 =
∑N

i (xi − μ)3

(n − 1)× σ 3
(15a)162163

K urt = E(x − μ)4

σ 4
(15b)164165

C I = μ± z
SD√

n
(15c)166167

where z is the required confidence interval (%).168

3 Numerical Examples169

A number of numerical examples are performed in this section to investigate the170

accuracy and efficiency of the present theory. The laminated composite beams are171

composed of orthotropic material layers of the same thickness. The means, standard-172

to-mean ratio (COV) and distribution of material properties are given in Table 2. The173

effects of material properties uncertainty on the vibration behaviours of laminated174

composite beams are observed with different lay-ups and boundary conditions.175

As a first example, in order to study the convergence, laminated composite beams176

with mean material properties given in Table 2 are considered. The results are177

computed with three boundary conditions (BC) S-S, C-C and C-F, and different178

fiber orientations, [0°/90°], [0°/90°/0°], [45°/−45°] and [45°/−45°/45°]. The funda-179

mental frequencies are reported in Table 3 for various values of number of series180

m. The results obtained from Table 3 show that the solutions converge quickly for181

all responses and boundary conditions, the number of series m = 10 can be consid-182

ered as the convergence point for the natural frequencies of the laminated composite183

beams, therefore this value will be used for the sequel computations.184

As a second example, in order to investigate stochastic responses of the laminated185

composite beams, Monte Carlo simulation method with number of samples Ns = 105
186
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Stochastic Vibration Responses of Laminated Composite Beams … 9

Table 2 Material properties and geometry of the laminated composite beams

Properties Mean [9] COV Distribution

E1 (GPa) 120 0.1 Lognormal

E2 (GPa) 3 0.1 Lognormal

G12 = G13 (GPa) 0.6E2 0.1 Lognormal

G23 (GPa) 0.5E2 0.1 Lognormal

ν12 0.25 0.1 Lognormal

ρ (kg/m2) 1500 0.1 Lognormal

L (m) 0.381 – –

h (m) 0.1905 – –

b (m) 0.0254 – –

Table 3 Convergence of the fundamental frequencies (Hz)

BC Lay-ups m

2 4 6 8 10 12 14

S-S 0°/90° 213.754 213.754 213.754 213.754 213.754 213.754 213.754

45°/−45° 102.389 102.389 102.389 102.389 102.389 102.389 102.389

0°/90°/0° 482.307 482.307 482.307 482.307 482.307 482.307 482.307

−45°/45°/−45° 102.389 102.389 102.389 102.389 102.389 102.389 102.389

C-C 0°/90° 469.254 465.780 464.802 464.361 464.124 463.986 463.900

45°/−45° 231.998 230.455 229.993 229.764 229.625 229.532 229.467

0°/90°/0° 900.487 885.486 880.776 878.679 877.582 876.941 876.535

−45°/45°/−45° 231.998 230.455 229.993 229.764 229.625 229.532 229.467

C-F 0°/90° 77.200 76.927 76.848 76.811 76.790 76.776 76.766

45°/−45° 36.969 36.767 36.699 36.665 36.644 36.630 36.620

0°/90°/0° 180.377 179.600 179.375 179.272 179.215 179.179 179.156

−45°/45°/−45° 36.969 36.767 36.699 36.665 36.644 36.630 36.620

is performed in which six parameters in Table 2 are randomly varied according to the187

lognormal distribution. It is noted that the lognormal distribution is chosen instead188

of normal distribution to avoid negative values in material property input. Besides,189

the coefficient C OV = 0.1 is applied for all parameters. Table 4 presents four190

statistical moments of simulation outputs computed for laminated composite beams191

with different lay-ups and boundary conditions. The mean μ, standard deviation σ ,192

skewness μ̃3 and kurtosis K urt are calculated with four layer-ups 0°/90°, 45°/−45°,193

0°/90°/0°, −45°/45°/−45°, and three boundary conditions S-S, C-F and C-C. The194

means and deterministic values obtained from the present theory are compared to195

those of Nguyen et al. [9] based on a quasi-3D deterministic beam model. It can196

be seen that there are excellent agreements between the deterministic models, no197

significant differences of the means of fundamental frequencies and those of Nguyen198
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10 X.-B. Bui et al.

Table 4 Fundamental frequencies (Hz) of laminated composite beams with arbitrary lay-ups and
boundary conditions

BC Lay-ups Present Present
(deterministic)

Nguyen
[9]μ σ Kurtosis Skewness

S–S 0°/90° 214.300 13.538 3.054 0.193 213.754 213.116

45°/−45° 102.468 6.293 3.036 0.170 102.389 –

0°/90°/0° 483.159 31.689 3.060 0.184 482.307 482.295

−45°/45°/−45° 102.472 6.320 3.064 0.174 102.389 –

C–C 0°/90° 465.298 28.570 3.056 0.169 464.124 462.889

45°/−45° 229.812 14.113 3.040 0.167 229.625 –

0°/90°/0° 878.536 51.876 3.046 0.174 877.582 876.952

−45°/45°/−45° 229.722 14.075 3.029 0.168 229.625 –

C-F 0°/90° 77.006 4.877 3.040 0.195 76.790 76.562

45°/−45° 36.665 2.262 3.077 0.199 36.644 –

0°/90°/0° 179.557 12.256 3.082 0.199 179.215 179.177

−45°/45°/−45° 36.670 2.254 3.041 0.184 36.644 –

et al. [9] are found. Moreover, it is observed that the ratios of standard deviation and199

mean is about 6%. The kurtosis values are slightly higher than 3, which indicates that200

the present distribution of responses has rather heavier tail and more outliers than the201

normal distribution. The positive skewness in Table 4 means the data is right-skewed202

which is a characteristic of lognormal distribution (Fig. 2).AQ2 203

Furthermore, the effect of number of simulations on the accuracy of output distri-204

bution is demonstrated in Fig. 3. The curves are plotted for 0°/90°/0° laminated205

composite beams with the span-to-thickness ratio L/h = 20, C-C and C-F boundary206

conditions. The 80% and 99% confidence interval of the mean value of simulation207

180 200 220 240 260
Frequency (Hz)

10-5

10-4

10-3

10-2

10-1

100

P
[X
>
x]

a) PDF b) PoE

Fig. 2 Probability density function (PDF) and Probability of exceedance (PoE) of the fundamental
frequency (Hz) for 0°/90° laminated composite beam (L/h = 20, S-S boundary condition)
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101 102 103 104 105 106

No. of simulations

175

180

185

190

195

200

205

Fu
nd
am
en
ta
lf
re
qu
en
cy
(H
z)

Mean value
CI 80%
CI 99%

a) C-C b) C-F

Fig. 3 Mean and confidence interval of the fundamental frequencies (Hz) of 0°/90°/0° laminated
composite beam (L/h = 20, C-C and C-F boundary conditions)

outputs are shown for the number of simulations 101, 102, 103, 104, 105 and 106. It208

can be observed from these graphs that in the present beam model, the true value of209

mean fundamental frequencies can be achieved when the Monte Carlo simulation210

has 105 or more samples.211

Figure 4 presents the probability of exceedance (PoE) of the fundamental frequen-212

cies for the composite beam with −45°/45°/−45° ply composition and S-S boundary213

condition. In Fig. 4a, the PoE is plotted 10 times each of which has the number of214

samples Ns = 105. Noticingly, the tails of the plots past P[X > x] = 10−3 have215

fluctuations. This is due to there are very few samples at the very small probability216

of occurrence. In Fig. 4b, the setup is similar to that of Fig. 4a but with the number217

of samples Ns = 104. The similar fluctuation is seen past the horizontal line where218

P[X > x] = 10−2. Therefore, by plain observation, the outputs of Monte Carlo219

simulation is stable up to the point where P[X > x] = 10−(log(Ns)−2).220

a) 51= 0sN b) 41= 0sN

80 90 100 110 120 130
Frequency (Hz)

10-5

10-4

10-3

10-2

10-1

100

P
[X
>
x]

Fig. 4 Probability of exceedance (PoE) of the fundamental frequencies (Hz) of −45°/45°/−45°
laminated composite beam (L/h = 20, S-S boundary conditions)
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12 X.-B. Bui et al.

4 Conclusions221

This article presents stochastic vibration behaviours of laminated composite beams222

based on a quasi-3D theory. The stochastic mechanical properties of component mate-223

rials are propagated into the vibrational responses of the composite beams with arbi-224

trary lay-ups and boundary conditions. The beam model is based on the higher-order225

shear deformation theory with nonlinear formulation of axial and transverse displace-226

ments. A trigonometric-series solution is utilised to solve the equations of motion.227

A high number of Monte Carlo simulations is conducted to investigate the effects of228

stochastic uncertainties on the natural frequencies of the laminated composite beams.229

The outputs of these simulations are presented as probability density functions, prob-230

ability of exceedance and several statistical moments. The numerical results obtained231

from this paper showed that the present model is simple and efficient in predicting232

stochastic vibration responses of the laminated composite beams. Novel results can233

be used as benchmarks for the future researches.234
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Abstract. Despite the extensive use of thin-walled structures, the studies on their be-
haviours when exposed to extreme thermal environment are relatively scarce. Therefore,
this paper aims to present the buckling analysis of thin-walled composite I-beams un-
der thermo-mechanical loads. The thermal effects are investigated for the case of stud-
ied beams undergoing a uniform temperature rise through their thickness. The theory
is based on the first-order shear deformation thin-walled beam theory with linear vari-
ation of displacements in the wall thickness. The governing equations of motion are de-
rived from Hamilton’s principle and are solved by series-type solutions with hybrid shape
functions. Numerical results are presented to investigate the effects of fibre angle, mate-
rial distribution, span-to-height’s ratio and shear deformation on the critical buckling load
and temperature rise. These results for several cases are verified with available references
to demonstrate the present beam model’s accuracy.

Keywords: thin-walled beam, thermal buckling, buckling analysis, series solution.

1. INTRODUCTION

The application of anisotropic laminated composite materials is increasing in many
engineering fields such as aerospace, aircrafts and civil [1–4]. Thanks to its excellent me-
chanical properties, especially the strength-to-weight ratio, such structures have become
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a topic of interest for many researchers, some of which, can be found in [5, 6]. Compara-
ble to the Euler-Bernoulli theory for solid beam, Vlasov [7] developed the classical thin-
walled beam theory (CTWBT) which ignores the effects of shear deformation. Vlasov’s
theory is easy to implement and analyse LC thin-walled beams [7–10]. Nonetheless, in
the case of thick short beam, Vlasov’s theory deliver inaccurate beam responses predic-
tions such as the deflection, natural frequencies and critical buckling loads. Razaqpur
and Li [11] developed a finite element model for thin-walled box girder that can analyse
the extension, flexure, torsion, torsional warping, distortion, distortional warping, and
shear lag effects using an extended version of Vlasov’s thin-walled beam theory. Pavazza
et al. [12] proposed a novel torsion theory for shear deformable thin-walled beams of ar-
bitrary open cross-sections based on the classical Vlasov’s theory of thin-walled beams
and the Timoshenko’s beam bending theory. Comparable to the first-order shear defor-
mation beam theory, the first-order thin-walled beam theory (FTWBT) takes the trans-
verse shear into account and allow the transverse displacement vary linearly across the
thin wall thickness. The FTWBT gives better beam responses’ predictions for beam with
L/b3 < 10 and has been studied in multiple researches [13–23]. The FTWBT demands
a shear correction factor [24] to be calculated but it can also be a source of error. To
overcome this setback, the high-order deformation thin-walled beam theory (HTWBT)
has been proposed [25–27]. Though the HTWBT predicts more accurate results than the
FTWBT, it appears to be too complicated to implement.

Besides, in practical engineering contexts, thin-walled beams are exposed to high-
temperature environments. Therefore, the predictions of the thin-walled beams’ responses
to the thermal load in such contexts are of utmost importance. Many models and ap-
proaches on this matter have been studied in recent years for solid beams with rectangle
sections, some representative references are herein cited. Trinh et al. [28] presented an
analytical method for the vibration and buckling of functionally graded beams under
mechanical and thermal loads. Nguyen et al. [29] investigated the hygro-thermal effects
on vibration and thermal buckling behaviours of functionally graded beams. Li et al. [30]
studied the free vibration characteristics of a spinning composite thin-walled beam under
hygrothermal environment. Sun et al. [31] investigated the buckling and post-buckling
behaviors of functionally graded Timoshenko beams on non-linear elastic foundation.
A brief literature study shows that although many researches on thermal responses of
laminated composite and functionally graded beams with rectangle sections have been
performed, thermal buckling behaviors of thin-walled beams are extremely limited, Si-
monetti et al. [32] recently presented the thermal buckling analysis of thin-walled closed
section functionally graded beam-type structures [32]. Pantousa [33] conducted a numer-
ical study on thermal buckling of empty thin-walled steel tanks under multiple pool-fire
scenarios.



Buckling analysis of laminated composite thin-walled I-beam under mechanical and thermal loads 77

This paper aims to investigate the elastic buckling of laminated composite thin-
walled beams with I-section in thermo-mechanical environments. It is based on the
FTWBT with a uniform temperature rise. The characteristic equations are derived from
Hamilton’s principle and solved by Ritz method with hybrid shape functions. Numer-
ical results are presented for the laminated composite I-beams with various boundary
conditions, fibre angles and length-to-height ratios.
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Fig. 1. Coordinate systems of a thin-walled beam

To analyse the thin-walled beam, the variables are defined in three set of coordinate
systems as displayed in Fig. 1. These are the Cartesian coordinate system (x, y, z) , the
local plate coordinate system (n, s, z) and the contour coordinate s along the profile of
the section. The angle θ is the angle between s- and x-axes. The pole P (xP, yP) is op-
timally chosen to be at the shear center of the section. The assumptions made in this
beam model are: the effects of geometrical nonlinearity are ignored, the section contour
remains undeformed in its own plane and the transverse shear strains are constant in the
wall thickness. Fig. 2 shows how the aforementioned coordinate systems fit in to the
thin-walled I-beam in this paper. The widths (b1, b2, b3) and the thicknesses (h1, h2, h3)

with lower index 1, 2, 3 are for the beam’s top, bottom flange, and web, respectively.
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2.1. Kinematics

The displacements (ū, v̄, w̄) at any point on the midsurface of the laminated compos-
ite thin-walled beams under a small rotation φ about the pole axis can be expressed in
terms of those at the pole (U, V, W) as follows

ū (s, z) = Ux (z) sin θ (s)−Uy (z) cos θ (s)− φ (z) q (s) , (1a)

ν̄ (s, z) = Ux (z) cos θ (s) + Uy (z) sin θ (s)− φ (z) r (s) , (1b)

w̄ (s, z) = Uz (z) + ςy (z) x (s) + ςx (z) y (s) + ςω (z)ω (s) , (1c)

where ςx, ςy, ςω are the rotations of the cross-section with respect to and, respectively,
which are defined by

ςy = γ0
xz −U′x , ςx = γ0

yz −U′y , ςω = γ0
ω − φ′. (2)

The warping function ω is given by

ω (s) =
∫ s

s0

r (s)ds. (3)

Moreover, the displacements (u, v, w) at a point on the beam section are expressed in
term of the mid-surface displacements (ū, v̄, w̄) as follows

u (n, s, z) = ū (s, z) , (4a)
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ν (n, s, z) = ν̄ (s, z) + nς̄s (s, z) , (4b)

w (n, s, z) = w̄ (s, z) + nς̄z (s, z) , (4c)

where ς̄s and ς̄z are expressed as follows

ς̄z = ςy sin θ − ςx cos θ − ςωq, ψ̄s (s, z, t) = −∂u
∂s

. (5)

2.2. Strains

From the displacements defined in Eq. (4), the strain field can be written as

εs (n, s, z) = ε̄s (s, z) + nκ̄s (s, z) , (6a)

εz (n, s, z) = ε̄z (s, z) + nκ̄z (s, z) , (6b)

γsz (n, s, z) = γ̄sz (s, z) + nκ̄sz (s, z) , (6c)

γnz (n, s, z) = γ̄nz (s, z) + nκ̄nz (s, z) , (6d)

where
ε̄s = 0, ε̄z =

∂w̄
∂z

= ε0
z + xκy + yκx + ωκω, κ̄s = 0, (7a)

κ̄z =
∂ς̄z

∂z
= κy sin θ − κx cos θ − κωq, κ̄sz = κsz, κ̄nz = 0, (7b)

ε0
z = W ′, κx = ς′x, κy = ς′y, κω = ς′ω, κsz = φ′ − ςω, (7c)

εz = εz
0 + (x + n sin θ) κy + (y− n cos θ) κx + (ω− nq) κω, (7d)

γsz = γ0
xz cos θ + γ0

yz sin θ + γ0
ωr + nκsz, γnz = γ0

xz sin θ − γ0
yz cos θ − γ0

ωq. (7e)

2.3. Stress-strains relation

For laminated composite thin-walled beams, it is supposed to be constituted by a
number of orthotropic material layers with the same thickness. The reduced constitutive
equations at the kth-layer is given by σz

σsz
σnz

 =

 P11 P16 0
P16 P66 0
0 0 P55

 εz
γsz
γnz

 , (8a)

where P11 = Q̄11 −
Q̄2

12
Q̄22

, P16 = Q̄16 −
Q̄12Q̄26

Q̄22
, P66 = Q̄66 −

Q̄2
26

Q̄22
, P55 = Q̄55; Q̄ij are the

transformed reduced stiffness matrix elements which can be computed based on the fibre
lay-up as follows

Q̄11 = Q11c4 + Q22s4 + 2(Q12 + 2Q66)s2c2, (8b)

Q̄12 = (Q11 + Q22 − 4Q66)s2c2 + Q12(s4 + c4), (8c)

Q̄22 = Q11s4 + 2(Q12 + 2Q66)s2c2 + Q22c4, (8d)

Q̄16 = (Q11 −Q12 − 2Q66)sc3 + (Q12 −Q22 + 2Q66)s3c, (8e)
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Q̄26 = (Q12 −Q22 + 2Q66)sc3 + (Q11 −Q12 − 2Q66)s3c, (8f)

Q̄55 = Q55c2 + Q44s2, (8g)

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66)s2c2 + Q66(s4 + c4), (8h)

Q11 = E1/(1− ν12ν21), Q22 = E2/(1− ν12ν21), Q12 = ν12Q22, (8i)

Q44 = G23, Q55 = G13, Q66 = G12, s = sin θ, c = cos θ, (8j)

where θ is the fibre orientation angle of the current laminated layer, E1 and E2 are the
Young’s moduli, ν12 and ν21 are the Poisson’s ratio values, G12, G13 and G23 are the shear
moduli of the laminated composite material.

2.4. Variational formulation

The characteristic equations of the laminated composite thin-walled beams can be
derived by Hamilton’s principle in which the total energy of the system Π is composed
of the strain energy ΠS and work done by external force ΠW . The strain energy ΠS of the
laminated composite thin-walled beam is expressed by

ΠS =
1
2

∫
Ω
(σzεz + σszγsz + σnzγnz) dΩ, (9)

where Ω is the beam volume. Substitution of Eqs. (6), (7) and (8) into Eq. (9) gives

ΠS =
1
2

∫ L

0
[E11 U′2z + 2E16U′zU′x + 2E17U′zU′y + 2 (E15 + E18)U′zφ′

+ 2E12U′zς′y + 2E16U′zςy + 2E13U′zς′x + 2E17U′zςx + 2E14U′zς′ω

+ 2 (E18 − E15)U′zς′ω + E66U′2x + 2E67U′xU′y + 2 (E56 + E68)U′xφ′

+ 2E26U′xς′y + 2E66U′xςy + 2E36U′xς′x + 2E67U′xςx + 2E46U′xς′ω

+ 2 (E68 − E56)U′xςω + E77U′2y + 2 (E57 + E78)U′yφ′ + 2E27U′yς′y

+ 2E67U′yς′y + 2E37U′yς′x + 2E77U′yςx + 2E47U′yςω + 2 (E78 − E57)U′yςω

+ (E55 + 2E58 + E88) φ′
2
+ 2 (E25 + E28) φ′ς′y + 2 (E56 + E68) φ′ςy

+ 2 (E78 − E57)U′yςω + (E55 + 2E58 + E88) φ′
2
+ 2 (E25 + E28) φ′ς′y

+ 2 (E56 + E68) φ′ςω + 2 (E35 + E38) φ′ς′x + 2 (E57 + E78) φ′ςx

+ 2 (E45 + E48) φ′ς′ω + 2 (E88 − E55) φ′ςω + E22ψ′
2
y + 2E26ς′yςy

+ E66ς2
y + 2E23ς′yς′x + 2E27ς′yςx + 2E36ςyς′x + 2E67ςyςx

+ E24ς′yς′ω + 2 (E28 − E25) ς′yςω + 2E46ςyςω + 2 (E68 − E56) ςyςω

+ E33ς′
2
ω + 2E37ς′xςx + E77ς2

x + 2E34ς′xς′ω + 2 (E38 − E35) ς′xςω

+ 2E47ςxς′ω + 2 (E78 − E57) ςxςω ++E44ς′
2
ω2 (E48 − E45) ς′ωςω

+ (E88 − 2E58 + E55) ς2
ω

]
dz,

(10)
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where Eij are the stiffness coefficients of the laminated composite thin-walled composite
beams [34].

The work done by the external mechanical axial load Nm
0 and thermal load Nt

0 is
defined as

ΠW =
1
2

∫
Ω

(
Nm

0 + Nt
0
)

A

(
u′2 + ν′

2
)

dΩ

=
1
2

∫ L

0

(
Nm

0 + Nt
0
) (

U′2x + U′2y + 2ypU′xφ′ − 2xpU′yφ′ +
Ip

A
φ′

2
)

dz,
(11)

where A is the cross-sectional area; Ip is the polar moment of inertia about the centroid
given by

Ip = Ix + Iy, (12)

where Ix and Iy are the second moment of inertia with respect to the x- and y-axes, re-
spectively

Ix =
∫

A
y2dA, Iy =

∫
A

x2dA. (13)

The axial thermal load is given as

Nt
0 =

∫
n

(αzP11 + 2αszP16)∆Tdn, (14)

where ∆T = T − T0 is the temperature difference; T0 is the initial temperature; αz, αsz

are the thermal expansion coefficients in the (n, s, z) coordinate system. The components
(αz, αsz) are derived from the thermal expansion coefficients of the studied fibre materials
(α1, α2) as follows

αz = α1 cos2 θ + α2 sin2 θ, (15a)

αsz = (α1 − α2) sin θ cos θ. (15b)

2.5. Hybrid series solution

Based on the Ritz method, the displacement field can be approximated as follows{
Ux, Uy, φ

}
(z) =

m

∑
j=1

φj (z)
{

Uxj, Uyj, φj
}

, (16a)

{
Uz, ςy, ςx, ςω

}
(z) =

m

∑
j=1

φ′j (z)
{

Uzj, ςyj, ςxj, ςωj
}

, (16b)

where Uxj, Uyj, φj, Uzj, ςyj, ςxj, ςωj are the unknowns to be computed; φj (z) is the shape
functions which satisfy the boundary conditions (BCs) (Table 1).
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Table 1. Shape functions and essential BCs of laminated composite thin-walled I-beams

BC φj(x)/e
−jx

L x = 0 x = L

S-S sin
(πx

L

)
Ux = Uy = φ = 0 U = V = φ = 0

C-F sin2
(πx

2L

) Ux = Uy = φ = 0
U′x = U′y = φ′ = 0

Uz = ςy = ςx = ςv = 0

C-C sin2
(πx

L

) Ux = Uy = φ = 0
U′x = U′y = φ′ = 0

Uz = ςy = ςx = ςv = 0

Ux = Uy = φ = 0
U′x = U′y = φ′ = 0

Uz = ςy = ςx = ςv = 0

Substituting Eq. (16) in to Eqs. (10) and (11), and then applying Hamilton’s principle
lead to the characteristic equation for the buckling analysis of the laminated composite
thin-walled beams as follows

Kp = 0, (17)

where p =
[

Uz Ux Uy Φ ςx ςy ςω

]T is the displacement vector; K is the stiff-
ness matrix and is given as

K =



K11 K12 K13 K14 K15 K16 K17

TK12 K22 K23 K24 K25 K26 K27

TK13 TK23 K33 K34 K35 K36 K37

TK14 TK24 TK34 K44 K45 K46 K47

TK15 TK25 TK35 TK45 K55 K56 K57

TK16 TK26 TK36 TK46 TK56 K66 K67

TK17 TK27 TK37 TK47 TK57 TK67 K77


, (18)

with the following matrix elements

K11
ij = E11

L∫
0

φ′′i φ′′j dz, K12
ij = E16

L∫
0

φ′′i φ′jdz, K13
ij = E17

L∫
0

φ′′i φ′jdz,

K14
ij = (E15 + E18)

L∫
0

φ′′i φ′jdz, K15
ij = E12

L∫
0

φ′′i φ′′j dz + E16

L∫
0

φ′iφjdz,

K16
ij = E13

L∫
0

φ′′i φ′′j dz + E17

L∫
0

φ′′i φ′jdz, K17
ij = E14

L∫
0

φ′′i φ′′j dz + (E18 − E15)

L∫
0

φ′′i φ′jdz,



Buckling analysis of laminated composite thin-walled I-beam under mechanical and thermal loads 83

K22
ij = E66

L∫
0

φ′iφ
′
jdz +

(
Nm

0 + Nt
0
) L∫

0

φ′iφ
′
jdz, K23

ij = E67

L∫
0

φ′iφ
′
jdz,

K24
ij = (E56 + E68)

L∫
0

φ′iφ
′
jdz +

(
Nm

0 + Nt
0
)

yp

L∫
0

φ′iφ
′
jdz,

K25
ij = E26

L∫
0

φ′iφ
′′
j dz + E66

L∫
0

φ′iφ
′
jdz, K26

ij = E36

L∫
0

φ′iφ
′
jdz + E67

L∫
0

φ′iφ
′
jdz,

K27
ij = E46

L∫
0

φ′iφ
′′
j dz + (E68 − E56)

L∫
0

φ′iφ
′
jdz, K33

ij = E77

L∫
0

φ′iφ
′
jdz +

(
Nm

0 + Nt
0
) L∫

0

φ′iφ
′
jdz,

K34
ij = (E57 + E78)

L∫
0

φ′iφ
′
jdz−

(
Nm

0 + Nt
0
)

xp

L∫
0

φ′iφ
′
jdz, K35

ij = E27

L∫
0

φ′iφ
′′
j dz + E67

L∫
0

φ′iφ
′
jdz,

K36
ij = E37

L∫
0

φ′iφ
′′
j dz + E77

L∫
0

φ′iφ
′
jdz, K37

ij = E47

L∫
0

φ′iφ
′′
j dz + (E78 − E57)

L∫
0

φ′iφ
′
jdz,

K44
ij = (E55 + 2E58 + E88)

L∫
0

φ′iφ
′
jdz +

(
Nm

0 + Nt
0
)

Ip

A

L∫
0

φ′iφ
′
jdz,

K45
ij = (E25 + E28)

L∫
0

φ′iφ
′′
j dz + (E56 + E68)

L∫
0

φ′iφ
′
jdz,

K46
ij = (E35 + E38)

L∫
0

φ′iφ
′′
j dz + (E57 + E78)

L∫
0

φ′iφ
′
jdz,

K47
ij = (E45 + E48)

L∫
0

φ′iφ
′′
j dz + (E88 − E55)

L∫
0

φ′iφ
′
jdz,

K55
ij = E22

L∫
0

φ′′i φ′′j dz + E26

L∫
0

(
φ′′i φ′j + φ′iφ

′′
j

)
dz + E66

L∫
0

φ′iφ
′
jdz,

K56
ij = E23

L∫
0

φ′′i φ′′j dz + E27

L∫
0

φ′′i φ′jdz + E36

L∫
0

φ′iφ
′′
j dz + E67

L∫
0

φ′iφ
′
jdz,

K57
ij = E24

L∫
0

φ′′i φ′′j dz + (E28 − E25)

L∫
0

φ′′i φ′jdz + E46

L∫
0

φ′iφ
′′
j dz + (E68 − E56)

L∫
0

φ′iφ
′
jdz,
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K66
ij = E33

L∫
0

φ′′i φ′′j dz + E37

L∫
0

(
φ′′i φ′j + φ′iφ

′′
j

)
dz + E77

L∫
0

φ′iφ
′
jdz,

K67
ij = E34

L∫
0

φ′′i φ′′j dz + (E38 − E35)

L∫
0

φ′′i φ′jdz + E47

L∫
0

φ′iφ
′′
j dz + (E78 − E57)

L∫
0

φ′iφ
′
jdz,

K77
ij = E44

L∫
0

φ′′i φ′′j dz + (E48 − E45)

L∫
0

(
φ′′i φ′j + φ′iφ

′′
j

)
dz + (E88 − 2E58 + E55)

L∫
0

φ′iφ
′
jdz.

(19)

The buckling responses of the laminated composite thin-walled beam can be ob-
tained by solving det(K) = 0.

3. NUMERICAL RESULTS

The laminated composite thin-walled I-beam in this numerical study is made of
glass-epoxy materials with the following properties: E1 = 53.78 GPa, E2 = 17.93 GPa,
G12 = G13 = 8.96 GPa, G23 = 3.45 GPa, ν12 = 0.25. The thermal expansion coeffi-
cients of glass and epoxy are α1 = 6.7× 10−7 K−1 and α2 = 3.6× 10−6 K−1 respectively.
The geometry of the laminated composite thin-walled I-beam is shown in Fig. 2 with
b1 = b2 = b3 = 0.05 m, h1 = h2 = h3 = 0.00208 m.

3.1. Convergence and verification study

This section conducts convergence study of the present solution for buckling analysis
of laminated composite thin-walled I-beams under mechanical loads. For Table 2, the
laminated composite I-beam’s length is expressed as L/b3 = 40. The laminated angle-ply
for all the flanges and web is [45◦/− 45◦]4s. It can be observed in Table 2 that the results
of this paper’s approach achieve numerical convergence at m = 8 and agree with the
results of Nguyen et al. [34]. Therefore, the series number m = 8 is applied in subsequent
analyses.

To further verify the current solution in mechanical environment, Table 3 presents the
effects of the various fibre angle lay-ups, boundary conditions and the length-to-depth
ratio on the laminated composite I-beam’s critical buckling loads. It can be seen that in
both cases of L/b3 = 20 and L/b3 = 80, the critical buckling loads decrease with the
increasing fibre angle θ◦ of the [θ◦,−θ◦]4s lay-up. The buckling results of the laminated
composite I-beam with S-S boundary condition and L/b3 = 80, C-F boundary condition
and L/b3 = 20 show good agreements with past researches from Kim et al. [35] and Vo
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and Lee [18]. More results are computed for the laminated composite I-beam set-up in
Table 3 but with more cases of fibre angle θ◦. These results are plotted for L/b3 = 20 and
L/b3 = 80 in Fig. 3.

Table 2. Convergence of critical buckling loads (kN) for the laminated composite thin-walled
I-beams under mechanical load

BCs Reference
m

2 4 6 8 10 12

S-S
Present 2.931 2.679 2.671 2.671 2.671 2.671
Nguyen et al. (Shear) [34] 2.752 2.690 2.671 2.671 2.671 2.671
Nguyen et al. (No shear) [34] 2.755 2.692 2.673 2.673 2.673 2.673

C-F
Present 3.852 1.564 0.738 0.671 0.668 0.669
Nguyen et al. (Shear) [34] 0.706 0.668 0.668 0.668 0.668 0.668
Nguyen et al. (No shear) [34] 0.706 0.668 0.668 0.668 0.668 0.668

C-C
Present 10.768 10.659 10.657 10.657 10.657 10.657
Nguyen et al. (Shear) [34] 10.797 10.678 10.657 10.657 10.657 10.657
Nguyen et al. (No shear) [34] 10.832 10.712 10.691 10.691 10.691 10.691

Table 3. Comparison of critical buckling loads (N) of the thin-walled composite I-beams
under mechanical loads

BC Reference
Fibre angle

[0]16 [15/-15]4s [30/-30]4s [45/-45]4s [60/-60]4s [75/-75]4s [90/-90]4s [0/90]4s

L/b3 = 80

S-S
Present (Shear) 1438.1 1299.4 965.0 668.1 528.6 487.0 479.6 959.0
Kim et al. (No shear) [35] 1438.8 1300.0 965.2 668.2 528.7 487.1 - 959.3

C-F Present (Shear) 361.2 326.4 242.4 167.8 132.7 122.3 120.4 240.9

C-C Present (Shear) 5743.3 5191.0 3856.8 2670.6 2113.2 1946.7 1917.1 3831.4

L/b3 = 20

S-S Present (Shear) 22832.7 20660.1 15376.7 10657.3 8433.9 7767.7 7648.6 15255.8

C-F
Present (Shear) 5768.6 5213.8 3873.7 2682.4 2122.5 1955.2 1925.5 3848.3
Vo and Lee (Shear) [18] 5741.5 5189.0 3854.5 2668.4 2111.3 1945.1 - 3829.8
Kim et al. (No shear) [35] 5755.2 5199.8 3861.0 2672.7 2114.7 1948.3 - 3857.8

C-C Present (Shear) 77772.9 72116.0 57102.8 42069.5 33438.5 30632.4 29873.4 53993.2
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when θ◦ is in the range of 20◦–70◦ before plateauing afterwards. This trend is particularly
clearer when the beam is under C-C boundary condition.

Moreover, the laminated composite I-beam can withstand much more temperature
rise and thermal load with L/b3 = 20 compared to L/b3 = 80. Fig.5 demonstrates better
the effects of length-to-depth ratios on the thermal buckling stability of the laminated
composite I-beams. The thin-walled beam is drastically more stable at low L/b3 and the
L/b3 becomes less significant when L/b3 > 30.

 12 
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4. CONCLUSION

A shear-deformable thin-walled beam model and a hybrid series solution are pre-
sented in this study. The glass-epoxy composite I-beam is investigated for its mechanical
and thermal buckling stability. This model can predict accurately the critical buckling
loads and critical buckling temperature for different beam configurations. The effects
of fibre angle lay-up, boundary conditions and length-to-depth ratios are shown in the
numerical results. The beam’s buckling capacity is higher for low fibre angle, low length-
to-depth ratios and clamped-clamped boundary condition. The present model is shown
to be valid for buckling analysis of laminated composite I-beam under mechanical and
thermal loads.
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ABSTRACT 
This paper investigates the vibration and buckling analysis of porous metal 
foam thin-walled box beams. These beams exhibit a unique structural con-
figuration with symmetrical and asymmetrical porosity distributions along 
their wall thickness, thereby altering the effective mechanical properties. 
The first-order shear deformable beam theory is employed and the govern-
ing equations are derived using the Hamilton’s principle. Numerical results 
are presented for porous metal foam thin-walled box beams under simply- 
supported, clamped–clamped and clamped-free boundary conditions. The 
effects of various porosity parameters, length-to-side and side-to-wall-thick-
ness ratios on the beams’ performance are also examined. A comprehen-
sive comparison between the porous metal foam thin-walled box beams 
and their counterparts in the form of equivalent homogeneous are 
presented.
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1. Introduction

In the past few decades, the advances of technology in the fabrication of materials allows for the 
development of porous materials. These materials are characterized by a spatially varying porosity 
and composition, granting them the ability to reduce the self-weight while simultaneously opti-
mize mechanical, thermal, and electrical properties across their volume. This feature enables the 
material scientists and engineers to fine-tune the structural components made from functionally 
graded (FG) porous materials to satisfy the demands of the industry applications (Ishizaki, 
Komarneni, and Nanko 2013; Liu and Chen 2014). In addition, the thin-walled beams are known 
as an important slender structural element in many engineering field such as aerospace, civil, 
mechanical and naval engineerings, etc. (Liviu Librescu 2006; Wu, Yang, and Kitipornchai 2020). 
Although their wall thickness is small in comparison with their cross-sectional dimensions and 
length, they possess a high efficiency in strength-to-weight ratio. Therefore, the consideration of 
FG materials with porosity application in the thin-walled beams has been an interesting topic 
attracted researches in recent years to better understand and predict their behaviors.

Although many theories have been proposed to analyze thin-walled beams with different 
cross-sections and material properties, only some representative references are herein cited. The 
classical thin-walled beam theory (CTWBT) was proposed by Vlasov (1959), which neglects the 
shear effects and requires modifications to predict the thin-walled beam’s responses. In practice, 
due to its simplicity in theoretical formulation and programming, the CTWBT has commonly 
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used to predict static and dynamic responses of laminated composite and FG thin-walled beams 
with open and closed sections. Bauld and Lih-Shyng (1984) presented linear and nonlinear theor-
etical formulations of isotropic and laminated composite thin-walled beams with open sections. 
By using the CTWBT and finite element method (FEM), Lanc et al. (2015) investigated stability 
analysis of FG sandwich box beams and Vo and Lee (2007) studied the flexural–torsional behav-
iors of laminated composite thin-walled box beams under vertical and torsional loads. Kim and 
Lee (2018) investigated the geometrical nonlinearity of the FG thin-walled box beams with con-
sideration of both single and double cells. Belabed, Tounsi, Bousahla, et al. (2024) proposed an 
enhanced FEM to predict the forced and free vibration responses of FG beams with non-uniform 
cross-section. It is noted that due to neglecting the shear effects, the CTWBT is only suitable for 
slender beams. In order to deal with thick beams, the first-order thin-walled beam theory 
(FTWBT) is used. Ambrosini, Riera, and Danesi (2000) presented the dynamic analysis of thin- 
walled beams by considering the effects of shear flexibility, rotatory inertia in the stress resultants. 
Choi and Kim (2021) proposed a higher-order Vlasov’s torsion theory that incorporates extra sec-
tional deformation modes for thin-walled box beams. By using FTWBT, Ziane et al. (2013) inves-
tigated the free vibration of FG thin-walled box beam. Kvaternik et al. (2019) compared the FG 
thin-walled beam’s buckling responses between the CTWBT and the refined theory using Carrera 
Unified Formulation. Librescu, Oh, and Song (2005) proposed the thermoelastic modeling of 
spining FG thin-walled beams under high thermal load. Nguyen et al. (2019), (2023) studied 
structural responses of FG sandwich beams with I- and channel-sections using the FTWBT and 
Ritz method. Bui et al. (2023) investigated the size dependent effects on bending and free vibra-
tion of FG sandwich thin-walled beams using the FTWBT, modified couple stress theory and Ritz 
method. Bui, Nguyen, and Nguyen (2024) employed the FTWBT and polynomial chaos expansion 
theory for buckling and vibration analysis of FG thin-walled beams. It can be observed that the 
FTWBT is considered as the simplest theory accounting for the shear effects, however it requires 
a shear correction factor to correct the traction-free boundary condition on the wall surfaces. 
Another approach is to use the higher-order shear deformation thin-walled beam theory 
(HTWBT) in which the shear strains are supposed to be varied in terms of the high-order poly-
nomials in the wall thickness, therefore the shear stresses could be adequately computed by con-
stitutive equations. Chandiramani, Librescu, and Shete (2002) examined free vibration responses 
of thin-walled composite box beams in which the shear strains were approximated under a third- 
order polynomial in the wall thickness. Bui et al. (2022), Bui and Nguyen (2023) proposed a 
unified HTWBT for deterministic and stochastic analysis of laminated composite thin-walled 
I-beams using the Ritz method in which the shear strains were introduced under general high- 
order polynomials satisfied the traction-free boundary conditions on the wall surfaces. Bui Manh 
et al. (2024) proposed a refined shear deformation theory employing hyperbolic sine functions 
and FEM to study the static responses of rotating FG beams. Meftah et al. (2024) formulated a 
new beam FEM based on the high-order shear deformation theory which can be used for in- 
plane loaded masonry walls and other structures. Although this approach required the additional 
computations, the HTWBT showed that the shear effects are significant for small length-to-depth 
ratios.

Furthermore, the porous metal foam (PMF) material has many practical applications in mul-
tiple industries, thanks to its unique combination of properties such as low density, high specific 
strength, excellent energy absorption capacity, vibration damping effectiveness, and thermal con-
ductivity (Lefebvre, Banhart, and Dunand 2008). By accurately predicting the vibration and buck-
ling behaviors of the PMF structures, designers apply the simulation results in many notable 
applications such as crash absorption structures in vehicles (Srinath et al. 2010), seismic dampers 
in buildings (Ebadi-Jamkhaneh, Rezaei, and Ahmadi 2021), explosive containment in military 
(Homae et al. 2021), and high-performance sports equipments (Dukhan 2013). Therefore, PMFs 
have increasingly enticed researchers to explore its characteristics and behaviors for various 
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structures. Addou, Bousahla, and Alnujaie (2023), Addou et al. (2024) analyzed the impacts of 
porosity on static behaviors of laminated composite shells and plates based on high-order shear 
deformation theory. Lakhdar et al. (2024) and Bentrar et al. (2023) studied the free vibration 
responses of porous FG structures using the p-version FEM. Alsubaie et al. (2023), Belabed, 
Tounsi, Al-Osta Mohammed, et al. (2024), Hadji et al. (2023) and Khorasani (2023) investigated 
the combined effects of porosity and foundation conditions on the beam’s responses. Chitour 
et al. (2024) examined the influence of porosity on the stability of imperfect FG sandwich plates 
using a novel quasi-3D high shear deformation theory. Moreover, Al-Osta et al. (2021) and 
Bourada et al. (2023) scrutinized the relation between the porosity of FG structures with their 
hygro-thermal responses by employing intricate computational models. Despite the growing num-
ber of recent researches in PMF beams with rectangular sections (Chen, Yang, and Kitipornchai 
2016; Derikvand, Farhatnia, and Hodges 2023; Keleshteri and Jelovica 2022; Tang, Li, and Hu 
2018), only a few earlier studies have examined the static and dynamic responses of FG thin- 
walled beams with porosity. By using the FTWBT and Galerkin method, Ziane et al. (2017) ana-
lyzed the thermal effects on the stability of FG box beams with porosity using the FTWBT and 
Galerkin method, while Farsadi (2022) investigated the static and dynamic responses of FG thin- 
walled rotating blades with porosity. The literature review indicates a notable absence of research 
on the mechanical responses of PMF thin-walled beams. This paper aims to address this gap by 
employing a novel analytical model and computational techniques tailored to accurately study 
their mechanical behaviors. The methods and results presented herein offer critical insights that 
can be advantageous in designing lightweight yet robust components across the aerospace, auto-
motive, and civil engineering industries. These insights not only fill a crucial gap in the literature, 
but also contribute to the future analysis and design considerations to enhance the structural 
integrity and performance optimization of PMF components.

This paper presents the vibration and buckling analysis of the PMF box beam using the 
FTWBT for the first time. Both symmetric and nonsymmetric porosity distributions via the thick-
ness are considered. Governing equations are derived from the Hamilton’s principle and are 
solved using the Ritz-type hybrid series solution. The effects of porosity configurations, boundary 
conditions, length-to-height ratio, height-to-wall-thickness ratio and cross-section shapes on the 
vibration and buckling analysis of PMF thin-walled box beams are evaluated.

2. Theoretical formulation

Consider a PMF thin-walled box beam with length L: Three sets of coordinate systems are dis-
played in Fig. 1: Cartesian coordinate system ðx1, x2, x3Þ, local plate coordinate system ðn, s, x3Þ

and contour coordinate s along the profile of the section. h is an angle of orientation between 
ðn, s, x3Þ and ðx1, x2, x3Þ coordinate systems. The pole P with coordinates ðxP

1 , xP
2 Þ is considered 

as the shear center of the section. For simplicity purpose, the following assumptions are made: 
the strains are small and the section contour does not deform in its own plane, the shear and 
warping shear strains are uniform over the section, local buckling and pre-buckling deformation 
are negligible.

2.1. Kinematics

The vertical and horizontal displacements u1ðn, s, x3Þ and u2ðn, s, x3Þ at any points in the contour 
coordinate system under a small rotation / about the pole axis can be expressed in terms of 
those at the pole uP

1ðx3Þ and uP
2ðx3Þ in x1− and x2− directions, respectively, as follows (Vlasov 

1959):

u1 n, s, x3ð Þ ¼ uP
1 x3ð Þ − X2 − xP

2
� �

/ x3ð Þ (1a) 
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u2 n, s, x3ð Þ ¼ uP
2 x3ð Þ þ X1 − xP

1
� �

/ x3ð Þ (1b) 

where X1 ¼ x1 þ nx2,s, X2 ¼ x2 − nx1,s: Moreover, the displacements in the contour lines 
unðn, s, x3Þ, usðn, s, x3Þ can be derived from those in Eq. (1) as follows:

un n, s, x3ð Þ ¼ uP
1 x3ð ÞX2,s − uP

2 x3ð ÞX1,s − Rs n, x3ð Þ/ x3ð Þ (2a) 

us n, s, x3ð Þ ¼ uP
1 x3ð ÞX1,s þ uP

2 x3ð ÞX2,s þ Rn n, x3ð Þ/ x3ð Þ (2b) 

where Rsðn, sÞ ¼ rsðsÞ, Rnðn, sÞ ¼ rnðsÞ þ n in which rsðsÞ, rnðsÞ are the lengths of the perpendicu-
lars from P to the tangent and normal of the profile line. Furthermore, the shear strains ðcs3, cn3Þ in 
the contour of thin-walled beams can be written in terms of the transverse shear strains ðc13, c23Þ

and a direct shear strain caused by the change rate of twist angle /,3 (Megson 2021) as follows:

cs3 n, s, x3ð Þ ¼ c13 n, x3ð ÞX1,s þ c23 n, x3ð ÞX2,s þ 2n/,3 x3ð Þ ¼ us,3 þ u3,s (3a) 

cn3 n, s, x3ð Þ ¼ c13 n, x3ð ÞX2,s − c23 n, x3ð ÞX1,s ¼ un,3 þ u3,n (3b) 

It is assumed that the transverse shear strains ðc13, c23Þ are constant in the wall thickness, i.e., 
c13ðn, x3Þ ¼ c

ð0Þ
13 ðx3Þ, c23ðn, x3Þ ¼ c

ð0Þ
23 ðx3Þ where cð0Þ13 , cð0Þ23 are mid-surface transverse shear strains. 

Substituting Eq. (2) into Eq. (3) and then integrating the subsequent results with respect to s and 
n lead to the expression of the axial displacement as follows:

u3 n, s, x3ð Þ ¼ u 0ð Þ
3 x3ð Þ þ h2 x3ð ÞX1 n, sð Þ þ h1 x3ð ÞX2 n, sð Þ − /,3 x3ð Þ�Fx n, sð Þ (4) 

where h1ðx3Þ ¼ c
ð0Þ
23 − vp,3 and h2ðx3Þ ¼ c

ð0Þ
13 − up,3 are rotations with respect to x1− and x2− axes; 

�Fx ¼ Fx − nrs where FxðsÞ is a warping function defined by:

Fx sð Þ ¼
ðs

s0

rn −
2X

b

� �

sð Þds (5) 

Figure 1. Thin-walled coordinate systems.
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where X is the area enclosed by the contour line of the beam and b is the cross-section 
perimeter.

The kinematics of FTWBT at any points of the PMF thin-walled beam with closed sections 
can be finally expressed as follows:

u1 n, s, x3ð Þ ¼ uP
1 x3ð Þ − x2 − nx1,s − xP

2
� �

/ x3ð Þ (6a) 

u2 n, s, x3ð Þ ¼ uP
2 x3ð Þ þ x1 þ nx2,s − xP

1
� �

/ x3ð Þ (6b) 

u3 n, s, x3ð Þ ¼ u 0ð Þ
3 x3ð Þ þ h2 x3ð Þ x1 þ nx2,sð Þ þ h1 x3ð Þ x2 − nx1,sð Þ − /,3 x3ð Þ�Fx (6c) 

2.2. Strains

The linear nonzero strains related to the displacements in Eq. (6) are given by:

e33 n, s, x3ð Þ ¼ e
0ð Þ

33 þ ne
1ð Þ

33 (7a) 

cs3 n, s, x3ð Þ ¼ c
0ð Þ

s3 þ nc
1ð Þ

s3 (7b) 

cn3 n, s, x3ð Þ ¼ c
0ð Þ

n3 (7c) 

where

e
0ð Þ

33 s, x3ð Þ ¼ u 0ð Þ
3,3 þ h2,3x1 þ h1,3x2 − /,33Fx (8a) 

e
1ð Þ

33 s, x3ð Þ ¼ h2,3x2,s − h1,3x1,s þ /,33rs (8b) 

c
0ð Þ

s3 s, x3ð Þ ¼ c
0ð Þ

13 x1,s þ c
0ð Þ

23 x2,s (8c) 

c
1ð Þ

s3 s, x3ð Þ ¼ 2/,3 (8d) 

c
0ð Þ

n3 s, x3ð Þ ¼ c
0ð Þ

13 x2,s − c
0ð Þ

23 x1,s (8e) 

2.3. Stress

The stress–strain relation of the PMF thin-walled beams whose material properties vary continu-
ously in the thickness can be written as follows:

r33
rs3
rn3

8
><

>:

9
>=

>;
¼

Q11 0 0
0 Q66 0
0 0 Q55

0

B
@

1

C
A

e33
cs3
cn3

8
><

>:

9
>=

>;
(9) 

where Q11 ¼ EðnÞ, Q66 ¼ Q55 ¼
EðnÞ

2ð1þ�Þ ; EðnÞ is Young’s modulus; � is constant Poisson’s ratio. In 
this study, two porosity patterns (Chen, Yang, and Kitipornchai 2015; Fang et al. 2019; Gao, Li, 
and Yang 2019) of PMF thin-walled beams are considered as indicated in Fig. 2.
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Symmetric pore distribution (Type A)

E nð Þ ¼ Emax 1 − e0 cos
pn
h

� �� �

(10a) 

q nð Þ ¼ qmax 1 − em cos
pn
h

� �� �

(10b) 

Asymmetric pore distribution (Type B)

E nð Þ ¼ Emax 1 − e0 cos
pn
2h
þ

p

4

� �� �

(11a) 

q nð Þ ¼ qmax 1 − em cos
pn
2h
þ

p

4

� �� �

(11b) 

where: Emax and qmax are the maximum values of Young’s modulus and mass density, respect-
ively; e0 and em ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − e0
p

are the porosity parameters; qðnÞ is mass density of the PMF thin- 
walled beams.

Figure 2. Porous metal foam (PMF) material distribution in the wall thickness.
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2.4. Variational formulation

The characteristic equations of the system can be derived from Hamilton’s principle (Goldstein 
1980) as follows:

ðt2

t1

dPS þ dPW − dPKð Þdt ¼ 0 (12) 

where the variation of strain energy dPS of the system is defined by:

dPS ¼

ð

V
r33de33 þ rs3dcs3 þ rn3dcn3ð ÞdV (13) 

where the shear correction coefficient is assumed to be unity. Substituting Eq. (7) into Eq. (13)
leads to:

dPS ¼

ðL

0

T33du 0ð Þ
3,3 þM22dh2,3 þM11dh1,3 þM-d/,33

h

þV11d uP
1,3 þ h2

� �
þ V22d uP

2,3 þ h1

� �
þM33d/,3�dx3

(14) 

where the stress resultants ðT33, M22, M11, M-, V11, V22, M33Þ are defined as follows:

T33, M22, M11, M-ð Þ ¼

ð

A

1, X1, X2, nrs − Fxð Þr33dsdn (15a) 

V11, V22, M33ð Þ ¼

ð

A

rs3x1,s þ rn3x2,s, rs3x2,s − rn3x1,s, 2nrs3ð Þdsdn (15b) 

These stress resultants are related to the displacement gradients as follows:

T33

M22

M11

V11

V22

M33

M-

8
>>>>>>>>><

>>>>>>>>>:

9
>>>>>>>>>=

>>>>>>>>>;

¼

L11 L12 L13 0 0 0 L17

L12 L22 L23 0 0 0 L27

L13 L23 L33 0 0 0 L37

0 0 0 L44 L45 L46 0
0 0 0 L45 L55 L56 0
0 0 0 L46 L56 L66 0
0 0 0 0 0 0 L77

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

u 0ð Þ
3,3

h2,3

h1,3

uP
1,3 þ h2

uP
2,3 þ h1

/,3
/,33

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

(16) 

where the stiffness components of the PMF thin-walled beams are defined by:

L11 ¼

ð

s

A11ds, L12 ¼

ð

s

A11x1 þ B11x2,sð Þds, L13 ¼

ð

s

A11x2 − B11x1,sð Þds 

L17 ¼

ð

s

B11rs − A11Fxð Þds, L22 ¼

ð

s

A11x2
1 þ 2B11x1x2,s þ D11x2

2,s

� �
ds 

L23 ¼

ð

s

A11x1x2 þ B11 x2x2,s − x1x1,sð Þ − D11x1,sx2,s
� �

ds 
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L27 ¼

ð

s

−A11x1Fx þ B11 x1rs − x2,sFxð Þ þ D11rsx2,s½ �ds 

L33 ¼

ð

s

A11x2
2 − 2B11x1,sx2 þ D11x2

1,s

� �
ds 

L37 ¼

ð

s

−A11x2Fx þ B11 x2rs þ x1,sFxð Þ − D11rsx1,s½ �ds 

L44 ¼

ð

s

A66x2
1,s þ A55x2

2,s

� �
ds, L45 ¼

ð

s

A66 − A55ð Þx1,sx2,sds, L46 ¼

ð

s

2B66x1,sds 

L55 ¼

ð

s

A66x2
2,s þ A55x2

1,s

� �
ds, L56 ¼

ð

s

2B66x2,sds, L66 ¼

ð

s

4D66ds 

L77 ¼

ð

s

A11F2
x − 2B11rsFx þ D11r2

s
� �

ds 

Aij, Bij, Dijð Þ ¼

ð

s

1, n, n2ð ÞQijds (17) 

The variation of the geometric incremental potential is given by:

dPw ¼ N0
ðL

0

duP
1,3ðu

P
1,3 − JP/,3Þ þ duP

2,3ðu
P
2,3 þ IP/,3Þ þ d/,3ðIPuP

2,3 − JPuP
1,3 þ Kp/,3Þ

h i
dx3 (18) 

where

ðIP, JP, KpÞ ¼

ð

s

ð

n

X1 − xP
1 , X2 − xP

2 , ðX1 − xP
1 Þ

2
þ ðX2 − xP

2 Þ
2

h i

dsdn (19) 

The variation of kinetic energy PK of the system is given by:

dPK ¼

ð

X

q nð Þ _u1d _u1 þ _u2d _u2 þ _u3d _u3ð ÞdX

¼

ðL

0

d _uP
1 m1 _uP

1 − m2/
_

� �

þ d _uP
2 m1 _uP

2 þm3/
_

� �

þ d _u 0ð Þ
3 m1 _u 0ð Þ

3 þm6h
_

2 þm10h
_

1 − m13/
_

,3

� ��

þdh
_

2 m6 _u 0ð Þ
3 þm7h

_

2 þm8h
_

1 − m9/
_

,3

� �

þ dh
_

1 m10 _u 0ð Þ
3 þm8h

_

2 þm11h
_

1 − m12/
_

,3

� �

þd/
_

−m2 _uP
1 þm3 _uP

2 þ m4 þm5ð Þ/
_

h i

þ d/
_

,3

h
− m13 _u 0ð Þ

3 − m9h
_

2 − m12h
_

1 þm14/
_

,3

i�

dx3

(20) 
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where the terms of mass mi are given as follows:

m1, m2, m3, m4, m5f g ¼

ð

A

q 1, X2 − xP
2 , X1 − xP

1 , X2 − xP
2

� �2, X1 − xP
1

� �2
n o

dnds (21a) 

m6, m7, m8, m9f g ¼

ð

A

qX1 1, X1, X2, �Fxf gdnds (21b) 

m10, m11, m12f g ¼

ð

A

qX2 1, X2, �Fxf gdnds (21c) 

m13, m14f g ¼

ð

A

q �Fx, �F2
x

� �
dnds (21d) 

2.5. Hybrid series solution

The displacement field is approximated via Ritz-type series with six unknowns (uP
1jðtÞ, uP

2jðtÞ, 
u3jðtÞ, h2jðtÞ, h1jðtÞ and /jðtÞ) and hybrid shape functions wjðx3Þ as follows:

uP
1 , uP

2 , /
� �

x3, tð Þ ¼
Xm

j¼1
wj x3ð Þ uP

1j, uP
2j, /j

n o
tð Þ (22a) 

u 0ð Þ
3 , h1, h2

n o

x3, tð Þ ¼
Xm

j¼1
wj,3 x3ð Þ u3j, h1j, h2j

� �
tð Þ (22b) 

In this paper, hybrid shape functions in Table 1 are combined of exponential and admissible 
functions to satisfy various boundary conditions (BCs).

By substituting Eq. (22) into Eqs. (14) (18) and (20), and then the subsequent results into 
Eq. (12) lead to the characteristic equations for buckling and vibration analysis of PMF thin- 
walled box beams as follows:

Km þ Kgð ÞdþM€d ¼ 0 (23) 

where Km, Kg are the material and geometric stiffness matrix, respectively; M is the mass matrix; 
d ¼ uP

1 uP
2 u3 h2 h1 U

� �T is the displacement vector. The material stiffness matrix Km is given 

Table 1. Shape functions and essential BCs of PMF thin-walled box beams.

BC ujðx3Þ x3 ¼ 0 x3 ¼ L

S–S ðx3 − LÞ 1 −
x3

L

� �

e
−jx3

L n ¼ g ¼ / ¼ 0 n ¼ g ¼ / ¼ 0

C–F
x3

L

� �2

e
−jx3

L n ¼ g ¼ / ¼ 0 
n,3 ¼ g,3 ¼ /,3 ¼ 0 
f ¼ w2 ¼ w1 ¼ w- ¼ 0

C–C
x3

L

� �2

1 −
x3

L

� �2

e
−jx3

L n ¼ g ¼ / ¼ 0 
n,3 ¼ g,3 ¼ /,3 ¼ 0 
f ¼ w2 ¼ w1 ¼ w- ¼ 0

n ¼ g ¼ / ¼ 0 
n,3 ¼ g,3 ¼ /,3 ¼ 0 
f ¼ w2 ¼ w1 ¼ w- ¼ 0
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as:

Km ¼

K11
m K12

m 0 K14
m K15

m K16
m

TK12
m K22

m 0 K24
m K25

m K26
m

TK13
m

TK23
m K33

m K34
m K35

m K36
m

TK14
m

TK24
m

TK34
m K44

m K45
m K46

m
TK15

m
TK25

m
TK35

m
TK45

m K55
m K56

m
TK16

m
TK26

m
TK36

m
TK46

m
TK56

m K66
m

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

(24) 

where

K11
mij ¼ L44S11

ij , K12
mij ¼ L45S11

ij , K14
mij ¼ L44S11

ij , K15
mij ¼ L45S11

ij , K16
mij ¼ L46S11

ij 

K22
mij ¼ L55S11

ij , K24
mij ¼ L45S11

ij , K25
mij ¼ L55S11

ij , K26
mij ¼ L56S11

ij 

K33
mij ¼ L11S22

ij , K34
mij ¼ L12S22

ij , K35
mij ¼ L13S22

ij , K36
mij ¼ L17S22

ij 

K44
mij ¼ L22S22

ij þ L44S11
ij , K45

mij ¼ L23S22
ij þ L45S11

ij 

K46
mij ¼ L27S22

ij þ L46S11
ij , K55

mij ¼ L33S22
ij þ L55S11

ij 

K56
mij ¼ L37S22

ij þ L56S11
ij , K66

mij ¼ L77S22
ij þ L66S11

ij 

Srs
ij ¼

ðL

0

@rwi
@xr

3

@swj

@xs
3

dx3 (25) 

The geometric stiffness matrix Kg is given by:

Kg ¼

K11
g 0 0 0 0 K16

g

0 K22
g 0 0 0 K26

g

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

TK16
g

TK26
g 0 0 0 K66

g

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

where

K11
gij ¼ S11

ij , K16
gij ¼ −JPS11

ij , K22
gij ¼ S11

ij , K26
gij ¼ IPS11

ij , K66
gij ¼ KPS11

ij 

ðIP, JP, KPÞ ¼

ð

n,s

1
A

X1 − xP
1 , X2 − xP

2 , ðX1 − xP
1 Þ

2
þ ðX2 − xP

2 Þ
2

h i

dsdn (26) 

10 X.-B. BUI ET AL.



The components of mass matrix M are given by:

M ¼

M11 0 0 0 0 M16

0 M22 0 0 0 M26

0 0 TM33 M34 M35 M36

0 0 TM34 M44 M45 M46

0 0 TM35 TM45 M55 M56

TM16 TM26 TM36 TM46 TM56 M66

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

(27) 

where

M11
ij ¼ m1S00

ij , M16
ij ¼ −m2S00

ij , M22
ij ¼ m1S00

ij , M26
ij ¼ m3S00

ij , M33
ij ¼ m1S11

ij 

Figure 3. Geometry of PMF thin-walled box beams.

Table 2. Convergence of fundamental frequencies (Hz) and critical buckling load (MN) of the PMF thin-walled box beams.

BCs

m

2 4 6 8 10 12

Critical buckling loads (MN)
S–S 0.24018 0.23473 0.23307 0.23305 0.23305 0.23305
C–C 0.45929 0.45862 0.45851 0.45851 0.45851 0.45851
C–F 0.06162 0.05830 0.05830 0.05830 0.05830 0.05830
Fundamental frequencies (Hz)
S–S 141.27 139.43 138.90 138.90 138.90 138.90
C–C 203.98 197.32 196.29 196.13 196.12 196.11
C–F 50.22 49.55 49.51 49.51 49.51 49.51
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Table 3. Verification of the critical buckling loads (106N) of the FG thin-walled box beams.

BC Mode References

p

0 0.2 0.5 1 2 5 10 1000

L=b3 ¼ 80
C–F Y Present 0.08550 0.07433 0.06305 0.05162 0.04000 0.02809 0.02255 0.01583

Y Lanc et al. (2015) 0.08552 0.07435 0.06306 0.05163 0.04001 0.02810 0.02255 0.01583
X Present 0.24406 0.21133 0.17849 0.14551 0.11232 0.07886 0.06351 0.04516
X Lanc et al. (2015) 0.24420 0.21146 0.17859 0.14559 0.11239 0.07890 0.06355 0.04519

S–S Y Present 0.34182 0.29714 0.25204 0.20637 0.15991 0.11231 0.09014 0.06327
Y Lanc et al. (2015) 0.34209 0.29740 0.25225 0.20654 0.16004 0.11240 0.09022 0.06332
X Present 0.97463 0.84391 0.71277 0.58105 0.44854 0.31490 0.25363 0.18036
X Lanc et al. (2015) 0.97683 0.84587 0.71439 0.58237 0.44956 0.31562 0.25421 0.18076

C–C Y Present 1.36407 1.18577 1.00578 0.82351 0.63810 0.44815 0.35972 0.25248
Y Lanc et al. (2015) 1.36903 1.19017 1.00947 0.82655 0.64047 0.44982 0.36105 0.25340
X Present 3.87270 3.35325 2.83210 2.30870 1.78217 1.25117 1.00776 0.71664
X Lanc et al. (2015) 3.90921 3.38512 2.85891 2.33061 1.79912 1.26307 1.01732 0.72340

L=b3 ¼ 20
C–F Y Present 1.36407 1.18577 1.00578 0.82351 0.63810 0.44815 0.35972 0.25248

X Present 3.87270 3.35325 2.83210 2.30870 1.78217 1.25117 1.00776 0.71664
S–S Y Present 5.40583 4.69897 3.98544 3.26299 2.52819 1.77558 1.42530 1.00060

X Present 15.09092 13.06604 11.03473 8.99483 6.94309 4.87435 3.92625 2.79256
C–C Y Present 20.85207 18.12158 15.36625 12.57769 9.74325 6.84270 5.49386 3.85957

X Present 54.71422 47.36360 39.99177 32.59172 25.15278 17.65808 14.22589 10.12471
L=b3 ¼ 10
C–F Y Present 5.40583 4.69897 3.98544 3.26299 2.52818 1.77558 1.42530 1.00059

X Present 15.09092 13.06604 11.03473 8.99483 6.94309 4.87435 3.92625 2.79256
S–S Y Present 20.85207 18.12159 15.36625 12.57770 9.74325 6.84270 5.49386 3.85957

X Present 54.71424 47.36359 39.99177 32.59172 25.15278 17.65808 14.22590 10.12471
C–C Y Present 72.99406 63.38984 53.70910 43.92641 34.00344 23.87902 19.18438 13.51007

X Present 159.24272 137.77879 116.26984 94.70104 73.04994 51.28126 41.33262 29.46647

Table 4. Verification of the critical buckling loads (106N) of the FG thin-walled box beams (1-2-1 skin–core–skin ratio).

BC Mode References
p

0 0.2 0.5 1 2 5 10 1000

L=b3 ¼ 80
C–F Y Present 0.08550 0.07969 0.07387 0.06805 0.06224 0.05642 0.05378 0.05064

Y Lanc et al. (2015) 0.08552 0.07970 0.07388 0.06807 0.06225 0.05643 0.05379 0.05062
X Present 0.24406 0.22747 0.21088 0.19428 0.17769 0.16109 0.15355 0.14460
X Lanc et al. (2015) 0.24420 0.22760 0.21099 0.19439 0.17779 0.16119 0.15364 0.14458

S–S Y Present 0.34182 0.31856 0.29530 0.27205 0.24880 0.22555 0.21499 0.20246
Y Lanc et al. (2015) 0.34209 0.31882 0.29554 0.27227 0.24900 0.22574 0.21517 0.20248
X Present 0.97463 0.90836 0.84210 0.77583 0.70957 0.64330 0.61319 0.57744
X Lanc et al. (2015) 0.97683 0.91042 0.84400 0.77758 0.71117 0.64476 0.61457 0.57835

C–C Y Present 1.36407 1.27125 1.17845 1.08565 0.99287 0.90011 0.85795 0.80793
Y Lanc et al. (2015) 1.36903 1.27587 1.18273 1.08959 0.99648 0.90338 0.86107 0.81031
X Present 3.87270 3.60938 3.34607 3.08276 2.81946 2.55617 2.43650 2.29448
X Lanc et al. (2015) 3.90921 3.64341 3.37761 3.11182 2.84604 2.58027 2.45947 2.31451

L=b3 ¼ 20
C–F Y Present 1.36407 1.27125 1.17845 1.08565 0.99287 0.90011 0.85795 0.80793

X Present 3.87270 3.60938 3.34607 3.08276 2.81946 2.55617 2.43650 2.29448
S–S Y Present 5.40583 5.03800 4.67020 4.30245 3.93476 3.56716 3.40010 3.20186

X Present 15.09092 14.06484 13.03878 12.01275 10.98674 9.96077 9.49444 8.94101
C–C Y Present 20.85207 19.43327 18.01459 16.59609 15.17782 13.75985 13.11544 12.35078

X Present 54.71422 50.99411 47.27403 43.55403 39.83412 36.11434 34.42360 32.41701
L=b3 ¼ 10
C–F Y Present 5.40583 5.03800 4.67020 4.30245 3.93476 3.56716 3.40009 3.20186

X Present 15.09092 14.06485 13.03879 12.01275 10.98674 9.96077 9.49444 8.94100
S–S Y Present 20.85207 19.43327 18.01459 16.59609 15.17782 13.75985 13.11545 12.35078

X Present 54.71424 50.99411 47.27403 43.55404 39.83414 36.11436 34.42361 32.41705
C–C Y Present 72.99406 68.02798 63.06231 58.09715 53.13269 48.16917 45.91341 43.23662

X Present 159.24272 148.41592 137.58924 126.76267 115.93624 105.11024 100.18945 94.34946
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M34
ij ¼ m6S11

ij , M35
ij ¼ M10S11

ij , M36
ij ¼ −m13S11

ij , M44
ij ¼ m7S11

ij , M45
ij ¼ m8S11

ij 

M34
ij ¼ m6S11

ij , M35
ij ¼ M10S11

ij , M36
ij ¼ −m13S11

ij , M44
ij ¼ m7S11

ij , M45
ij ¼ m8S11

ij 

M46
ij ¼ −m9S11

ij , M55
ij ¼ m11S11

ij , M56
ij ¼ −m12S11

ij , M66
ij ¼ m14S11

ij þ m4 þm5ð ÞS00
ij (28) 

It is noted that the free vibration behaviors are obtained by setting dðtÞ ¼ deixt where x is the 
natural frequency and i2 ¼ −1 is the imaginary unit, and then solving the subsequent result ðK − 
x2MÞd ¼ 0: The buckling responses are found by solving detðKm − N0KgÞ ¼ 0:

3. Numerical results

The present FTWBT model for the PMF box beams is compared and computed for different 
cases in this section. Porous alumina, which is chosen in this study, has been widely used in the 
industry due to many advantages such as cost, environmental sustainability, and production time. 
Its material properties are assumed to be Emax ¼ 380GPa, v ¼ 0:3, qmax ¼ 3800kgm−3: The fol-
lowing subsections investigate the effects of porosity, boundary conditions (BCs) and geometry 
on the buckling and vibration behaviors of the PMF thin-walled box beams. It is noted that when 
e0 ¼ 0, the PMF thin-walled box beam is isotropic, homogenous and pore-less.

3.1. Convergence study

By refering to the geometry symbols shown in Fig. 3, the convergence and accuracy of the present 
solution are studied for the sample thin-walled box beams with the following dimensions:

Buckling analysis: h ¼ h1 ¼ h2 ¼ h3 ¼ h4 ¼ 0:005m, b1 ¼ b3 ¼ 0:1m, b2 ¼ b4 ¼ 0:2m, L ¼ 8m:
Vibration analysis: h ¼ h1 ¼ h2 ¼ h3 ¼ h4 ¼ 0:000762m, b1 ¼ b3 ¼ 0:0136m − h, b2 ¼ b4 ¼

0:0242m − h, L ¼ 0:762m:
Table 2 shows the fundamental frequencies and the critical buckling loads of the PMF thin- 

walled box beams as the series number m increases. It can be seen that the present solution 

Table 5. Verification of vibration analysis (rad=s) of the PMF thin-walled and thick-walled box beams.

BC References

p¼ 0.2 p¼ 1 p¼ 10

Mode Y Mode X Mode Y Mode X Mode Y Mode X

Thin-walled box beam
C–F Present 324.84 510.28 285.79 446.86 203.40 317.90

Ziane et al. (2013) 324.61 509.80 285.57 446.42 203.24 317.61
Abaqus (Ziane et al. 2013) 321.65 509.00 283.05 447.19 203.16 319.36

S–S Present 911.37 1430.56 801.81 1252.75 570.65 891.23
Ziane et al. (2013) 909.98 1427.72 800.50 1250.22 569.72 889.43
Abaqus (Ziane et al. 2013) 913.20 1433.70 805.30 1261.20 574.16 898.29

C–C Present 2060.33 3221.20 1812.57 2820.71 1290.01 2006.70
Ziane et al. (2013) 2044.51 3189.01 1797.73 2791.97 1279.39 1986.23
Abaqus (Ziane et al. 2013) 1998.40 3180.80 1752.90 2789.90 1256.40 1992.50

Thick-walled box beam
C–F Present 243.02 477.86 223.50 422.91 160.59 301.28

Ziane et al. (2013) 242.87 476.97 223.32 422.08 160.45 300.68
Abaqus (Ziane et al. 2013) 254.13 492.69 236.17 448.12 171.46 322.42

S–S Present 681.37 1335.44 626.59 1181.78 450.20 841.90
Ziane et al. (2013) 680.53 1330.39 625.55 1176.97 449.41 838.44
Abaqus (Ziane et al. 2013) 709.67 1372.60 659.38 1248.00 478.70 897.87

C–C Present 1535.21 2958.56 1410.85 2616.54 1013.56 1863.88
Ziane et al. (2013) 1525.49 2903.00 1398.94 2563.97 1004.50 1826.14
Abaqus (Ziane et al. 2013) 1584.90 3025.70 1469.40 2744.90 1067.40 1974.80
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converges at series number m ¼ 8 for all boundary conditions. For that reason, this series num-
ber is applied in the upcoming examples.

3.2. Verification study

Since there is no previous numerical data for the vibration and buckling analysis of the PMF 
thin-walled box beams, the present solutions are verified with those of Ziane et al. (2013) for 
vibration and Lanc et al. (2015) for buckling analysis of FG thin-walled box beams. The material 
properties are given by: Ec ¼ 380GPa, Em ¼ 70GPa, qc ¼ 3800kgm−3, qm ¼ 2707kgm−3, � ¼ 0:3

Example 1: The buckling loads of the present beam model align exceptionally with those com-
puted by Lanc et al. (2015) as shown in Tables 3 and 4. The solutions are computed with the dif-
ferent BCs (S–S, C–C and C–F), power-law indices p, and types of FG material distribution. It is 
noted that while Lanc et al. (2015) used the CTWBT, this paper applies the FTWBT. Therefore, 
the buckling loads computed by the present model are expected to be lower than those of Lanc 
et al. (2015), which is shown in all cases. Nonetheless, the differences are only noticeable in S–S 
and C–C beams. This is due to the shear effects being only significant when the length-to-height 
ratio L=b3 is low but the current beam’s L=b3 ratio equals 80 which is relatively high. The buck-
ling responses for the FG box beams with L=b3 ¼ 10 and L=b3 ¼ 20 are included in Tables 3 and 
4 for future studies.

Example 2: The free vibration of the FG thin-walled and thick-walled box beams is examined. 
Table 5 shows excellent agreements between the present solutions with those from Ziane et al. 
(2013) and Abaqus software (Ziane et al. 2013) for all cases of p ¼ 0:2, 1 and 10 under various 
BCs. Even though the FTWBT is used in both studies, the formulation of the stress resultants dis-
played in Eq. (16) of this paper is different from previous one (Ziane et al. 2013). The natural 

Table 6. Buckling loads (MN) of PMF thin-walled box beams with various values of porosity parameter e0:

BC Mode

e0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Type A, L=b3 ¼ 80
S–S x2 0.34182 0.32006 0.29831 0.27655 0.25480 0.23305 0.21129 0.18954

x1 0.97463 0.91259 0.85054 0.78850 0.72646 0.66441 0.60237 0.54033
C–C Min 0.57432 0.55116 0.52800 0.50483 0.48167 0.45851 0.43534 0.41218

x2 1.36407 1.27726 1.19045 1.10363 1.01682 0.93001 0.84319 0.75638
x1 3.87270 3.62617 3.37964 3.13311 2.88658 2.64005 2.39351 2.14698

C–F x2 0.08550 0.08006 0.07462 0.06918 0.06374 0.05830 0.05285 0.04741
x1 0.24406 0.22853 0.21299 0.19745 0.18192 0.16638 0.15084 0.13531

Type B, L=b3 ¼ 80
S–S x2 0.34182 0.32057 0.29931 0.27806 0.25681 0.23556 0.21431 0.19306

x1 0.97463 0.91309 0.85155 0.79001 0.72848 0.66694 0.60540 0.54386
C–C Min 0.57432 0.54047 0.50662 0.47277 0.43892 0.40506 0.37121 0.33735

x2 1.36407 1.27926 1.19446 1.10965 1.02484 0.94003 0.85522 0.77041
x1 3.87270 3.62816 3.38362 3.13908 2.89454 2.65001 2.40547 2.16093

C–F x2 0.08550 0.08019 0.07487 0.06956 0.06424 0.05893 0.05361 0.04829
x1 0.24406 0.22865 0.21324 0.19783 0.18242 0.16701 0.15160 0.13619

Type A, L=b3 ¼ 10
S–S Min 1.88353 1.77722 1.67091 1.56460 1.45829 1.35198 1.24567 1.13937

x2 20.85207 19.52498 18.19788 16.87079 15.54369 14.21660 12.88950 11.56241
x1 54.71424 51.23119 47.74813 44.26508 40.78203 37.29898 33.81592 30.33287

C–C Min 6.07297 5.70060 5.32822 4.95585 4.58348 4.21110 3.83873 3.46636
x2 72.99406 68.34831 63.70256 59.05680 54.41105 49.76530 45.11955 40.47379
x1 159.24273 149.10537 138.96801 128.83065 118.69329 108.55594 98.41858 88.28122

C–F Min 0.83616 0.79637 0.75658 0.71679 0.67699 0.63720 0.59741 0.55762
x2 5.40580 5.06180 4.71775 4.37371 4.02967 3.68563 3.34158 2.99754
x1 15.09090 14.13020 13.16958 12.20891 11.24825 10.28758 9.32691 8.36624
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frequencies shown in Ziane et al. (2013) are for the bending modes in X and Y direction which 
are equivalent to those in x1− and x2− directions of this paper.

3.3. Parametric study

This section investigates the effects of porosity distribution (Type A and B), porosity parameters, 
BCs and geometry on the buckling and vibration responses of PMF thin-walled box beams, which 
are made from porous alumina with the following properties: Emax ¼ 380GPa, qmax ¼ 3800kgm−3, 
� ¼ 0:3: Unless stated otherwise, the geometry of the beam in this parametric study section, as 
displayed in Fig. 3, is h ¼ h1 ¼ h2 ¼ h3 ¼ h4 ¼ 0:005 m, b2 ¼ b4 ¼ 2b1 ¼ 2b3 ¼ 0:2m: The per-
centage differences of the beams’ responses between the porosity distribution Type A and Type B 

Figure 4. Buckling loads (MN) of PMF thin-walled box beams with respect to various values of porosity parameter e0:
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are computed as:  

responsetypeA − responsetypeB

responsetypeA
� 100%:

Example 3: This example aims to investigate effects of porosity parameters and BCs on buckling 
and vibration of PMF thin-walled box beams. The length-to-height ratio L=b3 is equal to 10 and 
80 for the buckling analysis, and equal to 10 for the vibration analysis. Table 6 and Fig. 4 show 
the critical buckling loads (MN) while Table 7 and Fig. 5 show the natural frequencies (Hz) of 
the PMF thin-walled box beams for various e0 and all three BCs (S–S, C–C, C–F). In Table 6, 
when L=b3 ¼ 80, the first buckling mode of the S–S and C–F PMF thin-walled box beams is 
always x2− mode but that of C–C beams is torsional mode. When L=b3 ¼ 10, the buckling loads 

Table 7. Natural frequencies (Hz) of PMF thin-walled box beams with various values of porosity parameter e0 (L=b3 ¼ 10).

BC Mode

e0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Type A
S–S Min 203.11 200.60 198.08 195.57 193.11 190.78 188.72 187.20

x2 670.41 659.59 648.46 637.05 625.43 613.72 602.23 591.60
x1 1072.96 1055.63 1037.81 1019.54 1000.93 982.18 963.77 946.73

C–C Min 412.80 406.62 400.31 393.89 387.42 381.00 374.85 369.41
x2 1398.49 1375.91 1352.70 1328.90 1304.65 1280.23 1256.25 1234.06
x1 2014.93 1982.39 1948.93 1914.62 1879.66 1844.45 1809.88 1777.88

C–F Min 92.39 91.58 90.79 90.04 89.36 88.78 88.40 88.34
x2 242.98 239.05 235.02 230.89 226.67 222.43 218.27 214.41
x1 399.37 392.92 386.29 379.49 372.56 365.58 358.73 352.39

Type B
S–S Min 203.11 199.95 196.70 193.38 190.02 186.65 183.37 180.38

x2 670.41 660.08 649.49 638.69 627.76 616.85 606.29 596.77
x1 1072.96 1055.88 1038.34 1020.39 1002.13 983.80 965.87 949.41

C–C Min 412.80 406.14 399.31 392.29 385.15 377.95 370.87 364.30
x2 1398.49 1376.78 1354.53 1331.81 1308.78 1285.76 1263.43 1243.21
x1 2014.93 1982.72 1949.62 1915.71 1881.21 1846.54 1812.59 1781.34

C–F Min 92.39 91.02 89.62 88.19 86.75 85.33 83.96 82.75
x2 242.98 239.24 235.41 231.50 227.54 223.60 219.78 216.35
x1 399.37 393.02 386.50 379.83 373.04 366.23 359.57 353.46

Figure 5. Natural frequencies of Type A PMF thin-walled box beams with respect to various values of porosity parameter e0:
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are much higher than when L=b3 ¼ 80, but these loads also decrease as the porosity parameter e0 
rises. Meanwhile, in case of L=b3 ¼ 10, Table 7 shows that the first vibration mode is always tor-
sional mode and the corresponding frequencies are significantly lower than those of bending 
modes. In Figs. 4 and 5, it can be seen from Eqs. (10) and (11) that the increasing porosity par-
ameter e0 leads to the decrement of the Young’s modulus and the mass of porous beams. 
Consequently, as the e0 increases from 0 to 0.7, the critical buckling loads decrease by up to 44%. 
However, as shown in Fig. 5, there is a less drastic drop in natural frequencies since they are 
inversely proportional to the square root of mass. The reduction in the beams’ stiffness is offset 
by the lower beams’ mass and therefore, when e0 increases from 0 to 0.7, the natural frequencies 

Table 8. Buckling loads (MN) of PMF thin-walled box beams with various values of L=b3 (e0 ¼ 0:5).

BC Mode

L=b3

10 20 30 40 50 60 70 80 90 100

Type A
S–S Min 1.35198 0.63720 0.50483 0.45851 0.43706 0.41405 0.30431 0.23305 0.18417 0.14919

x2 14.21660 3.68563 1.64936 0.93001 0.59587 0.41405 0.30431 0.23305 0.18417 0.14919
x1 37.29898 10.28758 4.66139 2.64005 1.69502 1.17914 0.86721 0.66441 0.52521 0.42556

C–C Min 4.21110 1.35198 0.82252 0.63720 0.55143 0.50483 0.47674 0.45851 0.44601 0.43706
x2 49.76530 14.21660 6.48998 3.68563 2.36932 1.64935 1.21355 0.93001 0.73530 1.21648
x1 108.55587 37.29896 17.81220 10.28758 6.66666 4.66139 3.43892 2.64005 2.08984 1.69502

C–F Min 0.63720 0.45851 0.41405 0.23305 0.14919 0.10362 0.07614 0.05830 0.04606 0.03731
x2 3.68563 0.93001 0.41405 0.23305 0.14919 0.10362 0.07614 0.05830 0.04606 0.03731
x1 10.28758 2.64005 1.17914 0.66441 0.42556 0.29566 0.21728 0.16638 0.13148 0.10650

Type B
S–S Min 1.29757 0.58356 0.45134 0.40506 0.38364 0.37201 0.30760 0.23556 0.18615 0.15080

x2 14.36292 3.72498 1.66709 0.94003 0.60230 0.41852 0.30760 0.23556 0.18615 0.15080
x1 37.42319 10.32539 4.67886 2.65001 1.70144 1.18361 0.87051 0.66694 0.52721 0.42718

C–C Min 4.15358 1.29757 0.76868 0.58356 0.49788 0.45134 0.42328 0.40506 0.39257 0.38364
x2 50.21296 14.36292 6.55861 3.72498 2.39473 1.66709 1.22661 0.94003 0.74323 0.60230
x1 108.81873 37.42322 17.87596 10.32539 6.69147 4.67886 3.45186 2.65001 2.09774 1.70143

C–F Min 0.58356 0.40506 0.37201 0.23556 0.15080 0.10474 0.07696 0.05893 0.04656 0.03772
x2 3.72498 0.94003 0.41852 0.23556 0.15080 0.10474 0.07696 0.05893 0.04656 0.03772
x1 10.32539 2.65001 1.18361 0.66694 0.42718 0.29678 0.21810 0.16701 0.13198 0.10691

Table 9. Natural frequencies (Hz) of PMF thin-walled box beams with various values of L=b3 (e0 ¼ 0:5).

BCs Mode

L=b3

10 15 20 25 30 35 40 45 50

Type A
S–S Min 190.78 99.24 65.52 48.76 38.88 32.39 27.79 24.37 21.71

x2 613.72 277.71 157.23 100.94 70.21 51.64 39.56 31.27 25.34
x1 982.18 457.05 261.64 168.86 117.81 86.80 66.58 52.67 42.70

C–C Min 381.00 178.83 107.55 74.11 55.59 44.12 36.44 30.98 26.92
x2 1280.23 604.67 348.17 225.35 157.47 116.13 89.14 70.55 57.21
x1 1844.45 936.03 557.45 367.28 259.33 192.50 148.39 117.81 95.75

C–F Min 88.78 50.48 34.68 26.21 20.99 17.47 14.11 11.15 9.03
x2 222.43 99.72 56.27 36.06 25.06 18.42 14.11 11.15 9.03
x1 365.58 166.35 94.38 60.65 42.21 31.05 23.80 18.81 15.25

Type B
S–S Min 186.65 95.80 62.61 46.27 36.71 30.48 26.09 22.83 20.31

x2 616.85 279.17 158.07 101.47 70.59 51.91 39.77 31.44 25.47
x1 983.80 457.86 262.11 169.17 118.03 86.96 66.71 52.77 42.79

C–C Min 377.95 176.29 105.29 72.08 53.74 42.43 34.89 29.56 25.61
x2 1285.76 607.60 349.94 226.52 158.30 116.75 89.61 70.92 57.52
x1 1846.54 937.39 558.35 367.91 259.78 182.06 148.66 118.02 95.93

C–F Min 85.33 48.09 32.89 24.78 19.80 16.45 14.06 11.21 9.08
x2 223.60 100.25 56.57 36.26 25.20 18.52 14.19 11.21 9.08
x1 366.23 166.66 94.56 60.76 42.29 31.11 23.84 18.85 15.27

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 17



for all bending modes decrease by 11.7%. When the beam is under C–C boundary condition, the 
natural frequencies of its lowest mode (torsional) dip slightly as e0 goes from 0 to 0.4. 
Nonetheless, when e0 increases from 0.4 to 0.7, these natural frequencies rise to the value 
where e0 ¼ 0:

Example 4: The objective of this example is to consider the effect of length-to-height ratio L=b3 
on buckling and free vibration of PMF thin-walled box beams. The PMF thin-walled box beams 
with the aforementioned dimensions and e0 ¼ 0:5 is examined in this example. The beam’s height 
is kept constant with b3 ¼ 0:5, b2 ¼ 0:1 m and the wall thickness is h ¼ h1 ¼ h2 ¼ h3 ¼ h4 ¼

0:005 m: While keeping the beam’s height b3 intact for both the buckling and vibration analysis, 
the length is varied for multiple L=b3 ratios ranging from L=b3 ¼ 10 to L=b3 ¼ 50: Tables 8 and 
9 show the critical buckling loads (MN) and the natural frequencies (Hz) of the PMF thin-walled 
beams. It is apparent that the short beams are much stiffer than the long ones which can be seen 

Figure 6. Critical buckling loads (MN) of Types A and B thin-walled box beams with various values of L=b3 (e0 ¼ 0:5).

Figure 7. Natural frequencies of PMF thin-walled box S-S beams with respect to L=b3 (e0 ¼ 0:5).
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from both tables as well as Figs. 6 and 7. The critical buckling loads and natural frequencies are 
subjected to exponential decay where the decay constant increases in the order of C–F< S– 
S<C–C boundary conditions. This relation between the PMF beams’ responses and L=b3 ratios 
are understandable and well observed in thin-walled beams made of other materials. Comparing 
the porosity distribution Types A and B, there is a minimal difference of the critical buckling 
loads and fundamental frequencies across all values of L=b3: When L=b3 > 35, the critical buck-
ling loads of the C–F PMF box beams are identical. However, as seen in Fig. 6, the critical buck-
ling loads of these cantilevered beams experience a sharper drop compared to when L=b3 < 30:
Moreover, Figs. 8 and 9 display the buckling and vibration mode shapes of the Type A PMF box 
beams when L=b3 ¼ 10: The ascending order of the beams’ responses are with reference to the 
torsional, x2- and x1-modes, respectively. For S–S beams (Fig. 8), the mode shapes of the beam’s 
highest displacement variable is a half wave. Nonetheless, for C–F beams in Fig. 9, these shapes 
are a quarter wave.

Example 5: This example is to examine the effect of height-to-thickness ratio on buckling and 
vibration responses of PMF thin-walled box beams. In this example, the PMF thin-walled box 
beams with L=b3 ¼ 20, e0 ¼ 0:5 are considered. The thickness of the beam walls is fixed at h ¼
h1 ¼ h2 ¼ h3 ¼ h4 ¼ 0:005m for both the buckling analysis and for the vibration analysis. 

Figure 8. Buckling mode shapes of Type B PMF thin-walled box S–S beams with e0 ¼ 0:5 and L=b3 ¼ 10:
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Figure 9. Free vibration mode shapes of Type A PMF thin-walled box beams with e0 ¼ 0:5, C–F boundary condition 
and L=b3 ¼ 10:

Table 10. Buckling loads (MN) of PMF thin-walled box beams with various values of b3=h (L=b3 ¼ 20, e0 ¼ 0:5).

BC Mode

b3=h

5 10 15 20 25 30 35 40 45 50

Type A
S–S Min 0.93311 0.91865 0.71140 0.63720 0.61632 0.62211 0.64316 0.67373 0.71066 0.75204

x2 0.93311 1.84750 2.76604 3.68563 4.60563 5.52584 6.44617 7.36657 8.28702 9.20751
x1 2.57749 5.14603 7.71656 10.28758 12.85881 15.43013 18.00151 20.57293 23.14436 25.71583

C–C Min 1.85031 1.28293 1.25016 1.35198 1.50773 1.69045 1.88860 2.09639 2.31061 2.52933
x2 3.59767 7.12571 10.66922 14.21660 17.76552 21.31522 24.86536 28.41578 31.96638 35.51710
x1 9.34312 18.65684 27.97709 37.29896 46.62150 55.94443 65.26741 74.59061 83.91392 93.23708

C–F Min 0.23548 0.46620 0.57670 0.45851 0.39347 0.35503 0.33180 0.31807 0.31068 0.30772
x2 0.23548 0.46620 0.69797 0.93001 1.16215 1.39435 1.62658 1.85882 2.09108 2.32335
x1 0.66148 1.32061 1.98026 2.64005 3.29988 3.95974 4.61962 5.27950 5.93939 6.59929

Type B
S–S Min 0.97118 0.81146 0.63989 0.58356 0.57341 0.58635 0.61250 0.64691 0.68682 0.73058

x2 0.97118 1.88642 2.80525 3.72498 4.64507 5.56533 6.48570 7.40614 8.32661 9.24712
x1 2.61468 5.18363 7.75430 10.32539 12.89666 15.46801 18.03941 20.61084 23.18229 25.75376

C–C Min 1.63355 1.17419 1.17763 1.29757 1.46419 1.65417 1.85750 2.06918 2.28642 2.50756
x2 3.73895 7.27037 10.81499 14.36292 17.91217 21.46209 25.01239 28.56292 32.11361 35.66442
x1 9.46513 18.78033 28.10105 37.42322 46.74589 56.06880 65.39195 74.71513 84.03843 93.36171

C–F Min 0.24519 0.47611 0.50546 0.40506 0.35071 0.31940 0.30125 0.29134 0.28692 0.28634
x2 0.24519 0.47611 0.70796 0.94003 1.17220 1.40441 1.63665 1.86890 2.10116 2.33344
x1 0.67129 1.33052 1.99021 2.65001 3.30985 3.96972 4.62960 5.28949 5.94938 6.60928
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Tables 10 and 11 and Figs. 10 and 11 demonstrate the variation of the critical buckling loads and 
natural frequencies as the beams’ height b3 increases by the factor of b3=h ¼ 5 to 50. The buck-
ling loads in bending mode x1 and x2 become larger as the b3=h ratio increases in all boundary 
conditions. However, the lowest critical buckling loads dip slightly from b3=h ¼ 5 to 25 before 
rising slowly up until b3=h ¼ 50 in the S–S and C–C beams. This trend is opposite to that of the 
C–F case where the lowest critical buckling loads increase from b3=h ¼ 5 to 15 but gradually 
drop afterwards. On the other hand, the natural frequencies experience an exponential decay as 
the height-to-thickness ratio rises. Comparing the responses of beams with Types A and B poros-
ity distributions, Fig. 11b shows little discrepancy when the beams are in mode x1 and x2:

Table 11. Natural frequencies (Hz) of PMF thin-walled box beams with various values of b3=h (L=b3 ¼ 20, e0 ¼ 0:5).

BC Mode

b3=h

5 10 15 20 25 30 35 40 45 50

Type A
S–S Min 632.89 222.50 106.58 65.52 46.11 35.24 28.43 23.82 20.50 18.01

x2 632.89 314.86 209.71 157.23 125.77 104.80 89.82 78.59 69.86 62.87
x1 1047.67 523.38 348.87 261.64 209.30 174.42 149.50 130.81 116.28 104.65

C–C Min 969.31 292.53 158.61 107.55 81.43 65.66 55.11 47.55 41.85 37.39
x2 1401.05 697.18 464.37 348.17 278.50 232.06 198.90 174.03 154.69 139.22
x1 2231.92 1115.11 743.30 557.45 445.95 371.62 318.53 278.71 247.74 222.97

C–F Min 226.50 112.68 57.41 34.68 23.71 17.53 13.67 11.09 9.27 7.93
x2 226.50 112.68 75.05 56.27 45.01 37.50 32.14 28.12 25.00 22.50
x1 377.94 188.80 125.85 94.38 75.50 62.92 53.93 47.19 41.94 37.75

Type B
S–S Min 645.64 208.55 100.90 62.61 44.42 34.18 27.73 23.32 20.14 17.74

x2 645.64 318.15 211.19 158.07 126.30 105.17 90.10 78.80 70.02 63.01
x1 1055.15 525.28 349.71 262.11 209.61 174.63 149.66 130.93 116.37 104.72

C–C Min 908.45 279.63 153.83 105.29 80.19 64.92 54.63 47.22 41.61 37.22
x2 1427.96 704.13 467.49 349.94 279.63 232.85 199.48 174.48 155.04 139.51
x1 2246.02 1118.69 744.90 558.35 446.53 372.02 318.82 278.94 247.92 223.11

C–F Min 231.10 112.43 54.21 32.89 22.57 16.74 13.10 10.67 8.94 7.68
x2 231.10 113.87 75.58 56.57 45.20 37.64 32.24 28.20 25.06 22.55
x1 380.70 189.50 126.16 94.56 75.62 63.00 53.99 47.23 41.98 37.78

Figure 10. Buckling loads (MN) of Type A PMF thin-walled box beams with respect to various values of b3=h:
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The differences are only significant in the cases of the lowest mode. Under the C–C boundary 
condition, the beam’s lowest mode is torsional mode for all b3=h ratios and the highest percent-
age difference is 6%. The sudden change of the “mode min” plots for S–S and C–F boundary 
condition at b3=h ¼ 10 and b3=h ¼ 15, respectively, are due to the fact that at these thresholds, 
the Type A PMF beams’ lowest mode transitions from x2-bending mode to torsion mode, while 
the Type B PMF beams’ lowest mode remains torsional.

4. Conclusions

This paper proposed a first-order shear-deformable thin-walled box beam model for analyzing 
the buckling and vibration of porous metal foam thin-walled box beams, focusing on both sym-
metric (Type A) and nonsymmetric (Type B) porosity distributions. Using Hamilton’s principles 
and a hybrid series solution, the responses of the beams are determined. The convergence and 

Figure 11. Natural frequencies (Hz) of PMF thin-walled box beams with respect to various values of b3=h:
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accuracy of the present model have been demonstrated for the FG thin-walled box beams. 
Additionally, the beams are analyzed with varying parameters such as boundary conditions, por-
osity parameter, length-to-height ratio, height-to-thickness ratio, and width-to-height ratio. The 
analysis leads to the following conclusions:

� The effects of porosity distribution: An increasing porosity parameter e0 decreases both the 
critical buckling loads and natural frequencies of porous beams, with the effects being more 
pronounced in buckling responses. Reduction in critical buckling loads is particularly signifi-
cant for bending modes, with the most extreme case for C–C beams, being 45% decrease as e0 
goes from 0 to 0.7. The difference between Type A and B porous beams with respect to e0 is 
only noticeable in the lowest mode in C–C boundary condition.

� The effects of geometric ratios: The increasing length-to-height ratio L=b3 drastically reduces 
the critical buckling loads and natural frequencies especially when the L=b3 goes from 10 to 
30. When L=b3 � 60, the lowest mode of the PMF thin-walled box beam changes from the 
torsional mode to the bending mode under S–S and C–F boundary conditions. The increasing 
height-to-thickness ratio b3=h raises the critical buckling loads in bending mode significantly 
but does not quite affect the lowest mode. The increasing height-to-thickness ratio b3=h lowers 
the natural frequencies of all modes in the way of a negative exponential relationship.
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