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NOMENCLATURE 

,z sz  : thermal expansion coefficients of the fibre materials 

, ,b h L : Width, height, length of the rectangular solid beam 

1 2 3, ,b b b : the widths of the upper flange, web, and lower flange respectively of the I- or 

channel thin-walled beams 

1 2 3 4, , ,b b b b : the widths of the left web, lower flange, right web, and upper flange respectively 

of the thin-walled box beams 

i : unknown coefficients of the PCE series 

,c m : subscripts indicating the ceramic and metal materials in FG beams 

ij : Knonecker delta 

1 2,E E : Young’s moduli  

0 , me e : porosity parameters of porous metal foam beams 

 : the beam strain with the subscript indicating the direction 

f : external force vector 

( )F s : the warping function of thin-walled beams 

12 23 13, ,G G G : shear moduli 

1 2 3, ,h h h : the thicknesses of the upper flange, web, and lower flange respectively of the I- or 

channel thin-walled beams 

1 2 3 4, , ,h h h h : the thicknesses of the left web, lower flange, right web, and upper flange 

respectively of the thin-walled box beams 

Κ : stiffness matrix 

K : the variation of kinetic energy 

l : material length scale parameter in micro-beams 

M : mass matrix 

ijm : symmetric rotation high-order stress in micro-beams 

0

tN : axial thermal load 
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12 13 23, , ,v   : Poisson’s ratios 

p : power law index in FG beams 

 : mass density 

S : strain energy 

W : potential energy when the beam is subjected to axial compressive load 

K : kinetic energy 

( )r q : beam model response with the input vector q containing multiple random variables 

iS : first order Sobol index 

TiS : total order Sobol index 

 : the beam stress with the subscript indicating the direction 

T : temperature difference 

,u w : axial and transverse displacements at any point on the rectangular solid beam 

,u w : axial and transverse displacements at mid-plane of rectangular solid beams 

U : the variation of strain energy 

cV : volume fraction of material in FG beams 

V : the variation of external work done 

 : rotational angle about the pole axis 

ij : symmetric rotation strain gradients in micro-beams 

i : multivariate orthogonal basis function for PCE 
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ABSTRACT 

Thin-walled beams are extensively applied in multiple engineering fields such as civil, 

aerospace or automobile engineering thanks to their advantages in the efficient load-carrying 

capacity and light weight. The structural responses of various thin-walled beams’ cross-

section shapes are of interest in this thesis. For the static analysis, the deflection and buckling 

stability of the beams under different thermal and mechanical loading condition are 

important in the design process and therefore, requires accurate model prediction. As for the 

vibration analysis, the free vibration fundamental frequencies and their corresponding mode 

shapes are scrutinised which are often the cases of torsional modes for the open-section. 

These analyses provide critical insights that guide the design, optimization, and safety 

verification of structures utilizing the advanced composite materials. By accurately 

predicting how these beams will respond to various mechanical and thermal load conditions, 

material properties’ uncertainties, shear strain effects, and size-dependent effects, engineers 

can design safer, more efficient, and more durable structures capable of exploiting the 

unique benefits of composite materials.  

Past researchers have proposed thin-walled beam models such as the well-known Vlasov’s 

model and first-order shear deformable beam theory for thin-walled beams. This thesis aims 

to go one step further and propose the high-order shear deformable beam theory for thin-

walled composite beam. This beam model is then utilised in the stochastic analysis and size-

dependent effects analysis for the laminated composite, functionally graded, and porous 

thin-walled beams  

In the stochastic analysis, the constituent material properties are randomly changed 

according to the lognormal distributions. These stochastic variabilities are then propagated 

to the stochastic responses of the thin-walled beam through a new beam solver with hybrid 

series-type approximation functions. To achieve efficient evaluations for stochastic 

responses including natural frequencies and critical buckling loads, the polynomial chaos 

expansion (PCE) based surrogate model and the artificial neural network (ANN) for thin-

walled composite beams is developed. The efficiency and accuracy of PCE’s and ANN’s 

results are assessed by comparing with those of crude Monte Carlo simulation (MCS). 
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Sensitivity analysis is carried out to compare the importance of the uncertainty in material 

properties to stochastic responses. New results reported in this chapter can be interesting 

benchmarks for scientific and engineering community in the future.  

For the size-dependent effects analysis, classical continuum mechanics usually used for 

macro-beam is replaced by the modified couple stress theory for the ease of theoretical 

formulation and programming. Numerical results are employed to investigate the effects of 

material distribution, span-to-height’s ratio, material length scale parameters on bending and 

vibration of microbeams for various boundary conditions.  

Before carrying out the aforementioned analyses, the beam theoretical and numerical model 

are validated with past results. All the studies in this thesis are computed using MATLAB. 

Besides the accuracy, the efficiency and computing time of the beam model programs are 

also considered crucial by the PhD candidate. 
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CHAPTER 1 : INTRODUCTION 

 

This chapter presents a comprehensive overview of composite thin-walled beams, with a 

particular focus on the quantification of uncertainties inherent in their analysis and design. 

It begins with an extensive literature review, highlighting key developments and existing 

gaps in the study of composite beam structures, and proceeds to outline the theoretical 

foundations underpinning their behavior and modeling. The uncertainty quantification 

aspect is explored through several probabilistic methods, studying the complexities and 

variabilities that challenge the predictability of these systems. Following this, the research 

objectives are clearly defined, aiming to address the identified gaps and contribute novel 

insights into the understanding and application of composite beams. The methodology 

section outlines the research approach, detailing the analytical and numerical techniques 

employed to investigate the behavior of composite and thin-walled beams under various 

loading and boundary conditions. Finally, the organization of the research is systematically 

presented, guiding the reader through the subsequent chapters. The chapters in this thesis 

are structured to sequentially present the theory intricacies, numerical findings, and the 

implications for analysis practices in engineering. 

 

1.1 Scope 

1.1.1 Composite material 

 Composite materials have emerged as a core element in modern engineering and 

materials science, revolutionizing the way we design and manufacture a diverse range of 

structures and products. Unlike homogeneous materials, composites are fabricated by 

combining two or more distinct materials, each contributing its unique properties to create 

a synergistic material with enhanced characteristics. This blending of materials enables the 

development of materials that surpass the limitations of individual constituents, offering a 

remarkable balance of strength, stiffness, and versatility.  
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  The state-of-the-art manufacturing techniques enable engineers to fabricate many 

kinds of composites. In the later sections, functionally graded composite (FGC), laminated 

composite (LC), and the porous metal foam are deeply analysed and discussed. FG 

composites are advanced materials designed with spatially varying composition and 

properties to optimize performance under varying conditions. Unlike traditional composites 

with uniform properties throughout, FGCs exhibit a gradual transition of material properties, 

often in the form of a gradient. This gradient can be tailored to achieve specific functional 

requirements, such as variations in mechanical, thermal, or electrical properties within a 

single structural component. Laminated composites consist of layers (or laminates) of 

different materials stacked together to form a unified structure. Each layer, known as a 

lamina, can be composed of various materials like fibers, fabrics, or sheets, embedded in a 

matrix material. The arrangement and orientation of these layers contribute to the overall 

mechanical and physical properties of the composite. Laminated composites are 

characterized by their layered structure, where each layer has specific material properties. 

The stacking sequence and orientation of these layers can be tailored to achieve desired 

Figure 1-1: Micro- and macroscopic scales of laminated composite material [3] 
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mechanical characteristics, such as stiffness, strength, and durability. Laminated composite 

also exhibits the anisotropic properties which prove to be advantageous when the applied 

structural elements require specific material properties along different axes. 

 

 

These composites find applications in numerous fields, including aerospace, automotive, 

sport equipment, and structural engineering. They are particularly beneficial in components 

Figure 1-2: Classification of functionally graded composite material [4] 

 

Figure 1-3: Thin-walled beams used in a passenger car [2] 
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exposed to extreme conditions or varying loads, where a uniform material may not provide 

optimal performance. 

   

1.1.2 Thin-walled beams 

Thin-walled beams are structural elements characterized by having a relatively small 

ratio of wall thickness to their other dimensions, such as length and width, distinguishing 

them with solid or thick-walled counterparts. The use and design of thin-walled beams is 

always driven by the need for structural efficiency, as the minimal use of material helps 

reduce weight while maintaining adequate strength and stiffness. For centuries, steel thin-

walled beams have been used for building and bridges structures. Their behaviours and 

design are very well-studied as steel buildings constantly reach new heights and bridges 

keep increasing their span length. Nonetheless, when the newly introduced composite 

Figure 1-4: The microstructure of a graphene-reinforced tennis racquet made from carbon 

fibres in an epoxy resin matrix [5] 
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material are applied into thin-walled structures and the demand for structural efficiency 

grows, the research for composite thin-walled structures have a lot more gaps to fill. 

Key thin-walled beam sections are widely used in the industry. Closed-sectioned 

thin-walled beams, such as box beams, tubular sections, find applications in aerospace, 

automotive, or sport equipment industries as displayed in Fig. 1-4 and 1-5. The geometry of 

these closed sections allows for effective load distribution and resistance to torsional loads. 

These sections are optimized to balance between structural efficiency, weight reduction, and 

overall performance in specific intended structural scenarios. Meanwhile, open-sectioned 

thin-walled beams shown in Fig. 1-6, including C-channels, Z-channels, I-beams, and H-

beams, are widely employed in the construction industry for building frames and support 

structures. However, they are mostly made from homogeneous material due to the 

fabrication expense of composites. This study aims to analyse these composite thin-walled 

beam sections under mechanical and thermal loads.  

  

Figure 1-5: Common open thin-walled sections  

Figure 1-6 : Common closed thin-walled sections and their applications  
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1.1.3 Uncertainty quantification 

In real-world scenarios, the characteristics of component materials unavoidably 

fluctuate as a result of their production processes or unforeseen elements. Therefore, the 

need to account for this uncertainty is of utmost importance to enhance the reliability of the 

beams’ response prediction. Uncertainty quantification (UQ) is a multidisciplinary field that 

addresses the challenges associated with the inherent variability and imprecision present in 

engineering models. The uncertainties in beam’s input parameter are propagated through 

the beam model and their effects on the output’s distribution are quantified. There are three 

approaches to UQ in this thesis: Monte Carlo Simulation (MCS), Polynomial Chaos 

Expansion (PCE) and Artificial Neural Network (ANN). 

Traditional methods, such as Monte Carlo simulations, have been widely used to 

address these uncertainties, but their computational expense limits their efficiency for 

complex systems. Stochastic finite element methods have also been employed, offering a 

systematic approach to incorporate variability into structural analyses. However, these 

methods often struggle with high-dimensional parameter spaces or require extensive 

computational resources. This motivates my research into advanced UQ techniques such as 

Polynomial Chaos Expansion (PCE) and Artificial Neural Networks (ANNs). PCE provides 

a highly efficient framework for representing stochastic processes, reducing computational 

costs while maintaining accuracy. ANNs, with their ability to model nonlinear and complex 

relationships, are well-suited for surrogate modeling and high-dimensional problems. By 

integrating these methods into the stochastic and sensitivity analysis of thin-walled 

composite beams, my work seeks to provide a robust, efficient, and comprehensive 

framework for addressing uncertainty in modern structural applications. 

1.2 Literature review 

In the past, numerous research works have been undertaken to study the structural 

responses of both solid and thin-walled composite beams, as evidenced by existing 

literature. Different aspects of the beam models such as beam theories, constitutive relations, 
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and methodogies haven been conducted. This section provides an overview of the available 

researches on functionally graded and composite beams. Further detailed discussion of the 

topic is covered in the subsequent chapters. 

Regarding beam theories for solid composite beams, there are three main types: 

Euler-Bernoulli beam theory (EBBT), first-order shear deformation beam theory (FSBT), 

and higher-order shear deformation beam theory (HSBT). These theories are distinguished 

by the formulation of transverse shear strain. For regular homogeneous solid beams, this 

transverse shear strain is not significant and the EBBT is deemed sufficiently accurate in 

many engineering applications. Carrera et al. [14] described the EBBT and also pointed out 

its caveat, that is, the EBBT is only suitable for analyzing thin beams as it ignores the effects 

of transverse shear deformation. To overcome this limitation, the FSBT, or Timoshenko 

beam theory, accounts for transverse shear deformation effects and can reasonably predict 

the behavior of thick beams. The theory is named after Timoshenko [15], and have been 

utilised in many applications, such as tunneling engineering [16], civil engineering [17], 

micro- and nano-beams [18]. Nonetheless, in this theory, the transverse shear stress gradient 

is assumed to be constant across the beam's thickness. Therefore, a shear correction factor 

is necessary to adjust for this assumption. The HSBT was developed to better formulate the 

axial displacement than FSBT. The axial displacement is assumed to vary with a high-order 

shear function. Kadoli et al. [19] predicted the static behaviours of functionally graded (FG) 

beams using higher order shear deformation theory. Ferreira et al. [20] also analysed the 

laminated composite beams using high-order shear deformation theories. P. Subramanian 

[21] did the dynamic analysis of the LC beams using HSBT and finite elements. Shao et al. 

[22]  studied the free vibration of refined higher-order shear deformation composite 

laminated beams with general boundary conditions.  Nguyen et al. [23, 24] analysed the 

responses of functionally graded sandwich beams using FSBT and HSBT. It is without a 

doubt that HOBT can predict the behavior of beams more accurately than both CBT and 

FSBT. However, the effect of transverse normal deformation is neglected in this theory. For 

this reason, the quasi-3D theory was developed based on higher-order changes in both axial 

and transverse displacements. Vo et al. [23] presented a quasi-3D theory for vibration and 
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buckling of FG sandwich beams. Nguyen et al. [25] proposed an analytical solution for 

buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D 

shear deformation theory. 

In the 60s-70s, Tsai and Hahn [26] notably contributed to the fundamentals of 

composite material science. At the time, the theory mainly revolves around the 

understanding of composite materials rather than specific applications in composite thin-

walled structures. Afterwards, in the 70s-80s, Timoshenko and Vlasov are known to pioneer 

the theories for thin-walled structures. Vlasov’s classical thin-walled beam theory provided 

a foundation for understanding thin-walled beams. However, it assumes shear deformation 

is negligible, limiting its applicability for composite materials with complex layups or large 

deformation scenarios. For decades, many authors have made improvements based on the 

Vlasov’s theory to analyse the behaviours of thin-walled composite beams. Later, the first-

order shear deformation thin-walled beam theory extended these concepts by incorporating 

shear deformation and transverse shear stiffness, improving accuracy for composite beams. 

Despite its advancements, FSBT assumes a constant shear strain distribution across the 

thickness, which can be overly simplistic for highly anisotropic materials or thick-walled 

structures. This motivates my research into higher-order shear deformation thin-walled 

beam theory, which aims to capture more realistic transverse shear strain distributions and 

warping effects, providing greater precision for modern applications. The review of 

laminated composite and functionally graded beams are thoroughly presented by Sayyad 

and Ghugal [27].  

1.3 Theory overview 

1.3.1 Solid beam theory 

The development of thin-walled beam theories draws significantly from the 

foundational principles of solid beam theories, including Euler-Bernoulli, Timoshenko, and 

higher-order shear deformation beam theories (HSBT). The transition involves modifying 

shear deformation assumptions, incorporating warping effects, and redefining displacement 

fields to accommodate the multi-dimensional nature of thin-walled geometries. Euler-
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Bernoulli theory provides the foundational basis for slender, bending-dominated behaviors, 

while Timoshenko theory introduces shear deformation and rotational effects. Higher-order 

shear deformation theories further refine these models by capturing non-linear variations in 

shear strain across the wall thickness, which is essential for advanced composite materials. 

This section underscores the basics of solid beam theories that can be transferred to the thin-

walled beams.  

Composite solid beams have been applied in various engineering fields due to their 

advantages in versatility, strength and stiffness. Its properties can be engineered to adapt to 

various requirements for the structure. Many beam models have been developed to 

accurately predict the behavior of composite beams, which can be distinguished between 

the following theoretical frameworks: Classical Beam Theory (CBT), First-Order Shear 

Deformation Theory (FSBT), Higher-Order Shear Deformation Theory with high-order 

variation of axial displacement (HOBT), and high-order theory approaching three 

dimensions with high-order changes of both axial and transverse displacements (quasi-3D). 

 

 

 

 

 -The Euler-Bernoulli beam theory: also known as the classical beam theory, 

assumes that the cross-section of the beam remains straight and perpendicular to the neutral 

axis before and after deformation. Based on this assumption, the displacement field is 

expressed as follows: 

Figure 1-7: FGC solid beam Figure 1-8: LC solid beam 
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0 0,(x,z, t) ( , ) w xu u x t z= −  (1-1a) 

 

0w(x,z,t)= w (x,t)  (1-1b) 

where 0 0u ,w  are the axial displacement and transverse displacement at the beam’s neutral 

axis. This theory overestimates the stiffness of the beam and its applicability is restricted to 

slender beams with large length-to-depth ratio.  

 -The Timoshenko beam theory: addresses some of the limitations inherent in the 

Euler-Bernoulli beam theory. Timoshenko beam theory takes into account the effects of 

shear deformation and rotational inertia. This makes it more accurate for a wider range of 

beams, especially those that are short, thick, or subjected to high-frequency loading. The 

displacement field is given as: 

0 0(x, z, t) ( , ) ( , )u u x t z x t= +  (1-2a) 

0w(x,z,t)= w (x,t)  (1-2b) 

where   is the rotation angle of the cross-section with respect to the y −  axis due to bending 

and shear. The Timoshenko beam has three variables and accounts for the effect of 

transverse shear deformation, thus providing a more appropriate prediction of beam 

behavior compared to the Euler-Bernoulli beam. However, because the transverse shear 

deformation is constant along the length of the beam, this leads to an unrealistic distribution 

of shear stress. Therefore, a shear correction factor is added to adjust the calculation of the 

shear force, and a factor of 5/6 is commonly used. In practice, this beam theory has been 

applied in the majority of commercial software. 

 -The Higher-Order shear deformation theory: includes higher-order terms in the 

displacement field equations, allowing for a more accurate representation of the shear 

deformation throughout the depth of the beam. This is crucial for accurately predicting the 

behavior of thick beams, composite beams, and beams made of materials with a low 

modulus of elasticity. The displacement field is as follows: 

0 0. 0(x, z, t) ( , ) z w ( ) ( , )xu u x t f z x t= − +  (1-3a) 
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0w(x,z,t)= w (x,t)  (1-3b) 

where ( )f z  is the high-order shear function. This function has been proposed by many past 

authors based on the following conditions: '( / 2) 0f z h=  =  and ( )f z  must be continuous 

in the z  domain.  

 -The Quasi-3D beam theory: bridge the gap between two-dimensional beam 

theories and fully three-dimensional elasticity solutions. Unlike the aforementioned beam 

theories, which simplify the stress and strain within the beam to a one- or two-dimensional 

problem, quasi-3D beam theory incorporates aspects of three-dimensional stress and strain. 

This approach allows for a more accurate representation of the physical behavior of beams, 

including the effects of lateral strains and out-of-plane deformations. The displacement field 

contains four variables 0 0 0 0, w , , w zu    to be solved: 

0 0. 0(x, z, t) ( , ) z w ( ) ( , )xu u x t f z x t= − +  (1-4a) 

0 0w(x,z, t) w ( , ) g(z)w ( , )zx t x t= +  (1-4b) 

It is worth noting that the more complex the theory is, the more versatile and accurate the 

beam analysis becomes. The better accuracy comes with the increased cost of computational 

resource.  

1.3.2 Thin-walled beam theory 

 In the 2000s-2010s, the researches delved into material optimization and advanced 

manufacturing techniques for thin-walled composite beams. Thostenson et al. [28] gave a 

review on advances in the science and technology of carbon nanotubes and their composites. 

Gay and Suong [29] focused on optimizing the design and manufacturing of thin-walled 

composite beams to achieve better performance and efficiency. Librescu and Song [30] 

contributed greatly to the theory and applications of thin-walled composite beams. Vo et al. 

[31] developed the finite element model for vibration and buckling of functionally graded 

sandwich beams based on a refined shear deformation theory. Nguyen et al. [32] proposed 

a new trigonometric-series solution for analysis of laminated composite beams. Lee et al. 

[33-36] contributed many analyses for thin-walled composite beams This period also saw 
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advancements in material science, leading to the development of new composite materials 

with enhanced properties.  

In recent years (2020s), research has been exploring more sophisticated areas such 

as the use of nano-materials in composites, the stochastic behaviours of composites, and 

smart composite materials that can adapt to changing conditions. For nano- and micro-

structures, Ghane et al. [37] studied the vibration of fluid-conveying nanotubes subjected to 

magnetic field based on the thin-walled Timoshenko beam theory. Xie et al. [38] 

exprimented and modelled the vibration of multi-scale sandwich micro-beams. ND Nguyen 

et al. [39] investigated the LC micro-beam based on the modified couple stress theory using 

a Ritz type solution with exponential trial functions. Roudbari et al. [40] wrote an extensive 

review of size-dependent continuum mechanics models for micro- and nano-structures. For 

stochastic analysis and uncertainty quantification of composite beams, several latest 

researches have been conducted by MC Trinh et al. [41, 42], Sharma et al. [43], and Thuan 

N. and T. Hien  [44]. The responses of thin-walled composite beams when exposed to 

thermal environment are also paid attention by many researchers. Shen et al. [45] made 

comparison of various thin-walled composite beams models for thermally induced 

vibrations of spacecraft boom. Simonetti et al. [46] analysed the thermal buckling of thin-

walled closed section FG beams. TK Nguyen et al. [47] researched the hygro-thermal effects 

on vibration and thermal buckling behaviours of functionally graded beams. These current 

topics in the researches of composite thin-walled structures are the pillars of this thesis.  
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Figure 1-9: Geometry of an arbitary thin-walled beam [48] 

Based on the definition of Vlasov [49], thin-walled beams are beams with 0.1
h

l
   

and 0.1
l

L
 , where h  is the wall thickness, l is any characteristic dimension of the cross-

section, and L  is the beam length. The wall thickness can only vary along the beam’s cross 

section contour, but remains constant along the beam span. 

A same set of coordinates for the analysis of thin-walled beams is used throughout 

this thesis. Cartesian coordinate system ( ), ,x y z  , local plate coordinate system ( ), ,n s z  and 

contour coordinate  s along the profile of the section are considered. It is assumed that    is 

an angle of orientation between  ( ), ,n s z  and ( ), ,x y z   coordinate systems, the pole P   with 

coordinates ( ),P Px y   is the shear center of the section.  
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In order to formulate the mathematical model for thin-walled beams, the theory is 

built upon the following assumptions: 

1) The shape and geometry of the beam’s cross section remain rigid in its own plane but 

can warp out of its original planes. 

2) The transverse shear strains 0

yx , 0

zx , and the warping strain 0

  are uniform over the 

beam cross-section 

3) Local buckling and pre-buckling deformation are neglected 

Based on Assumption 1, the section can only displace as a rigid body, which 

translates to the fact that the displacements of any point on the contour can be expressed in 

terms of the displacement at an arbitrary point (u , v )P PP . The displacements ( ), , ,u n s z t  and 

( ), , ,v n s z t  at any points of the beam cross-section under  

Figure 1-10: Thin-walled coordinate systems 
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a small rotation ( ),z t  about the pole axis can be expressed in terms of those at the pole 

( ),Pu z t  and ( ),Pv z t  in x −  and y −directions, respectively, as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),, , , , , , ,P s P P Pu n s z t u z t y nx y z t u z t Y y z t = − − − = − −   (1-5a) 

( ) ( ) ( ) ( ) ( ) ( ) ( ),, , , , , , ,p s P p Pv n s z t v z t x ny x z t v z t X x z t = + + − = + −   (1-5b) 

where the comma in the subscript is used to indicate the differentiation with respect to the 

variable that follows, 
,sy  and 

,sx  are the trigonometric functions cos  and sin−  

respectively (see Fig. 1-8). ,X Y are the coordinates of an arbitrary point along the n  axis. 

Using the transformation rule for the ( , , )x y z and ( , , )n s z  coordinate systems, the membrane 

shear strain sz  can be expressed in terms of the transverse shear components xz  and yz : 

 , , , ,s( , )sz xz s yz s t t sx y n s u w   = + + = +  (1-6) 

where , sinsx = −  and , cossy = , ,( , ) 2t zn s n =  for open section, and  

,

2
( , ) 2t zn s n



 
= +  
 

 for closed section.   is the rotation about point P,   is the area 

enclosed by the contour line of the beam cross-section,   is the contour line’s perimeter. 

By rearranging the Eq. (1-1 to 1-6) to isolate the ,sw  on one side and integrate both sides 

with respect to s , the axial displacement ( ), , ,w n s z t  is expressed as: 

 ( ) ( )0 , , ,, , , , ( u )X(s) ( ) ( ) R (s)dsxz P z yz P z z nw n s z t w z t v Y s  = + − + − −   (1-7) 

R (s)dsn represents twice the are swept by R n  from point P and along the contour line. 

1.3.3 Composite materials’ constitutive relations 

There are three main types of composote materials used in this thesis: laminated composite 

material, functionally graded material, and porous metal foam material. The effects of 

anisotropy in these composite materials allow designer to efficiently aligning the material's 

structure with the load paths, therefore, reducing structures’ weight without compromising 

strength. These effects are described through the constitutive relation equations shown 

below. 
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Based on Hooke’s law, the stress-strain relations for anisotropic materials can be expressed 

in matrix form as follows: 

11 12 13 14 15 1611 11

12 22 23 24 25 2622 22

13 23 33 34 35 3633 33

14 24 34 44 45 4623 23

15 25 35 45 55 5613 13

16 26 36 46 56 6612 12
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
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



   

  (1-8) 

where ij are the stress components, ij are the axial strain components, and ij are the shear 

strain components. The directions of these components can be referred to Fig. 1-11. 

 

-For orthotropic materials, the stress-strain inverse relations can be commonly written as: 

Figure 1-11: Stress and strain component in the coordinate system 
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 (1-9) 

where  , ,E v G are the Young’s moduli, Poisson ratios, and shear moduli respectively. Under 

plane stress condition, 23 33 13 0  = = = ,  Eq. (1-9) becomes: 
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The stress-strain relations can also inversely deduced: 
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 (1-11) 

For laminated composite material, the fibre angle in each ply can rotate through an angle 

with respect to the global coordinate system. These transformed stiffness coefficients ij
Q  of 

each layer can be derived from the  reduced stiffness coefficients ijQ  as: 



43 

 

 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

4 4 2 2

11 11 22 12 66

2 2 4 4

12 11 22 66 12

3 3

16 11 12 66 12 22 66

4 4 2 2

22 11 22 12 66

3 3

26 11 12 66 12 22 66

2 2 4 4

66 11 22 12 66 66

2 2

4

2 2

2 2

2 2

2

Q Q c Q s Q Q s c

Q Q Q Q s c Q s c

Q Q Q Q sc Q Q Q s c

Q Q s Q c Q Q s c

Q Q Q Q s c Q Q Q sc

Q Q Q Q Q s c Q s c

= + + +

= + − + +

= − − + − +

= + + +

= − − + − +

= + − + + +  

 

(1-12)

 

where c  and s  are cos  and sin ,   is  the rotation angle . The reduced constitutive 

equations at the thk − layer is given by: 
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stiffness components of materials (see [50] for more details).   

-Functionally graded material: 
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where ( )11Q E n= , 
( )

( )
66 55

2 1

E n
Q Q


= =

+
; ( )E n  is Young’s modulus;   is Poisson’s 

coefficient which is supposed to be constant. The effective mass density   and Young’s 

modulus E  of the FG sandwich thin-walled beam are approximated by: 

 ( )1c c m cV V  = + −   (1-15a) 

 ( )1c c m cE E V E V= + −  (1-15b) 

where the subscripts c  and m  are used to indicate the ceramic and metal constituents, 

respectively; cV  is the volume fraction of ceramic material. 

-Porous metal foam material: 
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where ( )11Q E n= , 
( )

( )
66 55
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
= =

+
; ( )E n  is Young’s modulus;   is constant Poisson’s 

ratio. Two porosity patterns [51-53] of PMF thin-walled beams are considered:  

Symmetric pore distribution: 
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Asymmetric pore distribution: 
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where: maxE  and max  are the maximum values of Young’s modulus and mass density, 

respectively; 0e  and 01 1me e= − −  are the porosity parameters; ( )n  is mass density of the 

PMF thin-walled beams. 

1.3.4 Stochastic analysis 

Stochastic analysis is a branch of computing science and mathematics that study the 

randomness in a system or process. It is widely used in many fields such as finance, physics, 

biology and engineering. The theory foundation of this study branch trace back to Norbert 

Wiener’s work in the 1940s, famously called the Wiener process, that investigate the one-

dimensional Brownian motion. This theory introduced the idea that a stochastic process 

could be decomposed into a series of orthogonal polynomial functions of random variables, 

and has been deeply discussed by Szabados [54]. With the advances of the computing 

systems in the 1990s, Ghanem and Spanos presented the use of polynomial chaos for 
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arbitrary distributions. Andrew and Askey [55] contributed to the polynomial chaos theory 

by proposing the Askey scheme which organises the orthogonal polynomials and expands 

the understanding of the stochastic processes. From the 2000s to present, the increasing 

computational resources and state-of-the-art numerical algorithms have been propelling the 

use of the polynomial chaos expansion (PCE) across various fields. [56-58] 

In this thesis, the stochastic analysis is applied for thin-walled composite beams to 

study how the random variables of the beam’s parameters affect the beam’s mechanical 

responses. These three techniques are depicted briefly below and more detailed in the 

chapter Four: Monte Carlo Simulation (MCS), Polynomial Chaos Expansion (PCE), and 

Artificial Neural Network (ANN). 

-Monte Carlo Simulation (MCS): the MCS is simply a technique that generate random input 

samples, and observe how the randomness impacts the outputs. These inputs and outputs 

can be probabilistic, and are subjected to the physical nature of the variables. The expected 

value of a random variable can be estimated using Monte Carlo simulation by averaging the 

outcomes of N simulations: 
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where N is the number of simulations, iX  is the output value of the thi  simulation. Similarly, 

other statistical metrics of the output(s), for instance, the variance can be estimated as 

follows: 

2 2
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X
N

 
=

 −
−
  (1-20) 

Among the 3 techniques, MCS is the simplest in term of mathematical formulation, 

and can give the most accurate representation of the beams’ outcomes. However, the 

accuracy can come with an expensive computing cost, especially when the number of 

random input variables and samples increases. The PCE and ANN are modern techniques 

that help overcomes the MCS’s problem while achieving the same level of accuracy. 

-Polynomial Chaos Expansion (PCE): the PCE represents the uncertain parameters in a 

system as a series of polynomial of random variables multiplied by respective coefficients. 
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These polynomials are chosen to be orthogonal with respect to the probability distribution 

of the inputs. 

( ) ( )
1

0

ˆ ˆ
P

PCE i i

i

u u c He 
−

=

= +x q  (1-21) 

where responses û  of FG sandwich thin-walled beams ˆ
PCEu  are the responses of interest 

obtained from PCE; q  is a vector of independent random variables in the PCE space mapped 

to physical random parameters x ; iHe  are multivariate orthogonal basis functions, which 

depends on the probability distribution of the random inputs; ic  are coefficients to be 

determined so that the residual   is minimized 

In this thesis, the residual   is minimized by the means of least-square regression and 

Gaussian quadrature method.  

-Artificial Neural Network (ANN): ANNs are computational models inspired by the human 

brain, used extensively in machine learning. As shown in the Fig. 1-12 below, there are three 

main types of layers in ANN: Input layer, Hidden layer, and Output layer. The hidden layers 

are where most of the computation is performed. Each connection between neurons has an 

associated weight, and each neuron has a bias term. These are the parameters the network 

learns during training. The blue arrows denote the forward propagation while the red arrows 

denote the backward propagation.  
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 In each neuron, the input values are multiplied by weights and summed up, then a 

bias is added: 

1 1 2 2 ... n ny w x w x w x b= + + + +  (1-22) 

where y  is the result of the linear combination, iw are the weights, ix are the input values, 

and b  is the bias. The result of the linear transformation is passed through an activation 

function. This function introduces non-linearity, allowing the network to learn complex 

patterns. Common activation functions are Rectified Linear Unit, Sigmoid, and Tanh 

functions. 

In backward propagation, the loss function measures the difference between the 

network's prediction and the actual target values. The training loop is stopped when the loss 

function reaches the required accuracy. The weights and biases are repetitively adjusted to 

minimize the loss. This involves computing the gradient of the loss function with respect to 

each weight and bias in the network using partial differentiation. After computing gradients, 

weights are updated typically using a rule like:  

Figure 1-12: Artificial neural network workflow [1] 
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 (1-23) 

where   is the learning rate, a hyper parameter that controls the step size of the update. It 

is common to choose the mean square error (MSE) as the loss function for training the ANN. 

This MSE is expressed as below: 

 2

1

1
(y )

trainN

i i

itrain

MSE y
N =

= −  (1-24) 

where trainN  is the number of training samples, yi  is the true output data, iy  is the predicted 

output value of the thi sample. Even though the ANN has been recently applied for the 

behaviour prediction of thin-walled beams [59-61], there is no research that conduct a 

thorough comparison between MCS, PCE, and ANN for the stochastic analysis of thin-

walled composite beams. This gap is considered in the latter chapter of this thesis. 

1.4 Research objectives  

The research objectives for this PhD thesis are the study of composite thin-walled beams 

using MATLAB and higher-order shear deformable theory, coupled with the uncertainty 

quantification, size-dependent effects on micro-beams, and thermal buckling phenomena. 

This PhD thesis makes significant contributions to the study of composite thin-walled beams 

by addressing key challenges in their analysis through the development of advanced 

computational frameworks and methodologies. Specifically, the contributions of this thesis 

are as follows:  

• Development of a Higher-Order Shear Deformable Computational Framework: A 

robust MATLAB-based computational tool is developed and validated to implement 

higher-order shear deformation theory for composite thin-walled beams, including 

laminated, functionally graded, and porous metal foam configurations. This 

framework improves accuracy in predicting mechanical behavior under diverse 

loading conditions. 

• Investigation of Material Heterogeneity Effects: The thesis provides a detailed 

analysis of how material heterogeneity, including variations in composition and 
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distribution in functionally graded, laminated composite, and porous metal foam 

beams, affects mechanical properties and structural performance. 

• Quantification of Uncertainties: A novel integration of probabilistic methods enables 

the quantification of uncertainties in material properties, geometric imperfections, 

and loading conditions. The study demonstrates how these uncertainties influence the 

mechanical response of composite thin-walled beams, paving the way for more 

reliable designs. 

• Analysis of Size-Dependent Effects on Micro-Beams: The research delves into the 

size-dependent behavior of composite micro-beams, contributing to the 

understanding of scale effects in micro-structural applications, a topic of growing 

importance in advanced material design. 

• Thermal Buckling Behavior Analysis: This thesis examines thermal buckling 

phenomena in composite thin-walled beams under various thermal loading scenarios, 

providing insights into the effects of temperature gradients and thermal loads on 

structural stability. 

• Model Validation: The computational models are rigorously validated through 

comparative analysis with existing analytical, numerical, and experimental results 

from the literature, ensuring their accuracy and reliability. 

• Practical Design Guidelines: The thesis offers comprehensive guidelines for the 

design and analysis of composite thin-walled beams, integrating the impacts of 

material heterogeneity, uncertainty, size-dependent effects, and thermal loads to 

optimize structural performance. 

By achieving these objectives, this thesis aims to advance the state of knowledge in the field 

of composite thin-walled beams, providing a robust computational tool for other researchers, 

and proposing the optimization approaches for these critical structural elements.  

1.5 Research method and Organisation  

 In each of the following chapters, the data are presented in the order based on the 

research method. The thin-walled beam models and simulations are verified with multiple 
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notable articles and experimental results. Subsequently, the parametric studies are 

conducted with a range of input parameters fed into this thesis’s simulation models. This 

sequence of research method ensures the accuracy and validity of the new contributions. 

This thesis consists of seven chapters: 

-Chapter 1 gives an introduction to the purpose and scope of this thesis.  

-Chapter 2 presents the flexural and vibration analysis of higher-order shear deformable 

laminated composite solid beam. The cases considered are for the deterministic and random 

beams’ inputs. 

-Chapter 3 proposes a general higher-order shear deformation theory for buckling and free 

vibration analysis of laminated thin-walled composite I-beams. This general theory can be 

used to model either a CTWBT, FTWBT or HTWBT. 

-Chapter 4 incorporates the effects of thermal loads on the composite thin-walled beams 

-Chapter 5 presents the stochastic analysis of thin-walled composite beams using PCE and 

ANN 

-Chapter 6 accounts for the size-dependent effects of the micro thin-walled composite beams 

-Chapter 7 covers the functionally graded porous thin-walled beams with closed section 

-Chapter 8 summarises the key points in this thesis and lists some directions for the future 

studies.  
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CHAPTER 2 : FLEXURAL AND VIBRATION ANALYSIS OF LAMINATED 

COMPOSITE SOLID BEAMS FOR THE DETERMINISTIC AND STOCHASTIC 

CASES 

 

This chapter lays the groundwork for the subsequent investigation of thin-walled composite 

beams, highlighting the need for advanced modeling techniques, stochastic analysis, and 

computational approaches to capture the unique characteristics of composite and 

functionally graded materials. By bridging classical beam mechanics with modern thin-

walled structures, this work provides a unified perspective on the evolution of beam theories 

and their application in contemporary structural analysis. Uncertainty in material properties 

and external loads can significantly influence the vibration and static responses of laminated 

composite beams, making the conventional deterministic beam models insufficient. This 

chapter addresses this necessity by presenting a novel methodology to efficiently assess 

these uncertainties using surrogate models based on polynomial chaos expansion (PCE). 

The approach minimizes computational demands while maintaining high accuracy, 

leveraging a small training sample size computed via a high-order shear beam model. This 

deterministic model is rigorously verified and solved using Hamilton’s principle and Ritz’s 

method with trigonometric series approximations. The study predicts the statistical moments 

and probability distributions of key response metrics, including the mid-span displacement 

and fundamental frequency, and conducts a global sensitivity analysis to evaluate the 

influence of stochastic variations in material properties and loads. The proposed PCE 

models, using spectral projection and linear regression techniques, demonstrate a substantial 

reduction in computational cost compared to Monte Carlo simulations (MCS), with 

negligible compromise in precision. As most real-world systems are subjected to multiple 

sources of uncertainty, this chapter provides a state-of-the-art method to quantify such 

uncertain parameters more efficiently and allow for a better reliability assessment in 

composite solid beam design. 
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2.1. Introduction 

Composite materials have steadily increased their applications across various engineering 

disciplines. This can be attributed to their mechanical benefits, including superior strength- 

and stiffness-to-weight ratios compared to conventional materials. The laminated composite 

material also enables engineers to control the structures’ properties by merely choosing the 

optimal lamination configuration [62-64]. The static and dynamic behaviors of macro [65-

67] and nano [68-70] composite structural elements have captured the attention of numerous 

researchers, leading to further investigations involving various loading conditions, namely 

mechanical [71-73], electric, magnet [74-77] and thermal loads [57, 78-80]. Moreover, 

different methods and solutions such as the finite element method [71, 81-83], Navier’s 

solution [84, 85], or the Ritz-type series solution [39, 86] have been proposed to accurately 

predict LC structures’ responses. Nonetheless, due to the complex fabrication processes and 

random load fluctuations, these composite structures exhibit inherent variability in their 

theoretical performance predictions and actual experimental values. The uncertainty sources 

can be material, geometrical, and loading parameters. These uncertainties significantly 

influence vibration and static response characteristics such as frequencies and 

displacements. The deterministic approaches with no uncertainty accounted for are adjusted 

with a safety factor in design. Meanwhile, the probabilistic modeling approaches study the 

stochastic responses and assess the structures’ performance based on the input uncertainties. 

Even though there have been many researches concerning stochastic structural mechanics 

[87-91], the study on stochastic analysis of laminated composite beams is relatively limited.           

In order to investigate stochastic behaviors of structures with uncertainties, the most 

straightforward and intuitive method is the crude Monte Carlo Simulation method (MCS) 

which simply runs the structural model repetitively to achieve the desired level of accuracy. 

However, in cases where the physical model is complex, employing MCS becomes 

impractical for its substantial computational time. Therefore, to overcome this drawback, 

many numerical methods for stochastic analysis, such as the stochastic finite element 

method [88, 92], perturbation method [93, 94], support vector machine [95], and polynomial 
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chaos expansion method [96] have been proposed to reduce the computational cost and 

maintain accuracy. This chapter particularly examines the use of PCE in the stochastic 

analysis of laminated composite (LC) beams. The main idea is to approximate the stochastic 

outputs by representing them as a series in an orthogonal space, including the chosen basis 

polynomials and their corresponding coefficients. It allows for efficient and accurate 

calculation of statistics and probability distributions for computational models involving 

random input parameters. 

Herein presents an overview of the previously published works on applying stochastic 

analysis methods for mechanical systems. Based on the MCS, Nguyen et al. [97] 

investigated the effects of uncertain material properties on the buckling responses of LC 

plates based on the isogeometric analysis. Elishakoff and Archaud [98] proposed a modified 

MCS method that significantly reduces simulation size to analyze the buckling of imperfect 

beams on softening foundations. Recently, Avíla and Squarcio [99] presented the Neuman-

Monte Carlo methodology for the stochastic bending analysis of the Levinson–Bickford 

beam. Naskar et al. [100] proposed a stochastic approach to study the natural frequencies of 

thin-walled LC beams with spatially varying matrix cracking damage in a multi-scale 

framework in which a concept of stochastic representative volume element has been 

introduced and verified against the traditional MCS. As for the perturbation-based methods, 

Li et al. [101] analyzed the effect of random system properties on the critical thermal 

buckling temperature of LC plates with temperature-dependent properties using the 

perturbation technique. Onkar et al. [102] proposed a stochastic buckling analysis of LC 

plates with random material properties under uniaxial compressive loading. It is based on 

the layerwise plate model to solve both pre-buckling and buckling problems, while the 

stochastic analysis has been done based on the mean-centered first-order perturbation 

technique.  

Meanwhile, PCE has been used extensively for various mechanical problems. Peng et al. 

[96] presented an uncertainty analysis method for LC plates using a data-driven PCE method 

under insufficient input data related to uncertain design parameters. Based on this approach, 
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Verma and Singh [103] studied the thermal buckling responses of LC plates with random 

geometric and material properties. Chandra et al. [104] presented a stochastic dynamic 

response analysis of LC plates using generalized polynomial chaos expansion due to random 

mean temperature increment. Then a stochastic finite element method was developed based 

on the first-order shear deformation theory (FSBT). Chakraborty et al. [105] presented an 

improved PCE approach based on a polynomial correlated function expansion for stochastic 

vibration analysis of LC plates. Bhattacharyya [106] used the Bayesian learning-based PCE 

to analyze the global reliability sensitivity of a general system. Despite the broad 

applications of PCE in many areas, its implementation in analyzing the stochastic responses 

of LC beams under stochastic loads still needs to be explored. Particularly, how material 

properties variation and load variability influence LC beams' fundamental frequency and 

mid-span displacement have yet to be sufficiently assessed. For those reasons, it calls for a 

deeper exploration of future research. 

This chapter aims to develop surrogate models using polynomial chaos expansion for 

uncertainty quantification and sensitivity analysis of LC beams with random material 

properties and stochastic loads. These input uncertainties are given by defined lognormal 

distributions. The proposed PCE models consist of multivariate Hermite polynomials and 

unknown associated coefficients. A set of realizations of random input parameters is 

generated from which the deterministic beam model gives the corresponding realizations of 

output responses. These realizations are then used to estimate the PCE coefficients by either 

the spectral projection using the Gaussian quadrature rule or the ordinary least-square 

regression approach. The deterministic beam model is derived based on a higher-order shear 

deformation theory that satisfies the traction-free boundary condition on the top and bottom 

surfaces of the LC beams. Numerical results are presented to investigate the effects of the 

stochasticity, fiber angle, span-to-thickness ratio, and boundary conditions on the 

probabilistic deflection and natural frequencies of the LC beams. Additionally, Sobol’s 

sensitivity indices are computed to rank the most significant random variables affecting both 
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static and vibration responses of the LC beams. All numerical and statistical results are 

validated with those obtained from one million samples of Monte Carlo simulation. 

2.2. Theoretical formulation  

Consider a LC beam with length L  and rectangular cross-section b h  as shown in Fig.2-1. 

It is made of n  plies of orthotropic materials in different fibre angles with respect to the x-

axis.  

 

Figure 2-1: Geometry of a laminated composite beam 

2.2.1. Kinematic, strain and stress 

The displacement field of LC beams based on the higher-order shear deformation theory is 

given by:  

 ( ) ( ) ( ) ( ) ( ) ( )
3

, ,2

5 5
,

4 3
x x

z z
u x z u x zw x u x zw z x

h
  

 
= − + − = − + 

 
 (2-1a) 

   ( ) ( ),w x z w z=  (2-2b) 

where ( ) ( ),u x w x  are axial and transverse displacements at mid-plane of the LC beams, 

respectively; ( )x  is the rotation of a transverse normal about the y-axis; ( )z  is the shear 
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function that reveals a higher-order variation of axial displacement; the comma indicates 

partial differentiation with respect to the coordinate subscript that follows.  

The non-zero strains of LC beams are given by: 

 ( ) ( ) ( )0 1 2

x x x xz   = + +  (2-3a)  

 ,xz z  =   (2-4b) 

where  

 ( ) ( ) ( )0 1 2

, , ,, ,x x x xx x xu w   = = − =  (2-5)  

The elastic strain and stress relation of thk -layer in global coordinates is given by: 
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 (2-6) 

where the 
( )k

ijQ  are the plane stress-reduced stiffness coefficients in global coordinates (see  

for details).  

2.2.2 Energy formulation  

Hamilton’s principle is used to derive characteristic equations of the LC beams in which the 

total potential energy   of the LC beams is composed of the strain energy U , work done 

by external forces V  and kinetic energy K .  

 ( )
2 2

1 1

0

t t

t t

dt U V K dt    = + − =    (2-7) 

The variation of strain energy of the LC beams is given by: 
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  (2-8) 
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where the stress resultants ( ) ( )( )1 2
, , ,x x x xN M M Q  are defined by: 

 
/2

, , ,

/2

h

s

x x x xx x

h

N bdz Au Bw B 
−

= = − +   (2-9a) 

 ( )
/2

1

, , ,

/2

h

s

x x x xx x

h

M z bdz Bu Dw D 
−

= = − +   (2-9b) 

 ( )
/2

2

, , ,

/2

h

s s s

x x x xx x

h

M bdz B u D w H 
−

= = − +   (2-9c) 

 
/2

,

/2

h

s

x z xz

h

Q bdz A  
−

= =   (2-9d) 

where the stiffness coefficients of the LC beams are determined as follows:  
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The variation of work done by a transvers distributed force f  of LC beams is written in the 

following forms: 

  
0

L

V f wdx = −   (2-11) 

The variation of kinetic energy of the LC beams is expressed by: 
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where dot-superscript denotes the differentiation with respect to the time t ;   is the mass 

density of each layer, and 0I , 1I , 2I , 1J , 2J , 2K  are the inertia coefficients defined by:  
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Substituting Eqs. (2-10), (2-15) and (2-16) into Eq. (2-7) leads to: 
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2.2.3. Ritz method  

Based on the Ritz method, the displacement field in Eq. (2-11) is approximated in the 

following forms: 

 ( ) ( )
1

,
m

u i t

j j

j

u x t N x u e 

=

=  (2-15a) 

 ( ) ( )
1

,
m

w i t

j j

j

w x t N x w e 

=

=  (2-15b) 

 ( ) ( )
1

,
m

i t

j j

j

x t N x e  
=

=  (2-15c) 

 where   is the natural frequency, 2 1i = −  the imaginary unit; ju , jw , j  are unknown 

values to be determined; ( )u

jN x , ( )w

jN x  and ( )jN x  are shape functions. It is known that 

the accuracy and convergence of the Ritz method depend on the choice of these approximate 

functions ([63, 107]). Trigonometric shape functions which satisfy different boundary 



59 

 

conditions (BCs): simply-supported (S-S), clamped-free (C-F) and clamped-clamped (C-C), 

are given as follows: 

• S-S: cosu

j x
N

L


= , sinw

j x
N

L


= , cos

j x
N

L



=  

• C-F: 
(2 1)

sin
2

u

j
N x

L

−
= , 

(2 1)
1 cos

2
w

j
N x

L

−
= − , 

(2 1)
sin

2

j
N x

L


−
=  

• C-C: 
2

sinu

j x
N

L


= , 2sinw

j x
N

L


= , 

2
sin

j x
N

L



=  

Substituting Eq. (2-12) into Eq. (2-13) leads to:  

 

11 12 13 11 12 13

12 22 23 2 12 22 23

13 23 33 13 23 33

T T

T T T T



        
        

− =       
               

K K K M M M u 0

K K K K M M w f

K K K K M M φ 0

 (2-16) 

where the components of stiffness matrix K , mass matrix M  and force vector f  are given 

by:  

 11

, ,

0

L

u u

ij i x j xK A N N dx= 
, 

12

, ,

0

L

u w

ij i x j xxK B N N dx= − 
, 

13

, ,

0

L

s u

ij i x j xK B N N dx= 
 

 22

, ,

0

L

w w

ij i xx j xxK D N N dx= 
, 

23

, ,

0

L

s w

ij i xx j xK D N N dx= − 
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0 0

L L

s s
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L

u w
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L

u
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L L
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0

L

w

ij i x jM J N N dx= −  , 33

2

0

L

ij i jM K N N dx =     

  (2-17) 
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2.2.4. Polynomial chaos expansion  

For computational models involving random input parameters, the uncertainty in model 

responses can be characterized by representing them as a series of orthogonal functions as 

follows: 

 ( ) ( )
0

i i

i

r 


=

= q q  (2-18) 

where q  is a vector of d  independent random variables mapped to physical random 

parameters; i  are multivariate orthogonal basis functions; i  are coefficients to be 

determined. In order to determine these components, two main following approaches can be 

considered: polynomial chaos expansion (PCE) and stochastic collocation, in which the PCE 

estimates the coefficients in a suitable set of basis functions using either spectral projection 

or linear regression, whereas the stochastic collocation approach forms the interpolation 

polynomials for the known coefficients under collocation points ([108]). For the present 

manuscript, the PCE method with both projection and linear regression methods will be 

developed. The multivariate Hermite polynomials are used as the basis functions, and q  is 

used as a vector of standard normal variables. 

In practice, Eq. (2-18) is typically truncated using a finite number of terms. If the number 

of random variables is d  and the qualified order of polynomial is p , the number of full 

polynomial terms N  is the permutation of p  and d p+ , determined as follows: 
( )!

! !

d p
N

d p

+
=

, Eq. (2-14) therefore becomes: 

 ( ) ( )
1

0

N

i i

i

r  
−

=

=  +q q  (2-19) 

in which the basis functions i  are considered under multivariate Hermite polynomials, and 

their associated coefficients i  should be determined so that the residual   is minimized. 

Among different methods, spectral projection and linear regression approaches are applied 

in this chapter. 
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2.2.5. Spectral projection approach 

For spectral projection, the residual minimum requires that it must be orthogonal with the 

projection of response in the selected space or the inner product of the residual and each 

basis function is zero. From Eq. 2-19, taking the inner product of both sides with respect to 

j  and enforcing orthogonality yields: 

 
0

, ,
N

j i i j

i

r 
=

 =    (2-20) 

Because j  are mutually orthogonal, Eq. 2-20 becomes: 

 ( )
, 1

, ,

i

i i Q

i i i i

r
r d 


= = 

     q q  (2-21) 

It is noted that all coefficients can be theoretically obtained by solving Eq. 2-21; however, 

the random response r  is unknown. Moreover, Eq. 2-21 involves a multidimensional 

integral evaluated numerically using either probabilistic techniques (sampling) or 

deterministic techniques (quadrature rules, sparse grid approaches). In the present chapter, 

the probabilistic Gauss-Hermite quadrature will be used to compute i . Note that the 

normalization factor ,i i   in Eq. (2-21) can be analytically estimated. It is worth to 

noticing that if the order of the output r  is p , the highest order of the integrands in Eq. (2-

21) is at least 2 p , so the minimum number of Gauss point for each dimension is 1gpN p= +  

and the total number of quadrature points is ( 1)dp + . Hence, if the model response 

( )
1

1 ...
d

d

j jr q q  is obtained from the Ritz solution, ( 1)dp + deterministic problems need to be 

solved. In consequence, this method is quite expensive for multidimensional and higher-

order problems. 
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2.2.6. Linear regression approach 

Let  1,..., sN
= q q  be a set of ( )s sN N N  realizations of input random vector, and 

 1,..., sN
r r=R  be corresponding output evaluations ( )( ), 1,...,i i

sr r i N= =q . The vector of 

residuals can be estimated from Eq. (2-17) in the compact form: 

 T = −R Ω  (2-22) 

where Ω  is the matrix whose elements are given by ( ) , 1,...,i

ij j si N = =q ; 1,...,j N= . The 

coefficients   are estimated by minimizing the 2L − norm (least-square regression) of the 

residual followed as: 

 
2

2
 min TArg = −R Ω  (2-23) 

Solving Eq. (2-21), the coefficients are given by: 

 ( )
1

T T
−

= Ω Ω Ω R
 

(2-24) 

2.2.7 Sensitivity analysis 

Apart from the LC beams’ responses concerning the input uncertainty, the degree to which 

each random variable contributes to the model output uncertainty is of great interest. The 

sensitivity analysis is a branch of study that quantifies how much the uncertainty of each 

random input variable, either as an individual or with other variable interaction, contributes 

to the model output uncertainty. The sensitivity analysis can be carried out effectively by 

the variance-based method, which has been developed by Sobol [109] and has been further 

studied by Satelli et al. [110, 111] and Sudret [112]. Sobol’s first-order and total-order 

indices are given by Satelli et al. [110] as follows: 

 First-order Sobol index: 
~

( ( | ))

( )

i
i

i

q k i

i

Var E
S

Var

=
q

r q
q

r
 (2-25a) 

 Total-order Sobol index: 
~

~( ( | ))
1

( )

i i

i

Ti

Var E
S

Var
= −

q q
r q

r
 (2-25b) 
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Both kinds of these Sobol indices are normalised by ( )Var r  but the difference in meaning 

is first-order Sobol indices measure only the impact of a sole particular input variable i
q , 

while total-order Sobol indices also take into account the impact of interactions between i
q  

and other variables k i
q  .These indices can be computed using crude Monte Carlo simulation 

with the computational cost of ( 2) sd N+  or using PCE with no additional cost. The Sobol’s 

first-order and total-order indices can be estimated as follows: 

 
( )

i
i

D
S

Var
=

r
 (2-26a) 

 
( )

Ti
Ti

D
S

Var
=

r
 (2-26b) 

where 2 ( ), ( )
i

i i

i j j j

j

D j


=   q q , 
i

  comprises all indices j  such that the multivariate 

function j  only contains the variable i
q ; 2 (q), (q)

Ti

Ti j j j

j

D 


=   , 
Ti

  comprises all 

indices j  such that the multivariate function j must contain variable i
q ; index j  depends 

on how the list of multivariate functions is sorted. 

2.3. Numerical results 

Several numerical examples are performed in this section to investigate the accuracy and 

efficiency of the present theory. The effects of material properties uncertainty on the 

bending and free vibration behaviors of LC beams are observed with different lay-ups and 

boundary conditions. Two types of material MAT I [113] and MAT II [97] shown in Table 

2-1 are considered for the vibration and bending analysis, respectively. The non-dimensional 

fundamental frequency and mid-span displacement are given as: 
2

3 2

ˆ
L

b E

 
 =  and 

3

2

4

100
ˆ

E bh
w w

qL
= . 
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Table 2-1: Random input material properties and statistical distribution 

Material properties and 

load 

Mean  COV 

Distribution MAT I 

[113] 

MAT II [32]  

1E  (GPa) 138 100 0.1 Lognormal 

2 3E E= (GPa) 6.9 4 0.1 Lognormal 

12 13G G= (GPa) 4.14 2 0.1 Lognormal 

23G (GPa) 3.45 0.8 0.1 Lognormal 

12 13 =  0.25 0.25 0.1 Lognormal 

 (kg/m3) 1550.1 - 0.1 Lognormal 

q (N/m) - 106 0.1 Lognormal 

 

2.3.1. Convergence study 

In order to investigate the convergence of the present solution with an increasing number of 

series, both non-dimensional first fundamental frequencies (MAT I) and mid-span 

displacements (MAT II) of [0 /90 /0 ]o o o  LC beams are computed with increasing Ritz series 

numbers and different boundary conditions. It can be seen from Table 2-2 that the 

convergence of the present Ritz-based trigonometric series solution is fairly achieved at 

8m = . Therefore, 8m =  would be used in subsequent calculations. 
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Table 2-2: Convergence of the non-dimensional fundamental frequency (MAT I) and non-

dimensional mid-span displacement (MAT II) of [0 /90 /0 ]o o o laminated composite beams  

BC  m       

 2 4 6 8 10 12 

Non-dimensional fundamental frequency  

S-S 10.76 10.76 10.76 10.76 10.76 10.76 

C-C 18.07 17.70 17.59 17.54 17.52 17.51 

C-F 4.18 4.15 4.14 4.14 4.14 4.14 

Non-dimensional mid-span displacement 

S-S 1.11 1.10 1.10 1.10 1.10 1.10 

C-C 0.48 0.52 0.53 0.53 0.53 0.53 

C-F 3.13 3.36 3.41 3.43 3.44 3.45 

 

Table 2-3: Convergence of fundamental frequency (Hz) of [0 /90 /0 ]o o o laminated  

composite beams with respect to the polynomial order p  of the PCE ( / 10L h = , C-C) 

Polynomial order 

p  
Properties LR SP MCS 

2   1549.373 1549.321 1549.233 

   89.566 89.628 89.719 

 Kurtosis 3.037 3.045 3.061 

 Skewness 0.165 0.176 0.172 
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3   1549.286 1549.233  

   89.656 89.687  

 Kurtosis 3.051 3.059  

 Skewness 0.172 0.178  

4   1549.364 1549.425  

   89.565 89.568  

 Kurtosis 3.058 3.055  

 Skewness 0.176 0.177  

5   1549.285 1549.432  

   89.595 89.635  

 Kurtosis 3.056 3.049  

 Skewness 0.175 0.173  

 

Additionally, to verify the convergence of the present solution with respect to the 

polynomial order p , Table 2-3 introduces fundamental frequencies of [0 / 90 / 0 ]o o o  LC 

beams with MAT I and for the linear regression (LR), spectral projection (SP), and MCS 

methods. The first fourth statistical moments, including the mean  , standard deviation 

, kurtosis, and skewness are calculated for C-C boundary conditions. The span-to-depth ratio 

/ 10L h =  is considered and the order of polynomial p  is increased from 2 to 5. In the LR 

method, a higher-order polynomial gives a higher number of terms N , and the number of 

simulation runs in the LR method sN  is set to be 3 N . Besides, for the SP method, the 

number of Gauss quadrature points gpN  is equal to the order of polynomial plus one for each 

variable (i.e., 1gpN p= + ) and the sN  is equal to d

gpN .  For both LR and SP, the higher-order 
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polynomial clearly gives a higher degree of accuracy but also requires more computing time. 

Based on the results in Table 2-3, this study considers the polynomial order of 3 to be 

sufficient and will be used in the subsequent sections. The convergence study of the static 

analysis gives a similar trend and also achieves sufficient accuracy when the polynomial 

order is 3. As a result, for the LC beam responses of LR, SP and MCS methods in all 

subsequent Tables, the numbers of simulations are 252sN = , 4096sN =  and 610sN = , 

respectively. 

2.3.2. Verification of the model accuracy  

Before demonstrating the efficiency of the proposed stochastic analysis for the LC beams, 

the accuracy of the beam solver model with and without uncertainties in material properties 

is investigated. Symmetric and asymmetric cross-ply LC beams with different layer-ups of 

the same thickness are considered. It is noted that the deterministic solution results in Tables 

2-4 and 2-5 are derived from the mean values of the input parameters in Table 2-1. To verify 

the vibration behaviors of the LC beams, Table 2-4 presents the mean, standard deviation, 

and deterministic fundamental frequencies of [0 / 90 / 0 ]o o o and [0 / 90 ]o o  LC beams with 

0.381mL = , 0.0381mh =  and MAT I. The mean values obtained from the MCS, LR and SP 

are compared with those obtained from previous works of Nguyen et al. [113] and Jun et al. 

[79]. It can be seen that there are excellent agreements between the models.  

Similarly, the reliability of the present theory in predicting static behaviors is carried out in 

Table 2-5 for both cross-ply [0 / 90 / 0 ]o o o and [0 / 90 ]o o LC beams made of the MAT II with 

0.381mL = , 0.0381mh = . The mean, standard deviation and deterministic results of the 

transverse mid-span displacement are compared with those derived from Nguyen et al. [32] 

and Khdeir and Reddy [114] based on the HSBT. In comparison, good agreements with the 

earlier works are again found. In the following sections, where the uncertainties in material 

properties are accounted for, the MCS with one million simulation 610sN =  is deemed the 

reference for result verification of the LR and SP methods. 

Table 2-4: Mean and standard deviation of fundamental frequency (Hz) of [0 /90 /0 ]o o o  and 
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[0 /90 ]o o  laminated composite beams with C-C boundary conditions ( 0.381mL = , 

0.0381mh = , MAT I) 

Theory [0 /90 /0 ]o o o  [0 /90 ]o o  

         

Deterministic 1546.8 - 1000.7 - 

Nguyen et al. [113]  1552.4 - 1001.2 - 

Jun et al. [79] - - 999.6 - 

Present (LR) 1549.4 89.6 1003.0 58.3 

Present (SP) 1549.2 89.5 1002.9 58.2 

Present (MCS) 1549.2 89.6 1003.0 58.3 
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Table 2-5: Mean and standard deviation of mid-span displacement ( mm ) of [0 /90 /0 ]o o o   

and [0 /90 ]o o  laminated composite beams with C-C boundary conditions ( 0.381mL = , 

0.0381mh = , MAT II) 

Theory [0 /90 /0 ]o o o  [0 /90 ]o o  

         

Deterministic 0.504 - 0.955 - 

Nguyen et al. [32] 0.506 - 0.956 - 

Khdeir and Reddy [114] 0.507 - 0.957 - 

Present (LR) 0.507 0.059 0.961 0.111 

Present (SP) 0.507 0.059 0.960 0.111 

Present (MC) 0.507 0.059 0.960 0.111 

 

2.3.3. Static analysis 

The static behaviors of LC beams with various boundary conditions, span-to-depth ratios, 

and fiber angles are investigated in this section. These beams are made of MAT II and 

subjected to a uniformly distributed load. In this stochastic analysis, there are six lognormal-

distributed random variables with a coefficient of variation (COV) of 0.1, where COV is the 

ratio between the standard deviation and mean of an input variable. In order to verify the 

accuracy of LR and SP methods, as mentioned above, four statistical moments consisting of 

the mean, standard deviation, skewness, and kurtosis of the mid-span displacement are 

computed and compared with those of the Monte Carlo simulations. Regarding the 

computational cost, the MCS, LR, and SP, respectively, require 106, 252 and 4096 

simulations of the beam analysis model.  

  



70 

 

Table 2-6: Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement ( mm ) for laminated 

composite beams with different lay-ups (MAT II) and S-S boundary condition 

Lay-ups  
Statistical 

moments 

/ 5L h =   / 20L h =  

LR SP MC  LR SP MC 

[0 /90 ]o o  Mean 0.573 0.573 0.573  26.228 26.222 26.223 

 SD 0.066 0.066 0.066  3.256 3.254 3.255 

 Kurtosis 3.219 3.215 3.211  3.248 3.251 3.255 

 Skewness 0.351 0.351 0.346  0.370 0.372 0.377 

[45 /-45 ]o o  Mean 1.671 1.670 1.670  91.799 91.821 91.808 

 SD 0.202 0.202 0.202  11.417 11.424 11.413 

 Kurtosis 3.244 3.232 3.265  3.260 3.252 3.254 

 Skewness 0.372 0.365 0.375  0.380 0.381 0.378 

[0 /90 /0 ]o o o  Mean 0.289 0.289 0.289  5.851 5.852 5.852 

 SD 0.034 0.034 0.034  0.773 0.774 0.773 

 Kurtosis 3.221 3.223 3.236  3.306 3.301 3.306 
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 Skewness 0.354 0.350 0.356  0.408 0.411 0.409 

[45 /-45 /45 ]o o o  Mean 1.671 1.670 1.671  91.798 91.798 91.802 

 SD 0.202 0.202 0.202  11.407 11.423 11.430 

 Kurtosis 3.253 3.247 3.250  3.249 3.255 3.271 

 Skewness 0.373 0.371 0.372  0.375 0.381 0.385 

Average computing time (s) 0.5 0.8 65.4  0.5 0.8 61.7 
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Table 2-7: Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement ( mm ) for laminated 

composite beams with different lay-ups (MAT II)  and C-C boundary condition 

Lay-ups  
Statistical 

moments 

/ 5L h =   / 20L h =  

LR SP MC  LR SP MC 

[0 /90 ]o o  Mean 0.230 0.230 0.230  5.764 5.766 5.765 

 SD 0.026 0.026 0.026  0.696 0.696 0.697 

 Kurtosis 3.216 3.213 3.217  3.244 3.236 3.242 

 Skewness 0.351 0.346 0.344  0.364 0.362 0.369 

[45 /-45 ]o o  Mean 0.517 0.517 0.517  19.116 19.112 19.106 

 SD 0.061 0.061 0.061  2.356 2.356 2.352 

 Kurtosis 3.244 3.221 3.220  3.272 3.256 3.253 

 Skewness 0.362 0.356 0.357  0.380 0.379 0.376 

[0 /90 /0 ]o o o  Mean 0.184 0.184 0.184  1.802 1.802 1.802 

 SD 0.022 0.022 0.022  0.215 0.215 0.215 

 Kurtosis 3.210 3.217 3.222  3.222 3.236 3.230 
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 Skewness 0.349 0.356 0.354  0.359 0.361 0.364 

[45 /-45 /45 ]o o o  Mean 0.517 0.517 0.517  19.115 19.115 19.107 

 SD 0.061 0.061 0.061  2.357 2.359 2.356 

 Kurtosis 3.233 3.227 3.233  3.243 3.263 3.252 

 Skewness 0.373 0.379 0.378  0.373 0.379 0.378 

Average computing time (s) 0.4 0.9 61.2  0.5 0.9 63.0 

 



74 

 

Table 2-8: Mean, standard deviation, kurtosis and skewness of mid-span transverse displacement ( mm ) for laminated 

composite beams with different lay-ups (MAT II) and C-F boundary condition 

Lay-ups  
Statistical 

moment 

/ 5L h =   / 20L h =  

LR SP MC  LR SP MC 

[0 /90 ]o o  Mean 1.824 1.825 1.824  88.711 88.719 88.717 

 SD 0.214 0.214 0.214  11.004 11.023 11.027 

 Kurtosis 3.233 3.226 3.223  3.237 3.244 3.242 

 Skewness 0.355 0.355 0.354  0.367 0.370 0.371 

[45 /-45 ]o o  Mean 5.523 5.522 5.524  311.433 311.427 311.449 

 SD 0.671 0.670 0.671  38.729 38.727 38.747 

 Kurtosis 3.256 3.253 3.259  3.253 3.253 3.257 

 Skewness 0.376 0.375 0.374  0.378 0.377 0.378 

[0 /90 /0 ]o o o  Mean 0.813 0.813 0.813  19.358 19.363 19.360 

 SD 0.095 0.095 0.094  2.584 2.585 2.587 

 Kurtosis 3.206 3.222 3.202  3.297 3.309 3.302 
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 Skewness 0.349 0.348 0.344  0.408 0.413 0.414 

[45 /-45 /45 ]o o o  Mean 5.522 5.522 5.522  311.447 311.381 311.389 

 SD 0.671 0.670 0.670  38.707 38.727 38.702 

 Kurtosis 3.243 3.261 3.246  3.250 3.265 3.265 

 Skewness 0.371 0.373 0.371  0.375 0.380 0.379 

Average computing time (s) 0.4 0.9 62.4  0.5 0.8 59.4 
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It can be seen from Tables 2-6 to 2-8 that the results obtained from LR and SP agree well 

with the MCS. Although the SP method runs 16 times more simulations than the LR, the 

improvement in accuracy is only noticeable in a few cases of thin beam ( )/ 20L h =  where 

the lay-ups are [45 / 45 ]o o−  and [ 45 / 45 / 45 ]o o o− − . These results ascertain the accuracy of the 

LR and SP methods. Furthermore, the average computing time is also displayed for each 

method. The time taken to pre-compute the integrals of stiffness and mass matrices is 

excluded. Even though this recorded time can vary considerably depending on the computer 

specifications or programming languages, the ratios between the run-time of MCS and PCE 

methods are evaluated. Both LR and SP approaches for the PCE method take the authors’ 

computer less than a second, while the MCS requires slightly over a minute. This remark 

demonstrates the efficiency of the current PCE method. In addition, the LC beam deflections 

under various boundary conditions are plotted in Figs. 2-3 shows the probability density 

function (PDF) and probability of exceedance (PoE) curves of the mid-span displacements. 

The PDF graph shows identical data distribution across three methods, whereas in the PoE 

figures, all three methods only give the matching results up to ( )410P X − . This discrepancy 

is due to the lack of samples whose probability of occurrence is less than 10-4. In Fig. 2-4, 
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the PoE curves of the output distribution computed by MCS, SP and LR are plotted 10 times 

and all of them show visible variation pass the point where ( )410P X − . 

Figure 2-3: Probability density function (PDF) and Probability of exceedance (PoE) of 

three numerical methods (MCS, LR, SP) of the mid-span displacement (mm) for 

[45 /-45 /45 ]o o o  laminated composite beam (L/h = 20, C-C boundary condition 

 

Figure 2-2: Probability density function (PDF) and Probability of exceedance (PoE) of three numerical 

methods (MCS, LR, SP) of the mid-span displacement (mm) for  laminated composite beam (L/h = 20, 

S-S boundary condition) 
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    (a) MCS         (b) LR 

                                                            (c) SP 

  

Figure 2-4: Variation in probability of exceedance (PoE) of mid-span displacement (mm) for 

the laminated composite beam (L/h=5, C-C boundary condition) 
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Table 2-9: Mean, standard deviation, kurtosis and skewness of fundamental frequency (Hz) of laminated composite beams 

with different lay-ups (MAT I) and S-S boundary condition 

Lay-ups  
Statistical 

moments 

/ 5L h =   / 20L h =  

LR SP MC  LR SP MC 

[0 /90 ]o o  Mean 891.230 891.265 891.345  251.138 251.107 251.122 

 SD 52.197 52.210 52.186  15.478 15.465 15.436 

 Kurtosis 3.046 3.054 3.054  2.942 3.072 3.057 

 Skewness 0.170 0.176 0.174  0.222 0.187 0.185 

[45 /-45 ]o o  Mean 574.380 574.405 574.391  152.486 152.481 152.472 

 SD 34.893 34.908 34.892  9.380 9.374 9.389 

 Kurtosis 3.061 3.056 3.060  2.887 3.058 3.065 

 Skewness 0.180 0.177 0.179  0.207 0.183 0.185 

[0 /90 /0 ]o o o  Mean 1433.000 1433.202 1433.094  529.764 529.855 529.840 

 SD 83.171 83.156 83.169  35.966 35.948 35.927 

 Kurtosis 3.059 3.060 3.054  3.070 3.075 3.068 
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 Skewness 0.169 0.175 0.170  0.201 0.202 0.191 

[45 /-45 /45 ]o o o  Mean 574.429 574.418 574.417  152.500 152.484 152.484 

 SD 34.925 34.890 34.910  9.391 9.387 9.371 

 Kurtosis 3.056 3.064 3.059  3.063 3.057 3.073 

 Skewness 0.179 0.181 0.180  0.182 0.187 0.183 

Average computing time (s) 1.4 1.9 117.5  1.3 2.5 120.3 



81 

 

Table 2-10: Mean, standard deviation, kurtosis and skewness of fundamental frequency (Hz) of laminated composite beams 

with different lay-ups (MAT I) and C-C boundary condition 

Lay-ups  
Statistical 

moments 

/ 5L h =   / 20L h =  

LR SP MC  LR SP MC 

[0 /90 ]o o  Mean 1558.420 1558.239 1558.318  552.984 552.986 552.989 

 SD 87.957 87.872 87.812  33.448 33.478 33.501 

 Kurtosis 3.042 3.055 3.053  2.668 3.057 3.056 

 Skewness 0.171 0.171 0.169  0.185 0.183 0.180 

[45 /-45 ]o o  Mean 1119.291 1119.101 1119.239  341.336 341.318 341.307 

 SD 66.516 66.533 66.471  20.931 20.892 20.888 

 Kurtosis 3.044 3.047 3.059  2.937 3.058 3.052 

 Skewness 0.170 0.175 0.175  0.120 0.178 0.176 

[0 /90 /0 ]o o o  Mean 1903.023 1902.896 1903.137  1052.855 1053.112 1053.129 

 SD 110.435 110.430 110.547  65.283 65.372 65.372 

 Kurtosis 3.056 3.058 3.061  3.063 3.065 3.056 
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 Skewness 0.173 0.171 0.179  0.181 0.178 0.178 

[45 /-45 /45 ]o o o  Mean 1119.214 1119.171 1119.285  341.353 341.308 341.353 

 SD 66.382 66.429 66.480  20.911 20.920 20.945 

 Kurtosis 3.053 3.043 3.055  3.061 3.049 3.058 

 Skewness 0.170 0.173 0.173  0.181 0.177 0.181 

Average computing time (s) 1.3 3.5 114.2  0.8 1.2 117.1 
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Table 2-11: Mean, standard deviation, kurtosis and skewness of fundamental frequency (Hz) of laminated composite beams 

with different lay-ups (MAT I) and C-F boundary condition 

Lay-ups  
Statistical 

moments 

/ 5L h =   / 20L h =  

LR SP MC  LR SP MC 

[0 /90 ]o o  Mean 338.969 338.930 338.967  89.918 89.933 89.922 

 SD 20.346 20.336 20.345  5.548 5.553 5.558 

 Kurtosis 3.061 3.057 3.049  2.724 3.073 3.071 

 Skewness 0.180 0.181 0.177  0.045 0.190 0.191 

[45 /-45 ]o o  Mean 211.651 211.635 211.629  54.453 54.456 54.458 

 SD 12.952 12.956 12.939  3.351 3.354 3.353 

 Kurtosis 3.049 3.062 3.063  2.770 3.049 3.062 

 Skewness 0.178 0.181 0.185  0.032 0.178 0.183 

[0 /90 /0 ]o o o  Mean 617.404 617.420 617.421  193.115 193.109 193.121 

 SD 37.323 37.290 37.282  13.374 13.389 13.375 

 Kurtosis 3.055 3.056 3.060  3.069 3.077 3.080 
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 Skewness 0.172 0.175 0.175  0.203 0.207 0.206 

[45 /-45 /45 ]o o o  Mean 211.646 211.644 211.633  54.454 54.461 54.460 

 SD 12.955 12.942 12.944  3.353 3.354 3.353 

 Kurtosis 3.043 3.047 3.047  3.062 3.051 3.059 

 Skewness 0.179 0.180 0.177  0.182 0.182 0.179 

Average computing time (s) 0.4 1.0 112.0  0.5 1.1 119.8 
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Figure 2-5: Quantile-quantile plot of Linear regression (LR) and Spectral projection (SP) 

methods with respect to the Monte Carlo Simulation (MCS) for the fundamental 

frequencies of [45 /-45 ]o o  laminated composite beam (L/h=5, C-C boundary condition) 

 

2.3.4. Vibration analysis 

In this section, the fundamental frequencies (Hz) of LC beams with various boundary 

conditions, span-to-depth ratio, and fiber angles are given in Tables 2-9 to 2-11. These 

beams made of the MAT I have six lognormal-distributed random variables with a COV of 

0.1. Similar to the static analysis, four statistical moments of mean, standard deviation, 

skewness, and kurtosis of the fundamental frequency (Hz) are computed and verified with 

those of the Monte Carlo simulations. While both the LR and SP methods give matching 

results for the mean and standard deviation, there is an apparent discrepancy of the skewness 

and kurtosis between the LR method and the other two. Tables 2-9 to 2-11 show that the 

kurtosis and skewness obtained from the LR method in the cases of 45o/-45o and 0o/90o 

beams differ from the kurtosis and skewness of the SP and MCS methods. This difference 

in the skewness and kurtosis does not mean the whole output distributions from these 

methods differ. Concerning efficiency, like the static analysis section above, the PCE 

methods show considerable improvement in the average computing time compared to the 

MCS for all cases of the LC beams.  
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Instead of comparing the PDF and PoE as above, Fig. 2-5 shows the quantile-quantile plots 

of 106 sample outputs obtained from MCS compared with the outputs of LR and SP methods 

in each of the two graphs. In a quantile-quantile plot, the two samples plotted have the same 

distribution when the plot is linear and lies along the 45-degree reference line. The straight 

lines shown in Fig. 2-5 further confirm that compared with the computationally-expensive 

MCS, the output distribution of LR and SP methods are accurate despite the much fewer 

simulations. In addition, the PoE curves of the output from all three methods are plotted ten 

times in Fig. 2-6 to demonstrate how the lack of samples pass the point ( )410P X −  causes 

the variation in the vibration output distribution. This also explains the deviation of data 

points from the 45-degree reference line at the lower- and upper-extreme quantiles in Fig. 

2-5. 

 



87 

 

   (a) MCS                                                                         (b) LR 

 

                                                        (c) SP 

 

  

Figure 2-6: Variation in probability of exceedance (PoE) of fundamental frequencies (Hz) for the  

laminated composite beam (L/h=20, C-F boundary condition) 



88 

 

(a) [45 / 45 ]o o−                                                          (b) [0 / 90 ]o o  

Figure 2-7: First-order Sobol indices of the random input variables with respect to the mid-

span displacement (mm) of the LC beam model obtained from MCS and PCE  (L/h=5, S-S 

boundary condition) 

    [45 / 45 / 45 ]o o o−                                                                 [0 / 90 / 0 ]o o o  

Figure 2-8: First-order Sobol indices of the random input variables with respect to the first 

fundamental frequency (Hz) of the LC beam model obtained from MCS and PCE  (L/h=5, 

C-F boundary condition) 
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2.3.5 Sensitivity analysis 

This section discusses the impact of each random input variable on the beam’s deflection 

and fundamental frequency. In all cases, total-order Sobol indices computed are very similar 

to the first-order Sobol indices which infer that there is almost no interaction between the 

random input variables. Therefore, only the first-order Sobol indices are presented in Figs. 

2-7 and 2-8. While these Sobol indices can be derived effortlessly from the PCE coefficients, 

they theoretically require two nested loops of 
2

sN  beam solver runs in the crude MCS 

method. Several improved MCS algorithms proposed [110] can reduce the complexity to 

( 2)rv sN N+  which is still nowhere near the efficiency of the PCE method presented in this 

chapter. In both figures, the three bars represent the first-order Sobol indices of the variable 

underneath computed using the MCS, PCE-SP and PCE-LR methods. The values above 

each group of bars are, respectively, for the MCS, PCE-SP and PCE-LR from top to bottom. 

It can be seen from both Figs. 2-7 and 2-8 that the PCE-SP and PCE-LR methods give the 

same results, all of which agree well with the MCS. Fig. 2-7 indicates the variation of 

applied distributed load q  affects the beam’s deflection the most.  

Interestingly, to a lesser extent, the variation of the material’s shear modulus 
12G  also 

influences the model outputs in the case of [45 / 45 ]o o−  lay-up while in the case of [0 / 90 ]o o  

lay-up, the second most impactful variable is 
1E . All the other four variables in both cases 

of lay-ups are considered insignificant and can be ignored to reduce the computational cost. 

Fig. 2-8 shows a similar pattern for the vibration analysis of the beam. For both 

[45 / 45 / 45 ]o o o−  and [0 / 90 / 0 ]o o o  lay-ups, the material mass density   affects the 

fundamental frequencies the most. The second most important variable is 
12G  for 

[45 / 45 / 45 ]o o o−  lay-up and 
1E  for [0 / 90 / 0 ]o o o  lay-up. There is a small difference compared 

to the static analysis that in the case of [45 / 45 / 45 ]o o o−  lay-up, 
2E  plays a minor role in 

altering the beam’s vibration responses. Knowing the lay-up arrangement, the sensitivity 

analysis is thus valuable for filtering the critical variables in a beam model, reducing the 

size of the random input vector and saving computing time.  
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2.4. Conclusion 

This chapter investigated the stochastic static and vibration characteristics of laminated 

composite beams considering the uncertainty in material properties and applied loads. The 

random input parameters are modeled within a given range of the lognormal distributions. 

A metamodel-based polynomial chaos expansion with spectral projection and linear 

regression approaches was constructed using a few training samples simulated from the 

deterministic beam model. The higher-order shear deformation theory and Hamilton’s 

principle are employed to derive the beam’s governing equations which are then solved by 

Ritz’s method. The results from PCE are validated against the crude Monte Carlo simulation 

regarding different statistical metrics and input parameters’ sensitivity. The following 

conclusions could be drawn from the observations of the numerical results: 

• The proposed PCE method has been demonstrated to accurately capture the 

stochastic output distribution while significantly reducing the number of required 

simulations and substantially reducing computing expenses. 

• The linear regression approach requires fewer simulations than the spectral projection 

approach. 

• The proposed methods can estimate Sobol's indices in global sensitivity analysis 

without incurring additional computing costs beyond those necessary for 

constructing the PCE model. 

• The variability in the applied load influences the mid-span displacement most, while 

mass density variation significantly affects the vibration characteristics of LC beams. 

The proposed use of PCE in this chapter for laminated composite beams can be extended to 

stochastic analysis of other composite structures. This approach is particularly valuable in 

cases where the complexity of calculations or the cost of practical experiments hinder 

efficient data collection.  
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CHAPTER 3 : A GENERAL HIGHER-ORDER SHEAR DEFORMATION THEORY 

FOR BUCKLING AND FREE VIBRATION ANALYSIS OF LAMINATED THIN-

WALLED COMPOSITE I-BEAMS 

 

This chapter extends the discussion to thin-walled structures, focusing on an advanced 

deterministic modeling approach. A general higher-order shear deformation thin-walled 

beam theory (HTWBT) is proposed to improve the accuracy of buckling and free vibration 

analyses for laminated thin-walled composite I-beams. The theory incorporates a unified 

nonlinear variation of shear strains across the wall thickness, offering a generalized 

formulation capable of recovering previous conventional beam theories as special cases. 

Series-type solutions with hybrid shape functions are developed for different boundary 

conditions. Numerical examples are performed on laminated thin-walled composite I-beams 

with arbitrary lay-ups. Effects of transverse shear strains, fiber angles and slenderness ratio 

on the critical buckling loads and natural frequencies of the beams are reported. 

 

3.1. Introduction 

It is known that the classical thin-walled beam theory (CTWBT), which neglects shear 

effects, by Vlasov [115] is the simplest one to analyse LC thin-walled beams [34, 116-118]. 

It underestimates the deflection and overestimates the natural frequencies/critical buckling 

loads. Latalski [119] developed a generalised beam theory for the semi-angular cross section 

based on Vlasov’s work but added the effects of cross-section distortion. Yu and Hodges 

[120] developed a generalised Vlasov theory for composite beams using the finite element 

method. In order to account for effects of transverse shear strains, the first-order thin-walled 

beam theory (FTWBT) with the linear variation of the displacement in the wall thickness, 

which provides more accurate results than the CTWBT, has been employed [33, 121-128]. 

However, this theory requires a shear correction factor to rectify the stress-free boundary 

conditions. To solve this problem, the higher-order thin-walled beam theory (HTWBT), in 

which the axial displacement is nonlinearly approximated in the wall thickness, is proposed. 
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It should be highlighted the work of Carrera and colleagues [129-143], who invented the 

Carrera Unified Formulation (CUF) by using Taylor expansion and Lagrange expansion in 

displacement fields to obtain any refined theories on the basis of known fundamental nuclei. 

This approach has been successfully employed for many problems such as plates [129, 131, 

132, 134, 136, 141, 143], shells [130, 133] and thin-walled composite beams sections such 

as C, box, I-section and wing structures [135, 137-140, 142]. It should be mentioned that 

the mathematic formulation from CUF is complicated with many variables in displacement 

fields. Chandiramani et al. [144] investigated free, forced and geometrically nonlinear 

vibration responses of LC composite box beams based on the assumption of a parabolic 

distribution of the transverse shear strains through the wall thickness. Literature review 

shows that the study on behaviours of thin-walled I-beams based on the general HTWBT, 

which can recover conventional theories such as CTWBT and FTWBT, is very limited. This 

intriguing topic therefore needs to be study further.  

The objective of this Chapter is to develop a general higher-order shear deformation theory 

for buckling and free vibration analysis of LC thin-walled beams. The transverse shear 

strains are assumed to be nonlinearly variation by a shear function, and the axial 

displacement is obtained with a higher-order variation in the wall thickness. A hybrid series 

solution is developed for solving equations of motion with different boundary conditions 

and various theories including CTWBT, FTWBT and HTWBT. Numerical examples are 

performed to investigate the effects of lay-ups, fiber angle and shear deformation on the 

natural frequencies and critical buckling loads of the LC thin-walled I-section beams.  
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3.2. Theoretical formulation  

 In order to investigate theoretical formulation, three coordinate systems, namely, Cartesian 

coordinate system ( ), ,x y z , local plate coordinate system ( ), ,n s z  and contour coordinate s  

along the profile of the section are considered and illustrated in Fig. 3-1. It is assumed that 

  is an angle of orientation between ( ), ,n s z  and ( ), ,x y z  coordinate systems, the pole P  

with coordinates ( ),P Px y  is the shear centre of the section.  

  

For simplicity purpose, the following assumptions are employed: the displacements are 

small so that the geometrically nonlinear behaviours are neglected, the section contour does 

not deform in its own plane and the transverse shear strains vary nonlinearly in the wall 

thickness. The geometry of the thin-walled I-beam is shown in Fig. 3-2 with 
1 2 3, ,b b b  denote 

the widths and 
1 2 3, ,h h h  denote the thicknesses of top, bottom flange, and web, respectively.  

3.2.1. Kinematics 

The displacements ( ), , ,u n s z t  and ( ), , ,v n s z t  at any points of the beam cross-section under 

Figure 3-2: Thin-walled coordinate systems 
Figure 3-1: Geometry of laminated composite thin-

walled I-beams 
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a small rotation ( ),z t  about the pole axis can be expressed in terms of those at the pole 

( ),Pu z t  and ( ),Pv z t  in x −  and y −directions, respectively, as follows ([145]): 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ),, , , , , , ,P s P P Pu n s z t u z t y nx y z t u z t Y y z t = − − − = − −  (3-1a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ),, , , , , , ,p s P p Pv n s z t v z t x ny x z t v z t X x z t = + + − = + −  (3-1b) 

where the comma in the subscript is used to indicate the differentiation with respect to the 

variable that follows, ,sy  and ,sx  are the trigonometric functions cos  and sin−  

respectively (see Fig. 3-1). ,X Y are the coordinates of an arbitrary point along the n  axis. It 

can be seen that the displacements in Eq. (3-1) satisfy the non-deformability conditions of 

cross-section. The displacements in the contour lines ( ), , ,nu n s z t , ( ), , ,sv n s z t  can be hence 

derived from the displacements in Eq. (3-1) as follows: 

 ( ) ( ) ( ) ( ) ( ), ,, , , , , , ,n P s P s su n s z t u z t y v z t x R n s z t= − −  (3-2a) 

 ( ) ( ) ( ) ( ) ( ), ,, , , , , , ,s P s P s nv n s z t u z t x v z t y R n s z t= + +  (3-2b) 

where ( ) ( ),s sR n s r s= , ( ) ( ), ,n nR n s r n s n= +  in which ( ) ( ),s nr s r s  are the lengths of the 

perpendiculars from P  to the tangent and normal of the profile line center (see Figure 3-1). 

Moreover, the shear strains ( ),sz nz   in the contour of thin-walled beams with open sections 

can be written in terms of the transverse shear strains ( ),xz yz   and a direct shear strain 

caused by the change rate of twist angle ,z  ([146]) as follows: 

 
( ) ( ) ( ) ( ), , ,

, ,

, , , , , , , 2 ,

                

sz xz s yz s z

s z s

n s z t n z t X n z t Y n z t

= v w

   = + +

+
 (3-3a) 

 
( ) ( ) ( ), ,

, ,

, , , , , , ,

                

nz xz s yz s

n z n

n s z t = n z t Y n z t X

u w

  −

= +
 (3-3b) 

where w  is the axial displacement at any point of the beam cross-section. It is assumed that 

the transverse shear strains ( ),xz yz   vary nonlinearly through the wall thickness as follows: 

 ( ) ( ) ( ) ( )0
, , ,xz xzn z t g n z t =   (3-4a) 
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 ( ) ( ) ( ) ( )0
, , ,yz yzn z t g n z t =   (3-4b) 

where ( ) ( )0 0
,xz yz   are mid-surface transverse shear strains; ( )g n  is a general higher-order shear 

function which satisfies the stress-free boundary conditions, i.e. ( )/ 2 0g n h=  =  where h  is 

the wall thickness. 

( )0 P
xz y

u

z
 


= +


  (3-5a) 

( )0 P
yz x

v

z
 


= +


  (3-5b) 

where ,x y   are the rotations of the cross-section with respect to x  and y  

Substituting Eq. (3-2) and (3-4) into Eq. (3-3) and then integrating the subsequent results 

with respect to s  and n  lead to the expression of the axial displacement as follows: 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )

0 0

0 0 , 0 ,

, , , , ,

, , , , , ,

, , ,

xz s yz s

P z s P z s z s

w n s z t w z t z t g x fy z t g y fx

u z t x ny v z t y nx z t F nr

 



= + + + −

− + − − − −
 (3-6) 

where ( )0 0g g n= = , ,ng f= ; ( )F s  is a warping function which is defined by: 

 ( ) ( )
0

s

n

s

F s r s ds =   (3-7) 

A general higher-order shear deformation kinematics at any points of the LC thin-walled 

beam can be expressed as follows:  

 ( ) ( ) ( ) ( ),, , , , ,P s Pu n s z t u z t y nx y z t= − − −  (3-8a) 

 ( ) ( ) ( ) ( ),, , , , ,p s Pv n s z t v z t x ny x z t= + + −  (3-8b) 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )

0 0

0 0 , 0 ,

, , , , ,

, , , , , ,

, , ,

xz s yz s

P z s P z s z s

w n s z t w z t z t g x fy z t g y fx

u z t x ny v z t y nx z t F nr

 



= + + + −

− + − − − −
 (3-8c) 

In this chapter, 
3

2

4

3

n
f n

h
= −  and 

2

2

4
1

n
g

h
= −  will be selected. It is worth noticing that the 

CTWBT can be found by setting ( ) ( )0 0
0, 0xz yz = = , while the FTWBT is recovered by putting 

0 1,g g f n= = = .  
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3.2.2. Strains 

The linear non-zero strains related to the displacement in Eq. (3-8) are given by: 

 ( ) ( ) ( ) ( )0 1 2
, , ,z z z zn s z t n f   = + +  (3-9a) 

 ( ) ( ) ( )1 2
, , ,sz sz szn s z t n g  = +  (3-9b) 

 ( ) ( )0
, , ,nz nzn s z t g =  (3-9c) 

where 

 
( ) ( ) ( )( ) ( )( )0 0 0

0, 0 , , 0 , , ,, ,z z xz z P zz yz z P zz zzs z t w g u x g v y F   = + − + − −  (3-10a) 

 ( ) ( )1

, , , , ,, ,z P zz s P zz s zz ss z t v x u y r = − +  (3-10b) 

 ( ) ( ) ( ) ( )2 0 0

, , , ,, ,z xz z s yz z ss z t y x  = −  (3-10c) 

 ( ) ( )1

,, , 2sz zs z t =  (3-10d) 

 ( ) ( ) ( ) ( )2 0 0

, ,, ,sz xz s yz ss z t x y  = +  (3-10e) 

 ( ) ( ) ( ) ( )0 0 0

, ,, ,nz xz s yz ss z t y x  = −  (3-10f) 

3.2.3. Stresses 

For LC thin-walled beams, it is supposed to be constituted by a number of orthotropic 

material layers with the same thickness. The reduced constitutive equations at the thk − layer 

is given by: 

 

11 16

16 66

55

0

0

0 0

z z

sz sz

nz nz

P P

P P

P

 

 

 

    
    

=    
    

    

 (3-11) 

where 
2

11
11 11

22

Q
P Q

Q
= − ,  12 26

16 16

22

Q Q
P Q

Q
= − , 

2

26
66 66

22

Q
P Q

Q
= − , 55 55P Q= ; ijQ  are the reduced 

stiffness components of materials (see [50] for more details).   

3.2.4. Variational formulation  

The characteristic equations of the LC thin-walled beams can be derived by Hamilton’s 

equations in which the total energy of the system   is composed of the strain energy 
S , 
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work done by external force 
W  and kinetic energy 

K  as follows: 

 ( )
2

1

0

t

S W K

t

dt   +  −  =   (3-12) 

The variation of strain energy 
S  is defined by: 

 ( )S z z sz sz nz nz d      


 = + +    (3-13) 

Substituting Eqs. (9) and (11) into Eq. (3-13) leads to: 

 

( ) ( )

( ) ( )

0 0

0, , , ,

0

0 0

, ,

L

S z z y xz z x yz ya P zz xa P zz

zz x xz y yz z z

T w M M M u M v

M Q Q M dz

     

   

 = + + + +


+ + + +



  (3-14) 

where the stress resultants ( ), , , , , , , ,z y x ya xa x y zT M M M M M Q Q M
 are defined as follows: 

 ( ) ( )0 , 0 ,, , 1, ,z y x z s s

A

T M M g x fy g y fx dsdn= + −   (3-15a) 

 ( ) ( ), ,, , , ,ya xa z s s s

A

M M M x ny y nx F nr dsdn   = − + − + − +    (3-15b) 

 ( ), ,x sz s nz s

A

Q g x y dsdn = +   (3-15c) 

 ( ), ,y sz s nz s

A

Q g y x dsdn = −   (3-15d) 

 2z sz

A

M n dsdn=    (3-15e) 

These stress resultants are related to the displacement gradients as follows: 

 

11 12 13 14 15 16 17 18 19

12 22 23 24 25 26 27 28 29

13 23 33 34 35 36 37 38 39

14 24 34 44 45 46 47 48 49

15 25 35 45 55 56 57 58 59

16 26 36 46 5

z

y

x

x

y

ya

xa

z

L L L L L L L L LT

L L L L L L L L LM

L L L L L L L L LM

L L L L L L L L LQ

L L L L L L L L LQ

L L L L LM

M

M

M



 
 
 
 
 
 
 

= 
 
 
 
 
 
  

( )

( )

( )

( )

0,

0

,

0

,

0

0

6 66 67 68 69
,

17 27 37 47 57 67 77 78 79
,

18 28 38 48 58 68 78 88 89
,

19 29 39 49 59 69 79 89 99
,

z

xz z

yz z

xz

yz

P zz

P zz

zz

z

w

L L L L u
L L L L L L L L L v
L L L L L L L L L

L L L L L L L L L













 
 

 
 

 
 

 
 

 
 

 
 

 
   
   
   
   
   
   
    

 

 (3-16) 
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where the stiffness components of the LC thin-walled beams ( ) , 1,...,9ijL i j =  are defined 

by: 

 
11 11

s

L A ds=  , ( )12 11 0 11 ,s

s

L A g x E y ds= + , ( )13 11 0 11 ,s

s

L A g y E x ds= −  (3-17a) 

 
14 16 ,s s

s

L A x ds=  ,
15 16 ,s s

s

L A y ds=  , ( )16 11 11 ,s

s

L A x B y ds= − +  (3-17b) 

 ( )17 11 11 ,s

s

L A y B x ds= − + , ( )18 11 11 s

s

L A F B r ds= − + ,
19 162

s

L B ds=   (3-17c) 

 ( ) 2

22 0 11 0 11 , 11 ,2 s s

s

L g x A g x E y H y ds = + +
   (3-17d) 

 ( ) ( )23 0 11 0 11 , , 11 0 11 ,s s s

s

L g x A g y E x y E g y H x ds = − + −
   (3-17e) 

 ( )24 16 0 16 , ,s s s s

s

L A xg D y x ds= + , ( )25 16 0 16 , ,s s s s

s

L A xg D y y ds= +  (3-17f) 

 ( ) ( )26 0 11 11 , , 11 11 ,s s s

s

L g x A x B y y E x F y ds = − + + +
   (3-17g) 

 ( ) ( )27 0 11 11 , , 11 11 ,s s s

s

L g x A y B x y E y F x ds = − + + − +   (3-17h) 

 ( ) ( )28 0 11 11 , 11 11s s s

s

L g x A F B r y E F F r ds = − + + − +  (3-17i) 

 ( )29 16 0 16 ,2 s

s

L B xg F y ds= +  (3-17j) 

 ( ) ( )33 0 11 0 11 , , 11 0 11 ,s s s

s

L g y A g y E x x E g y H x ds = − − −   (3-17k) 

 ( )34 16 0 16 , ,s s s s

s

L A yg D x x ds= − , ( )35 16 0 16 , ,s s s s

s

L A yg D x y ds= −  (3-17l) 

 ( ) ( )36 11 0 11 , , 11 0 11 ,s s s

s

L x A g y E x y B g y F x ds = − − + −   (3-17m) 

 ( ) ( )37 11 0 11 , , 11 0 11 ,s s s

s

L y A g y E x x B g y F x ds = − − + −   (3-17n) 

 ( ) ( )38 11 0 11 , 11 0 11 ,s s s

s

L F A g y E x r B g y F x ds
 = − − + −   (3-17o) 

 ( )39 16 0 16 ,2 s

s

L B yg F x ds= −  (3-17p) 
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 ( )2 2

44 66 , 44 ,s s s s

s

L H x H y ds= + , ( )45 , , 66 44s s s s

s

L x y H H ds= −  (3-17q) 

 ( )46 16 16 , ,s s s s

s

L A x B y x ds= − + , ( )47 16 16 , ,s s s s

s

L A y B x x ds= − +  (3-17r) 

 ( )48 16 16 ,s s s s

s

L A F B r x ds= − + ,
49 , 662 s s

s

L x B ds=   (3-17s) 

 ( )2 2

55 66 , 44 ,s s s s

s

L H y H x ds= + , ( )56 16 16 , ,s s s s

s

L A x B y y ds= − +  (3-17t) 

 ( )57 16 16 , ,s s s s

s

L A y B x y ds= − + , ( )58 16 16 ,s s s s

s

L A F B r y ds= − +  (3-17u) 

 
59 , 662 s s

s

L y B ds=  , ( ) ( )66 11 11 , , 11 11 ,s s s

s

L x A x B y y B x D y ds = − + + +   (3-17v) 

 ( ) ( )67 11 11 , , 11 11 ,s s s

s

L y A x B y x B x D y ds = − + + +   (3-17w) 

 ( ) ( )68 11 11 , 11 11 ,s s s

s

L F A x B y r B x D y ds
 = − + + +   (3-17x) 

 ( )69 16 16 ,2 s

s

L B x D y ds= + , ( ) ( )77 11 11 , , 11 11 ,s s s

s

L y A y B x x B y D x ds = − + − +   (3-17y) 

 ( ) ( )78 11 11 , 11 11 ,s s s

s

L F A y B x r B y D x ds
 = − + − +   (3-17z) 

 ( )79 16 16 ,2 s

s

L B y D x ds= − +   (3-17aa) 

 ( ) ( )88 11 11 11 11s s s

s

L F F A B r r B F D r ds  
 = − − + + − +   (3-17ab) 

 ( )89 16 162 s

s

L B F D r ds= − + ,
99 664

s

L D ds=   (3-17ac) 

 ( ) ( )
1

2 2 2

1

, , , , , , , 1, , , , , , ,
k

k

nnl

ij ij ij ij ij ij sij sij ij

k n

A B D E F H B H n n f nf f ng g Q dn
+

=

 
=  

 
 

    (3-18) 

where nl is the number of layers and k is the layer index 

The variation of potential energy 
W  of the LC thin-walled beams subjected to axial 

compressive load 
0N  can be expressed as:  
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( )

( ) ( ) ( )

0

, , , ,

0 , , , , , , , , , ,

0

W z z z z z

L

P z P z P z P z P z P z z P P z P z P P z

u u v v d

N u u J v v I I v K J u dz

   

     


 = + 

 = − + + + + − 




 (3-19) 

where 
0 0 /z N A =  is averaged axial stress; A  is the cross-sectional area; ( ), ,P P PI J K  are 

moments of inertia of the cross-section about the centroid defined by: 

   ( ) ( ) 
/2

2 2

/2

1
, , , ,

h

P P P P P P P

h s

I J K X x Y y Y y X x dsdn
A

−

= − − − + −   (3-20) 

The variation of kinetic energy 
K  of the LC thin-walled beams is given by: 

 

( )( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )( )

1 2 1 3 2 4 5 3

0

0 0

0 1 0 17 21 6 , 13 , 24 ,

0 0 0

17 0 18 19 9 , 14 , 20 ,

K

L

P P P P P P

xz yz P z P z z

xz xz yz P z P z z

n u u v v w w d

u m u m v m v m m u m m m v

w m w m m m u m v m

m w m m m u m v m

    

     

   

   




 = + + 

 = − + − + − + + − 

+ + + − − −

+ + + − − −

+





( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )

0 0 0

21 0 19 22 10 , 15 , 23 ,

0 0

, 6 0 9 10 7 , 8 , 11 ,

0 0

, 12 0 14 15 8 , 13 , 16 ,

0 0

, 24 0 20 23 11

yz xz yz P z P z z

P z xz yz P z P z z

P z xz yz P z P z z

z xz yz P

m w m m m u m v m

u m w m m m u m v m

v m w m m m u m v m

m w m m m u

   

   

   

  

+ + − − −

− + + − − −

− + + − − −

− + + −( ), 16 , 25 ,z P z zm v m dz− −

 (3-21) 

where the following relations have been used: 1 0 ,sX g x fy= + , 1 0 ,sY g y fx= − ; sF F nr= − ; the 

dot-superscript is used to denote the differentiation with respect to the time t ; ( )n  is the 

mass density and the inertia coefficients are given as follows: 

   ( ) ( ) 
/2

2 2

1 2 3 4 5

/2

, , , , 1, , , ,

h

P P P P

h s

m m m m m Y y X x Y y X x dsdn
−

= − − − −   (3-22a) 

    
/2

6 7 8 9 10 11 1 1

/2

, , , , , 1, , , , ,

h

h s

m m m m m m X X Y X Y F dsdn
−

=    (3-22b) 

    
/2

12 13 14 15 16 1 1

/2

, , , , 1, , , ,

h

h s

m m m m m Y Y X Y F dsdn
−

=    (3-22c) 
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    
/2

17 18 19 20 1 1 1

/2

, , , 1, , ,

h

h s

m m m m X X Y F dsdn
−

=    (3-22d) 

    
/2

2 2

21 22 23 24 25 1 1 1

/2

, , , , , , , ,

h

h s

m m m m m Y Y Y F F F dsdn
−

=    (3-22e) 

3.2.5. Hybrid series solution  

The displacement field is approximated as follows: 

  ( ) ( ) ( )
1

, , , , ,
m

P P j Pj Pj j

j

u v z t z u v t  
=

=   (3-23a) 

 ( ) ( ) ( ) ( ) ( )0 0

0 ,

1

, , , , ,
m

xz yz j z j j j

j

w z t z w t    
=

=  (3-23b) 

where ( )jw t , ( )Pju t , ( )Pjv t , ( )j t , ( )j t  and ( )j t  are six unknowns to be determined; ( )j z  

are shape functions. It is noted that the approximations in Eq. (3-22) are known as Ritz-type 

series ones whose functions of approximation should be constructed to satisfy the specified 

essential boundary conditions (BCs). For the present chapter, shape functions are proposed 

in Table 3-1 and these functions must satisfy various BCs such as simply-supported (SS), 

clamped-free (CF) and clamped-clamped (CC). 
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Table 3-1. Shape functions and essential BCs of LC thin-walled I-beams  

BC   ( )j z  0z =  z L=  

SS 1
jz

L
z z

e
L L

−
 
− 

 
 

 

0P Pu v = = =  

 

 

0P Pu v = = =  

CF 

2 jz

L
z

e
L

−
 
 
 

 

0P Pu v = = =  

, , , 0P z P z zu v = = =  

( ) ( )0 0

0 0xz yzw  = = =  

 

CC 

2 2

1
jz

L
z z

e
L L

−
   

−   
   

 

0P Pu v = = =  

, , , 0P z P z zu v = = =  

( ) ( )0 0

0 0xz yzw  = = =  

0P Pu v = = =  

, , , 0P z P z zu v = = =  

( ) ( )0 0

0 0xz yzw  = = =  

 

Substituting Eq. (3-22) into Eq. (3-12) accounting for Eq. (3-14), (3-18), (3-20), and then 

using Lagrange’s equations lead to the characteristic equations for vibration and buckling 

analysis of LC thin-walled beams as follows: 

 + =Kd Md 0  (3-24) 

where ,K M  are the stiffness and mass matrix, respectively;  
T

=d w u v ξ η Φ  is the 

displacement vector. The components of the stiffness matrix K  are expressed by: 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

T

T T

T T T

T T T T

T T T T T

 
 
 
 

=  
 
 
 
  

K K K K K K

K K K K K K

K K K K K K
K

K K K K K K

K K K K K K

K K K K K K

 (3-25) 

where 

 
11 22

11ij ijK L S= ,
12 22

16ij ijK L S= ,
13 22

17ij ijK L S= ,
14 22 12

12 14ij ij ijK L S L S= +  

 
15 22 12

13 15ij ij ijK L S L S= + ,
16 22 12

18 19ij ij ijK L S L S= + ,
22 22 11

66 0ij ij ijK L S N S= + , 
23 22

67ij ijK L S=  
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24 22 12

26 46ij ij ijK L S L S= + ,
25 22 12

36 56ij ij ijK L S L S= + ,
26 22 12 11

68 69 0ij ij ij P ijK L S L S N J S= + −  

 
33 22 11

77 0ij ij ijK L S N S= + ,
34 22 12

27 47ij ij ijK L S L S= + ,
35 22 12

37 57ij ij ijK L S L S= +  

 
36 22 12 11

78 79 0ij ij ij P ijK L S L S N I S= + + , ( )44 22 12 21 11

22 24 44ij ij ij ij ijK L S L S S L S= + + +  

 
45 22 12 21 11

23 25 34 45ij ij ij ij ijK L S L S L S L S= + + + ,
46 22 12 21 11

28 29 48 49ij ij ij ij ijK L S L S L S L S= + + +  

 ( )55 22 12 21 11

33 35 55ij ij ij ij ijK L S L S S L S= + + + ,
56 22 12 21 11

38 39 58 59ij ij ij ij ijK L S L S L S L S= + + +  

 ( )66 22 12 21 11 11

88 89 99 0ij ij ij ij ij P ijK L S L S S L S N K S= + + + +    

 
0

sL r
jrs i

ij r s
S dz

z z

 
=

    (3-26) 

The components of mass matrix M  are given by: 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

T

T T

T T T

T T T T

T T T T T

 
 
 
 

=  
 
 
 
  

M M M M M M

M M M M M M

M M M M M M
M

M M M M M M

M M M M M M

M M M M M M

 (3-27) 

where 

 
11 11

1ij ijM m S= ,
12 11

6ij ijM m S= − ,
13 11

12ij ijM m S= − ,
14 11

17ij ijM m S= ,
15 11

21ij ijM m S=  

 
16 11

24ij ijM m S= − ,
22 11 00

7 1ij ij ijM m S m S= + ,
23 11

8ij ijM m S= ,
24 11

9ij ijM m S= −   

 
25 11

10ij ijM m S= − ,
26 11 00

11 2ij ij ijM m S m S= − ,
33 11 00

13 1ij ij ijM m S m S= +  

 
34 11

14ij ijM m S= − ,
35 11

15ij ijM m S= − ,
36 11 00

16 3ij ij ijM m S m S= + ,
44 11

18ij ijM m S= ,
45 11

19ij ijM m S=   

 
46 11

20ij ijM m S= − ,
55 11

22ij ijM m S= , 
56 11

23ij ijM m S= − , ( )66 11 00

25 4 5ij ij ijM m S m m S= + +  (3-28)  

It is noted that the buckling responses of the LC thin-walled beams can be derived from Eq. 

(3-24) by solving − =
g

K K 0 , whereas the free vibration behaviours are obtained by 

setting ( ) i tt e =d d  where   is the natural frequency, 
2 1i = −  the imaginary unit, and then 

solving the subsequent result ( )2− =K M d 0 . 
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3.3. Numerical results 

The material properties of the beams analysed in this section are shown in Table 3-2 below. 

Table 3-2: Material properties of LC thin-walled I-beams 

Material properties MAT I [147] 
MAT II 

[148] 

MAT III 

[149] 

MAT IV 

[147] 

1E  (GPa) 53.78 144 144 25 

2E (GPa) 17.93 9.65 9.68 1 

12 13G G= (GPa) 8.96 4.14 4.14 0.6 

23G (GPa) 3.45 3.45 3.45 0.6 

  0.25 0.3 0.3 0.25 

 (kg/m3) 1968.90 1389 - 1 

 

3.3.1 Convergence study 

This section conducts convergence study of the present solution for vibration and buckling 

analysis of  composite I-beams (MAT I, 
2

1 2 3 5 10 mb b b −= = =  ,
3

1 2 3 2.08 10 mh h h −= = =   

and 2L = m) with various boundary conditions, namely, SS, CF and CC . For lay-up, all 

the flanges and web are angle-ply [45 / 45 ]
o o

4s
− with 16 plies and uniform thickness. Their 

natural frequencies (Hz) and critical buckling loads (kN) are given in Table 3-3.  
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Table 3-3. Convergence of fundamental frequencies (Hz) and critical buckling loads (kN) 

for the LC thin-walled I-beam with different boundary conditions 

BC  m       

 2 4 6 8 10 12 

Fundamental frequency (Hz) 

SS 16.7573 16.5382 16.4762 16.4753 16.4753 16.4753 

CC 37.3798 37.2488 37.2435 37.2409 37.2374 37.2272 

CF 5.9567 5.877 5.8723 5.8721 5.8721 5.8722 

Critical buckling load (kN) 

SS 2.7505 2.6880 2.6691 2.6688 2.6688 2.6688 

CC 10.7671 10.6489 10.6281 10.6281 10.6281 10.6281 

CF 0.7060 0.6680 0.6679 0.6679 0.6679 0.6679 

 

It can be observed that the convergence speed of the buckling analysis is quicker than the 

vibration one. The proposed solutions converge with series number 10m =  for natural 

frequencies and 6m =  for buckling loads. These series numbers are therefore applied in the 

subsequent analyses. 

 

3.3.2 Verification and parametric study 

Example 1: For verification purpose, composite I-beams (MAT I,
1 2 3 0.05mb b b= = = ,

1 2 3 0.00208mh h h h= = = = ) and symmetrical lay-up [ / ]o o

4s −  in both flanges and web are 

studied. Tables 3-4 and 3-5 show the fundamental frequencies and critical buckling loads 

with various BCs. It is clear that the present solutions for FTWBT are in excellent agreement 

with those from previous studies [124, 147, 150, 151]. Due to the additional shear effect, 

the results from HTWBT are slightly different. These tables also present some new results 

for thicker beams (
3/ 5 and 10L b = ), which can be useful for future reference. Fig. 3-3 

displays the variation of the fundamental frequencies and critical buckling loads with respect 

to fiber angle change for various theories. It can be observed that the results from HTWBT 
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are slightly lower than those from FTWBT and those from CBWBT are noticeably higher 

than the HTWBT and FTWBT in all fiber angles. 
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Table 3-4. Fundamental frequency (Hz) of LC thin-walled I-beams with different boundary conditions and span-to-height 

ratios 

BC Reference 
Lay-up 

[0]4s [15/-15] 4s [30/-30] 4s [45/-45] 4s [60/-60] 4s [75/-75] 4s [90/-90] 4s 

L/b3=40 

SS Present (HTWBT) 24.135 22.954 19.794 16.475 14.657 14.068 13.538 
 Present (FTWBT) 24.163 22.974 19.805 16.481 14.661 14.072 13.965 
 Nguyen et al. [147] (FTWBT) 24.169 22.977 19.806 16.481 14.660 14.071 13.964 
 Nguyen et al. [147] (CTWBT) 24.198 23.001 19.820 16.490 14.668 14.079 13.972 
 Vo and Lee [124] (FTWBT) 24.150 22.955 19.776 16.446 14.627 14.042 13.937 

 Kim et al. [150]  

(CTWBT) 
24.194 22.997 19.816 16.487 14.666 14.077 13.970 

L/b3=20 

CF Present (HTWBT) 26.436 25.143 21.685 18.050 16.058 15.413 15.296 
 Present (FTWBT) 26.470 25.168 21.698 18.057 16.063 15.418 15.301 
 Kim and Lee [151] (FTWBT) 26.460 25.160 21.700 18.060 16.060 15.420 15.300 
 Nguyen et al. [147] (FTWBT) 26.479 25.174 21.699 18.057 16.063 15.417 15.299 
 Nguyen et al. [147] (CTWBT) 26.514 25.202 21.717 18.069 16.072 15.427 15.309 

L/b3=40 

CC Present (HTWBT) 54.198 51.655 44.677 37.237 33.142 31.811 31.568 
 Present (FTWBT) 54.499 51.876 44.790 37.302 33.1897 31.856 31.613 

L/b3=10 

SS Present (HTWBT) 372.076 356.585 310.809 260.096 231.742 222.431 220.705 

 Present (FTWBT) 378.427 361.331 313.311 261.494 232.810 223.457 221.739 

CF Present (HTWBT) 104.813 99.874 86.359 71.977 64.058 61.487 61.018 

 Present (FTWBT) 105.351 100.271 86.564 72.090 64.143 61.567 61.099 

CC Present (HTWBT) 745.489 731.822 661.601 564.603 506.049 485.710 481.698 

 Present (FTWBT) 798.300 773.783 685.611 578.677 516.922 496.144 492.167 

L/b3=5 

SS Present (HTWBT) 1344.158 1312.736 1176.720 999.590 894.553 858.598 851.566 



109 

 

 Present (FTWBT) 1422.882 1374.247 1211.303 1019.590 909.980 873.414 866.491 

CF Present (HTWBT) 405.333 388.894 339.562 284.438 253.531 243.382 241.503 

 Present (FTWBT) 413.280 394.858 342.708 286.182 254.845 244.626 242.751 

CC Present (HTWBT) 2200.409 2252.548 2193.488 1964.319 1787.989 1715.788 1698.878 

 Present (FTWBT) 2594.384 2600.996 2434.795 2123.285 1915.436 1838.472 1822.071 
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Table 3-5. Critical buckling load (N) of LC thin-walled I-beams with different boundary 

conditions and span-to-height ratios 

BC Reference 

Lay-up 

[0]4s 
[15/-

15]4s 

[30/-

30]4s 

[45/-

45]4s 

[60/-

60]4s 

[75/-

75]4s 

[90/-

90]4s 

L/b3=80 

SS Present 

(HTWBT) 

1437.0 1298.7 964.7 667.9 528.5 486.9 958.6 
 Present 

(FTWBT) 

1438.0 1299.4 965.1 668.1 528.7 487.0 959.0 
 Nguyen et. al 

[147] (FTWBT) 

1438.1 1299.4 965.0 668.1 528.6 487.0 959.0 
 Nguyen et. al 

[147]  

(CTWBT) 

1438.8 1300.0 965.2 668.2 528.7 487.1 959.3 
 Kim et al. [152]  

(CTWBT) 

1438.8 1300.0 965.2 668.2 528.7 487.1 964.4 

L/b3=20 

CF Present 

(HTWBT) 

5727.4 5180.3 3852.4 2668.8 2112.1 1945.8 3826.0 
 Present 

(FTWBT) 

5740.3 5189.3 3856.4 2670.6 2113.3 1946.9 3831.1 
 Nguyen et. al 

[147] (FTWBT) 

5743.3 5191.0 3856.8 2670.6 2113.2 1946.7 3831.4 
 Nguyen et. al 

[147]  

(CTWBT) 

5755.2 5199.7 3861.0 2672.7 2114.7 1948.3 3837.3 
 Kim et al. [152] 

(CTWBT) 

5755.2 5199.8 3861.0 2672.7 2114.7 1948.3 3837.8 
 Vo and Lee 

[124] (FTWBT) 

5741.5 5189.0 3854.5 2668.4 2111.3 1945.1 3829.8 

L/b3=80 

CC Present 

(HTWBT) 

5727.4 5180.3 3852.4 2668.8 2112.1 1945.8 3826.0 

 Present 

(FTWBT) 

5740.3 5189.3 3856.4 2670.6 2113.3 1946.9 3831.1 

L/b3=10 

SS Present 

(HTWBT) 

85.45 78.50 59.65 41.78 33.17 30.56 58.70 

 Present 

(FTWBT) 

88.43 80.63 60.63 42.24 33.48 30.84 59.93 

CF Present 

(HTWBT) 

22.58 20.49 15.31 10.63 8.42 7.75 15.17 

 Present 

(FTWBT) 

22.78 20.63 15.37 10.66 8.44 7.77 15.25 

CC Present 

(HTWBT) 

281.03 268.44 216.23 156.26 125.21 115.34 207.48 

 Present 

(FTWBT) 

315.97 295.06 229.62 162.83 129.74 119.52 223.67 

L/b3=5 

SS Present 

(HTWBT) 

281.05 268.47 216.25 156.28 125.22 115.35 207.49 

 Present 

(FTWBT) 

316.00 295.08 229.64 162.85 129.75 119.54 223.69 

CF Present 

(HTWBT) 

85.45 78.49 59.65 41.77 33.16 30.55 58.69 

 Present 

(FTWBT) 

88.42 80.62 60.62 42.23 33.47 30.84 59.93 

CC Present 

(HTWBT) 

657.01 679.58 629.11 496.32 408.95 376.70 566.53 

 Present 

(FTWBT) 

885.99 880.70 757.62 569.25 461.62 425.24 705.90 
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a) Fundamental frequencies b) Critical buckling loads 

 

Example 2: Two composite I-beams with three different lay-ups [0 / 0 / 0 / 0 ]o o o o , 

[0 / 90 / 90 / 0 ]o o o o , [45 / 45 / 45 / 45 ]o o o o− −  in both flanges and web are considered, the first 

one for torsional frequencies (MAT II, 1 2 3 0.03mh h h h= = = = , 1 2 3 0.6mb b b= = = ) and the 

second one for critical buckling loads (MAT III, 1 2 3 0.01mh h h h= = = = , 1 2 0.05mb b= = , 

3 0.1b m= ). The present solutions of torsional frequencies in Table 3-6 for both FTWBT and 

HTWBT, match with those without shear effect [148] but differ from the results accounting 

for the shear effect. The discrepancy in transverse shear effect in the FTWBT and HTWBT 

model does not have much impact on the torsional frequencies. On the other hand, the 

critical buckling loads in Table 3-7 show good agreement with those from Piovan and 

Cortinez [149]. It is worth noting that the critical buckling loads from HTWBT model are 

slightly less than those from FTWBT in the cases of [0 / 0 / 0 / 0 ]o o o o  and [0 / 90 / 90 / 0 ]o o o o  

lay-ups but are almost the same for [45 / 45 / 45 / 45 ]o o o o− − . 

Figure 3-3: Variation of the fundamental frequencies (Hz) and critical buckling loads of LC 

thin-walled I-beam with respect to fiber angle change  (CC boundary condition, ) 
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Table 3-6. Torsional frequencies (Hz) of LC thin-walled I-beams with various fibre lay-up 

and slenderness span-to-height ratios 

 Lay-up b3/L Theory 1  2  3  4  

[0o/0o/ 

0o/0o] 

0.05 

Present (FTWBT) 16.24 63.22 141.08 249.51 

Present (HTWBT) 16.24 63.22 141.09 249.56 

Cortinez and Piovan (CTWBT) [148] 16.24 63.35 141.86 251.76 

Cortinez and Piovan (FTWBT) [148] 15.64 55.00 107.55 165.41 

0.10 

 

Present (FTWBT) 

 

63.22 

 

249.20 

 

552.69 

 

966.04 

Present (HTWBT) 63.22 249.20 552.69 966.01 

Cortinez and Piovan  

(CTWBT) [148] 
63.35 251.76 565.78 1005.4 

Cortinez and Piovan (FTWBT) [148] 55.00 165.41 284.29 401.86 

0.15 

 

Present (FTWBT) 

 

141.08 

 

552.65 

 

1207.87 

 

2070.50 

Present (HTWBT) 141.07 552.65 1207.81 2069.76 

Cortinez and Piovan  

(CTWBT) [148] 
141.86 565.78 1272.31 2261.46 

Cortinez and Piovan (FTWBT) [148] 107.55 284.29 459.86 631.49 

[0o/90o/ 

90o
/0o] 

0.05 

 

Present (FTWBT) 

 

12.20 

 

46.54 

 

103.44 

 

182.69 

Present (HTWBT) 12.20 46.54 103.44 182.72 

Cortinez and Piovan 

(CTWBT) [148] 
12.19 46.61 103.95 184.21 

Cortinez and Piovan (FTWBT) [148] 11.96 43.02 87.94 140.98 

0.10 

 

Present (FTWBT) 

 

46.54 

 

182.44 

 

404.19 

 

706.08 

Present (HTWBT) 46.54 182.44 404.18 705.98 

Cortinez and Piovan   

(CTWBT) [148] 
46.61 184.21 413.54 734.59 

Cortinez and Piovan (FTWBT) [148] 43.02 140.98 257.02 375.94 

0.15 

 

Present (FTWBT) 

 

103.43 

 

404.18 

 

882.88 

 

1511.93 

Present (HTWBT) 103.43 404.17 882.91 1512.98 

Cortinez and Piovan 

( CTWBT) [148] 
103.95 413.54 929.52 1651.89 

Cortinez and Piovan 

( FTWBT) [148] 
87.94 257.02 435.12 610.43 
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[45o/-45o/ 

-45o/45o] 

0.05 

 

Present (FTWBT) 

 

8.54 

 

24.45 

 

49.80 

 

84.88 

Present (HTWBT) 8.54 24.45 49.80 84.82 

Cortinez and Piovan 

(CTWBT) [148] 
10.98 28.11 54.18 89.99 

Cortinez and Piovan 

(FTWBT) [148] 
10.96 27.98 53.61 88.35 

0.10 

 

Present (FTWBT) 

 

24.45 

 

84.78 

 

182.77 

 

316.11 

Present (HTWBT) 24.45 84.78 182.77 316.10 

Cortinez and Piovan 

( CTWBT) [148] 
28.11 89.99 191.65 333.74 

Cortinez and Piovan 

( FTWBT) [148] 
27.98 88.34 184.14 311.75 

0.15 

 

Present (FTWBT) 

 

49.80 

 

182.76 

 

394.21 

 

672.39 

Present (HTWBT) 49.80 182.76 394.20 672.38 

Cortinez and Piovan 

( CTWBT) [148] 
54.18 191.65 419.94 739.46 

Cortinez and Piovan 

 (FTWBT) [148] 
53.61 184.14 386.03 644.07 
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Table 3-7. Critical buckling load (N) of LC cantilever I-beam with various lay-ups and 

span-to-height ratios 

Lay-up  L/b3=20 L/b3=10 

[0o/0o/0o/0o] Present (HTWBT) 19144 75403 

 Present (FTWBT) 19179 75951 

 

Piovan and Cortinez 

(FTWBT) [149] 
19175 75559 

[0o/90o/90o
/0o] COSMOS/M [149] 19058 73564 

 Present (HTWBT) 10495 41591 

 Present (FTWBT) 10501 41683 

 

Piovan and Cortinez 

(FTWBT) [149] 
10561 41861 

 COSMOS/M [149] 10350 40698 

[45o/-45 o/-

45o/4 o] Present (HTWBT) 
1935 7846 

 Present (FTWBT) 1935 7848 

 

Piovan and Cortinez 

(FTWBT) [149] 
2003 8012 

 COSMOS/M [149] 2033 7958 

  

Example 3: This example further confirms the accuracy of the present solution and 

investigates the effects of additional shear deformation with respect to fiber angle change. 

Tables 3-8 to 3-10 present the first three natural frequencies and critical buckling loads of 

composite I-beams (MAT IV, 1 2 3 0.01mh h h h= = = = , 1 2 0.2mb b= = , 3 0.3mb = ) with angle-

ply lay-up [ / ]o o −  in both flanges and unidirectional in the web. The following non-

dimensional terms are used 
2

3 2

L

b E

 
 =  and 

2

3

2 3

cr cr

L
N N

E hb
= . Again, the present results for 

both HTWBT and FTWBT are in excellent match with those from Nguyen et al. [147] and 

Vo and Lee [124]. Some new results for thick beams 3/  = 5 and 10L b  are also given for 

future benchmark. 
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Table 3-8. Non-dimensional fundamental frequency of LC thin-walled I-beams with 

different boundary conditions and span-to-height ratios 

B

C 
Reference 

Frequenc

y 

Lay-up 

[0] 
[15/-

15] 

[30/-

30] 

[45/-

45] 

[60/-

60] 

[75/-

75] 

[90/-

90] 

S

S 

Present 

(HTWBT) 

1  7.042 6.305 3.751 2.150 1.627 1.492 1.468 

2  8.300 7.737 5.356 3.663 2.975 2.715 2.647 

3  17.967 16.676 12.574 8.567 6.485 5.949 5.851 

Present 

(FTWBT) 

1  7.107 6.326 3.755 2.150 1.625 1.490 1.465 

2  8.300 7.737 5.357 3.665 2.979 2.720 2.652 

3  19.140 17.583 12.943 8.569 6.469 5.925 5.824 

Nguyen et 

al. [147] 

(FTWBT) 

1  7.107 6.327 3.755 2.151 1.627 1.493 1.468 

2  8.189 7.528 5.137 3.610 2.967 2.713 2.645 

3  19.140 17.594 12.904 8.538 6.495 5.985 5.860 

C

F 

Present 

(HTWBT) 

1  2.536 2.255 1.338 0.767 0.580 0.532 0.523 

2  3.197 3.247 2.612 1.915 1.577 1.439 1.401 

3  6.886 6.327 4.642 3.778 3.565 3.323 3.268 

Present 

(FTWBT) 

1  2.547 2.259 1.339 0.766 0.580 0.532 0.523 

2  3.197 3.247 2.612 1.915 1.578 1.440 1.402 

3  7.123 6.502 4.708 3.814 3.596 3.318 3.263 

Nguyen et 

al. [147] 

(FTWBT) 

1  2.547 2.259 1.339 0.767 0.580 0.532 0.523 

2  3.174 3.057 2.423 1.877 1.572 1.438 1.400 

3  7.123 6.538 4.746 3.821 3.597 3.327 3.272 

C

C 

Present 

(HTWBT) 

1  14.867 13.907 8.432 4.854 3.675 3.373 3.316 

2  18.354 16.434 10.190 6.233 4.853 4.436 4.344 

3  28.752 27.689 23.010 13.310 10.088 9.261 9.099 

Present 

(FTWBT) 

1  15.481 14.129 8.472 4.857 3.667 3.358 3.301 

2  18.354 16.434 10.192 6.243 4.873 4.462 4.372 

3  34.230 32.473 23.215 13.337 10.060 9.205 9.046 

Nguyen et 

al. [147] 

(FTWBT) 

1  15.480 14.129 8.474 4.865 3.682 3.378 3.322 

2  17.239 16.086 10.104 6.206 4.839 4.423 4.332 

3  34.221 32.379 23.221 13.368 10.121 9.285 9.131 

1  15.460 14.122 8.471 4.862 3.678 3.374 3.319 

2  17.211 16.064 10.092 6.202 4.836 4.421 4.330 
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Vo and Lee 

[124] 

(FTWBT)  
3  33.996 32.174 23.209 13.392 10.147 9.308 9.152 

 

Table 3-9. Non-dimensional fundamental frequency of LC thin-walled I-beams with 

different boundary conditions and span-to-height ratios 

BC Reference 
Frequ

ency 

Lay-up 

[0] [15/-15] [30/-30] [45/-45] [60/-60] [75/-75] [90/-90] 

L/b3=10 

SS 
Present  

(HTWBT) 

1  6.657 6.168 3.724 2.140 1.617 1.482 1.457 

 2  8.091 7.257 4.510 2.764 2.157 1.974 1.934 

 3  13.506 12.932 10.697 8.424 6.373 5.834 5.733 

 
Present  

(FTWBT) 

1  6.886 6.250 3.739 2.146 1.624 1.490 1.465 

 2  8.091 7.257 4.510 2.762 2.152 1.967 1.926 

 3  15.790 14.874 11.714 8.501 6.442 5.909 5.810 

CF 
Present  

(HTWBT) 

1  2.466 2.232 1.333 0.765 0.578 0.530 0.521 

 2  2.949 2.730 1.863 1.251 1.007 0.920 0.898 

 3  5.756 5.418 4.244 3.552 3.373 3.274 3.218 

 
Present  

(FTWBT) 

1  2.508 2.246 1.336 0.766 0.579 0.531 0.523 

 2  2.949 2.729 1.863 1.251 1.006 0.919 0.897 

 3  6.382 5.923 4.470 3.681 3.483 3.305 3.250 

CC 
Present  

(HTWBT) 

1  12.121 12.681 8.170 4.770 3.612 3.306 3.249 

 2  16.777 16.158 9.676 5.638 4.302 3.944 3.874 

 3  18.220 16.651 15.560 12.891 9.797 8.959 8.801 

 
Present  

(FTWBT) 

1  13.621 13.395 8.325 4.822 3.655 3.353 3.297 

 2  18.220 16.158 9.674 5.628 4.280 3.916 3.845 

 3  21.931 21.449 19.233 13.125 9.969 9.144 8.990 

L/b3=5 

SS 
Present  

(HTWBT) 

1  5.580 5.701 3.621 2.106 1.593 1.459 1.433 

 2  8.009 7.106 4.258 2.482 1.894 1.736 1.705 

 3  8.169 8.033 7.393 6.833 6.086 5.570 5.469 

 
Present  

(FTWBT) 

1  6.173 5.969 3.678 2.125 1.610 1.477 1.453 

 2  8.009 7.106 4.257 2.477 1.884 1.724 1.693 

 3  10.486 10.201 8.960 8.006 6.245 5.727 5.628 

CF Present  1  2.234 2.144 1.316 0.759 0.574 0.526 0.517 
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 (HTWBT) 2  2.877 2.576 1.594 0.972 0.756 0.692 0.678 

 3  3.858 3.749 3.289 2.928 2.828 3.143 2.808 

 
Present  

(FTWBT) 

1  2.369 2.196 1.326 0.762 0.577 0.529 0.521 

 2  2.877 2.576 1.594 0.971 0.754 0.690 0.676 

 3  4.756 4.554 3.778 3.261 3.119 3.085 3.081 

CC 
Present  

(HTWBT) 

1  7.913 8.858 7.327 4.504 3.447 3.155 3.097 

 2  8.875 9.778 8.660 5.449 4.125 3.782 3.718 

 3  16.826 16.016 9.499 8.616 8.411 8.232 8.046 

 
Present  

(FTWBT) 

1  9.860 11.306 7.802 4.647 3.525 3.221 3.163 

 2  12.082 11.912 9.500 5.456 4.141 3.802 3.739 

 3  18.104 16.016 11.369 11.006 9.371 8.559 8.401 

 

Table 3-10. Non-dimensional critical buckling load of LC thin-walled I-beams with 

different boundary conditions and span-to-height ratios 

BC Reference 
Lay-up 

[0] [15/-15] [30/-30] [45/-45] [60/-60] [75/-75] [90/-90] 

L/b3=20 

SS 

Present 

(HTWBT) 
11.730 9.405 3.329 1.094 0.626 0.527 0.509 

 

Present 

(FTWBT) 
11.948 9.469 3.336 1.095 0.626 0.527 0.510 

 

Nguyen et al. 

[147] 
11.947 9.468 3.336 1.094 0.626 0.527 0.510 

CF 

Present 

(HTWBT) 
3.021 2.377 0.835 0.274 0.157 0.132 0.128 

 

Present 

(FTWBT) 
3.035 2.381 0.835 0.274 0.157 0.132 0.128 

 

Nguyen et al. 

[147] 
3.035 2.381 0.835 0.274 0.157 0.132 0.128 

CC 

Present 

(HTWBT) 
41.973 36.051 13.143 4.347 2.491 2.096 2.027 

 

Present 

(FTWBT) 
44.914 37.007 13.249 4.363 2.498 2.103 2.034 

 

Nguyen et al. 

[147] 
44.914 37.007 13.249 4.363 2.498 2.102 2.034 

L/b3=10 

SS 
Present 

(HTWBT) 
10.494 9.014 3.286 1.087 0.623 0.524 0.507 
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 Present 

(FTWBT) 
11.230 9.253 3.313 1.091 0.625 0.526 0.508 

CF 
Present 

(HTWBT) 
2.932 2.351 0.832 0.273 0.156 0.132 0.127 

 Present 

(FTWBT) 
2.987 2.367 0.834 0.274 0.157 0.132 0.127 

CC 
Present 

(HTWBT) 
29.532 30.909 12.494 4.242 2.444 2.056 1.988 

 Present 

(FTWBT) 
36.203 33.915 12.889 4.306 2.473 2.080 2.012 

L/b3=5 

SS 
Present 

(HTWBT) 
7.384 7.728 3.124 1.061 0.611 0.514 0.497 

 Present 

(FTWBT) 
9.052 8.480 3.223 1.077 0.618 0.520 0.503 

CF 
Present 

(HTWBT) 
2.623 2.253 0.821 0.272 0.156 0.131 0.127 

 Present 

(FTWBT) 
2.807 2.313 0.828 0.273 0.156 0.131 0.127 

CC 
Present 

(HTWBT) 
13.514 17.699 10.435 3.870 2.272 1.910 1.843 

  
Present 

(FTWBT) 
20.387 25.420 11.623 4.091 2.374 1.997 1.929 

 

The additional shear effect of HTWBT when compared to FTWBT for fundamental 

frequencies and buckling loads is investigated. The shear effect percentage is defined as 

. (%) 100%FTWBT HTWBT

FTWBT

S E
 



−
=   or . (%) 100%cr FTWBT cr HTWBT

cr FTWBT

N N
S E

N

− −

−

−
=  . As expected, the 

shear effect is particularly significant for thick beam where 3/L b  is small in Figs. 3-4 and 

3-5. For lay-up [15 / 15 ]
o o

−  and 3/ 5L b = , the maximum shear effect on the critical buckling 

load of C-C beams is 30%, which is higher than that of fundamental frequency (21%). The 

increase in the fiber angle drastically reduces the shear effect from more than 18% for 
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 unidirectional lay-up [0 / 0 ]
o o  to 2% one with lay-up with fiber angle greater than 60o (Fig. 

3-6b). The shear effect of CC beams is much higher than that of SS and CF ones even though 

these differences become lower as the 3/L b  ratio and the fiber angle increases (Figs. 3-5 

and 3-6). 

                 a) Fundamental frequencies                                     b) Critical buckling loads  

            a) Fundamental frequencies                                  b) Critical buckling load   

 

Figure 3-5: Shear effect (%) on the fundamental frequencies and critical buckling loads of LC thin-

walled I-beam for various span-to-height ratios with lay-ups ,  and  (CC boundary condition 

Figure 3-4: Shear effect (%) on the fundamental frequencies and critical buckling loads for various 

span-to-height ratios with lay-up  (SS, CC, CF boundary conditions) 
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a) Fundamental frequencies                                    b) Critical buckling load   

 

Figs. 3-7 to 3-9 present the first three vibration mode shapes, which are plotted from the 

FTWBT and HTWBT, of C-C beam with lay-up o o
[45 /-45 ] . There is no visible difference in 

Fig. 3-8 between two models as expected since the beam is in torsion mode and the 

transverse shear strain 0

xz  and 0

yz  are zero along the beam length. This explains the torsional 

frequencies of two models in Table 3-6 are almost identical. Nonetheless, the transverse 

shear strains 0

xz  and 0

yz  in Figs. 3-7 and 3-9 are different and more apparent at the beam 

ends.  

 

 

 

 

Figure 3-6: Variation of shear effect (%) on the fundamental frequencies and critical buckling loads with 

respect to fiber angle change and boundary conditions () 
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           a) FTWBT                                                                  b) HTWBT     

 

a) FTWBT                                                                  b) HTWBT     

Figure 3-8: Second mode shape of LC thin-walled I-beams with lay-up o o[45 /-45 ]  

( CC boundary condition and 3/ 10L b = ) 

 

Figure 3-7: The first mode shape of LC thin-walled I-beams with lay-up o o[45 /-45 ]  

 ( CC boundary condition, 3/ 10L b = ) 
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a) FTWBT                                                                  b) HTWBT     

                                                       

3.4. Conclusion 

A general higher-order shear deformation theory for thin-walled composite I-beams is 

proposed in this chapter. Theoretical formulation is derived in the general form which can 

recover the previous conventional theories. A hybrid series solution is developed to solve 

equations of motion for various theories including CTWBT, FTWBT and HTWBT of thin-

walled composite I-beams with different boundary conditions. Numerical examples are 

performed to investigate the effects of lay-ups, fiber angle and shear deformation on the 

natural frequencies and critical buckling loads of the thin-walled I-section beams. Some new 

results for thick-beams are provided for future reference. Due to the additional shear effects, 

the results from the HTWBT are slightly lower than those from the CTWBT and FTWBT. 

They become particularly significant for low span-to-high ratio and small fiber angle of 

angle-ply lay-up. The present model has proved to be reliable in analysing laminated 

composite thin-walled beams. 

  

Figure 3-9: Third mode shape of LC thin-walled I-beams with lay-up o o[45 /-45 ]    ( CC 

boundary condition and 3/ 10L b =  ) 
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CHAPTER 4 : BUCKLING ANALYSIS OF LAMINATED COMPOSITE THIN-

WALLED COMPOSITE I-BEAM UNDER MECHANICAL AND THERMAL 

LOADS 

 

Expanding upon the deterministic modeling of thin-walled composite I-beams in Chapter 3, 

this chapter focuses on the buckling behavior of these structures under combined mechanical 

and thermal loads. The theory is based on the first-order shear deformation beam theory 

with linear variation of displacements in the wall thickness. The governing equations of 

motion are derived from Hamilton's principle and are solved by series-type solutions with 

hybrid shape functions. Numerical results are presented to investigate the effects of fibre 

angle, material distribution, span-to-height's ratio and shear deformation on critical buckling 

load and temperature rise. These results for several cases are verified with available 

references to demonstrate the present beam model’s accuracy. This integration of 

mechanical and thermal considerations enhances the applicability of the research to real-

world engineering scenarios. 

 

4.1. Introduction 

In practical engineering contexts, thin-walled beams are exposed to high-temperature 

environments. Therefore, the predictions of the thin-walled beams’ responses to the thermal 

load in such contexts are of utmost importance. Many models and approaches on this matter 

have been studied in recent years for solid beams with rectangle sections, some 

representative references are herein cited. Trinh et al. [153] presented an analytical method 

for the vibration and buckling of functionally graded beams under mechanical and thermal 

loads. Nguyen et al. [47] investigated the hygro-thermal effects on vibration and thermal 

buckling behaviours of functionally graded beams. Li et al. [154] studied the free vibration 

characteristics of a spinning composite thin-walled beam under hygrothermal environment. 

Sun et al. [155] investigated the buckling and post-buckling behaviors of functionally graded 

Timoshenko beams on non-linear elastic foundation. A brief literature study shows that 
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although many researches on thermal responses of laminated composite and functionally 

graded beams with rectangle sections have been performed, thermal buckling behaviors of 

thin-walled beams are extremely limited, Simonetti et al. [46] recently presented the thermal 

buckling analysis of thin-walled closed section functionally graded  beam-type structures 

[46]. Pantousa [156] conducted a numerical study on thermal buckling of empty thin-walled 

steel tanks under multiple pool-fire scenarios.  

This Chapter aims to investigate the elastic buckling of laminated composite thin-walled 

beams with I-section in thermo-mechanical environments. It is based on the FTWBT with a 

uniform temperature rise. The characteristic equations are derived from Hamilton’s 

principle and solved by Ritz method with hybrid shape functions. Numerical results are 

presented for the laminated composite I-beams with various boundary conditions, fibre 

angles and length-to-height ratios. 

4.2. Theoretical formulation  

To analyse the thin-walled beam, the variables are defined in three set of coordinate 

systems as displayed in Fig. 3-1. The assumptions made in this beam model are : the effects 

of geometrical nonlinearity are ignored, the section contour remains undeformed in its own 

Figure 4-1: Coordinate systems of a thin-walled beam 
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plane and the transverse shear strains are constant in the wall thickness. Fig. 4-2 shows how 

the aforementioned coordinate systems fit in to the thin-walled I-beam in this chapter. The 

widths ( )1 2 3, ,b b b  and the thicknesses ( )1 2 3, ,h h h  with lower index 1, 2, 3 are for the beam’s 

top, bottom flange, and web, respectively. 

 

Figure 4-2: Geometry of a thin-walled I-beam 

4.2.1. Kinematics 

The displacements ( ), ,u v w   at any point on the midsurface of the laminated 

composite thin-walled beams under a small rotation    about the pole axis can be expressed 

in terms of those at the pole ( ), ,P P Pu v w  as follows:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), sin cosP P su s z u z s v z s z r s  = − −  (4-1a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), cos sinP P ns z u z s v z s z r s   = + −  (4-1b) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), Pw s z w z z x s z y s z sy x   = + + +  (4-1c) 

where x , y ,   are the rotations of the cross-section with respect to ,x y  and  , 

respectively, which are defined by: 

0

,y xz P zu = − , 0

,x yz P zv = − , 0

,z   = −  (4-2) 

The warping function   is given by: 
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( ) ( )
0

s

n
s

s r s ds =   (4-3) 

Moreover, the displacements ( ), ,u v w  at a point on the beam section are expressed in 

term of the mid-surface displacements ( ), ,u v w  as follows: 

( ) ( ), , ,u n s z u s z=  (4-4a) 

( ) ( ) ( ),, , , s s zn s z s z n  +=  (4-4b) 

( ) ( ) ( ),, , , zn s zw n s z w s z +=  (4-4c) 

where s  and z  are expressed as follows: 

 sin cos qz y x     = − − , ( ), ,
u

s z ts
s




= −


 (4-5) 

4.2.2. Strains 

 From the displacements defined in Eq. (4-4), the strain field can be written as: 

 ( ) ( ) ( ), , , ,n s z s z n s zs s s  = +  (4-6a) 

( ) ( ) ( ), , , ,n s z s z n s zz z z  = +  (4-6b) 

( ) ( ) ( ), , , ,n s z s z n s zsz sz sz  = +  (4-6c) 

( ) ( ) ( ), , , ,n s z s z n s znz nz nz  = +  (4-6d) 

where 

0s = , 0
z z y x

w
x y

z
    = = + + +




, 0s =  (4-7a) 

sin cosz
z y x q

z



     = =


− −


, sz sz = , 0nz =       (4-7b) 

0

z W = , x x  = , y y  = ,    = , sz   = −  (4-7c) 

( ) ( ) ( )0 sin cosz

z y xx n y n nq        = + + + − + −  (4-7d) 

 0 0 0cos sinsz xz yz szr n      = + + + , 0 0 0sin cosnz xz yz q     = − −    (4-7e)  
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4.2.3. Stress-strains relation 

 For laminated composite thin-walled beams, it is supposed to be constituted by a 

number of orthotropic material layers with the same thickness. The reduced constitutive 

equations at the thk − layer is given by: 

11 16

16 66

55

0

0

0 0

z z

sz sz

nz nz

P P

P P

P

 

 

 

    
    

=    
    

    

 (4-8a) 

where 
2

12
11 11

22

Q
P Q

Q
= − ,  12 26

16 16

22

Q Q
P Q

Q
= − , 

2

26
66 66

22

Q
P Q

Q
= − , 

55 55P Q= ; ijQ  are the transformed 

reduced stiffness matrix elements which can be computed based on the fibre lay-up as 

follows: 

  4 4 2 2

11 11 22 12 662( 2Q )sQ Q c Q s Q c= + + +  (4-8b) 

 2 2 4 4

12 11 22 66 12( 4 )s ( )Q Q Q Q c Q s c= + − + +  (4-8c) 

4 2 2 4

22 11 12 66 222( 2 )sQ Q s Q Q c Q c= + + +  (4-8d) 

3 3

16 11 12 66 12 22 66( 2 )s ( 2 )sQ Q Q Q c Q Q Q c= − − + − +  (4-8e) 

3 3

26 12 22 66 11 12 66( 2 )s ( 2 )sQ Q Q Q c Q Q Q c= − + + − −  (4-8f) 

2 2

55 55 44 sQ Q c Q= +  (4-8g) 

2 2 4 4

66 11 22 12 66 66( 2 2 )s ( )Q Q Q Q Q c Q s c= + − − + +  (4-8h) 

11 1 12 21/ (1 )Q E  = − , 22 2 12 21/ (1 )Q E  = − , 12 12 22Q Q=  (4-8i) 

44 23Q G= , 55 13Q G= , 66 12Q G= , sins = , cosc =  (4-8j) 

where   is the fibre orientation angle of the current laminated layer, 1E  and 2E  are the 

Young’s moduli, 12  and 21  are the Poisson’s ratio values, 12G , 13G  and 23G  are the shear 

moduli of the laminated composite material. 

4.2.4. Variational formulation 

 The characteristic equations of the laminated composite thin-walled beams can be 

derived by  Hamilton’s principle in which the total energy of the system   is composed of 
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the strain energy S  and work done by external force W . The strain energy S  of the 

laminated composite thin-walled beam is expressed by: 

 ( )
1

2
S z z sz sz nz nz d     


 = + +   (4-9) 

 where  is the beam volume.  

where ijE  are the stiffness coefficients of the laminated composite thin-walled composite 

beams ([147]).  

The work done by the external mechanical axial load 
0

mN  and thermal load 
0

tN  is 

defined as: 

( )
( )

( )

0 0 2 2

2 2 2

0 0
0

1

2

1
2 2

2

m t

W

L pm t

x y p x p y

N N
u d

A

I
N N U U y U x U dz

A



  



+
  = + 

 
      = + + + − + 

 





 (4-11) 

where  A  is the cross-sectional area; pI  is the polar moment of inertia about the centroid 

given by:  

 p x yI I I= +  (4-12) 

where xI  and yI  are the second moment of inertia with respect to the x −  and y − axes, 

respectively:  

 2

x
A

I y dA=  , 2

y
A

I x dA=   (4-13) 

The axial thermal load is given as: 

( )0 11 162t

z sz

n

N P P Tdn = +   (4-14) 

where 0T T T = −  is the temperature difference; 0T  is the initial temperature; ,z sz   are the 

thermal expansion coefficients in the ( ), ,n s z  coordinate system. The components ( ),z sz   

are derived from the thermal expansion coefficients of the studied fibre materials ( )1 2,   

as follows: 

 2 2

1 2cos sinz    = +  (4-15a) 
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( )1 2 sin cossz    = −  (4-15b) 

4.2.5. Hybrid series solution 

Based on the Ritz method, the displacement field can be approximated as follows: 

 ( ) ( ) 
1

, , , ,
m

x y j xj yj j

j

U U z z U U  
=

=  (4-16a) 

 ( ) ( ) ,

1

, , , , , ,
m

z y x j z zj yj xj j

j

U z z U       
=

=  (4-16b) 

where , , , , , ,xj yj j zj yj xj jU U U      are the unknowns to be computed; ( )j z  is the shape 

functions which satisfy the boundary conditions (BCs) (Table 4-1).  

 

Table 4-1: Shape functions and essential BCs of laminated composite thin-walled I-beams 

BC ( ) / e
jx

L
j x

−

 0x =  x L=  

S-S sin
x

L

 
 
 

 0x yU U = = =  0U V = = =  

C-F 
2sin

2

x

L

 
 
 

 

0

0

0

x y

x y

z y x

U U

U U

U 





  

= = =

  = = =

= = = =

  

C-C 
2sin

x

L

 
 
 

 

0

0

0

x y

x y

z y x

U U

U U

U 





  

= = =

  = = =

= = = =

 

0

0

0

x y

x y

z y x

U U

U U

U 





  

= = =

  = = =

= = = =

 

   

Substituting Eq. (4-16) in to Eq. (4-10) and (4-11), and then applying Hamilton’s 

principle lead to the characteristic equation for the buckling analysis of the laminated 

composite thin-walled beams as follows: 

=Kp 0  (4-17) 

where 
T

 =  z x y x y ωp U U U Φ ς ς ς  is the displacement vector; K  is the stiffness 

matrix and is given as: 
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11 12 13 14 15 16 17

12 22 23 24 25 26 27

13 23 33 34 35 36 37

14 24 34 44 45 46 47

15 25 35 45 55 56 57

16 26 36 46 56 66 67

17 27 37 47 57 67 77

T

T T

T T T

T T T T

T T T T T

T T T T T T

 
 
 
 
 

=  
 
 
 
 
 

K K K K K K K

K K K K K K K

K K K K K K K

K K K K K K K K

K K K K K K K

K K K K K K K

K K K K K K K

 (4-18) 

with the following matrix elements: 

 

( )

( )

11 12 13

11 16 17

0 0 0

14 15

15 18 12 16

0 0 0

16 17

13 17 14 18 15

0 0 0

, ,

,

,

L L L

ij i j ij i j ij i j

L L L

ij i j ij i j i j

L L L

ij i j i j ij i j

K E dz K E dz K E dz

K E E dz K E dz E dz

K E dz E dz K E dz E E

  

  

   

     = = =

    = + = +

      = + = + −

  

  

  

( )

( ) ( )

0

22 23

66 0 0 67

0 0 0

24

56 68 0 0

0 0

25 26

26 66 36 67

0 0 0 0

,

,

L

i j

L L L

m t

ij i j i j ij i j

L L

m t

ij i j p i j

L L L L

ij i j i j ij i j i j

dz

K E dz N N dz K E dz

K E E dz N N y dz

K E dz E dz K E dz E dz



  

 

   



     = + + =

   = + + +

       = + = +



  

 

   

  

( ) ( )

( ) ( )

27 33

46 68 56 77 0 0

0 0 0 0

34 35

57 78 0 0 27 67

0 0 0 0

,

,

L L L L

m t

ij i j i j ij i j i j

L L L L

m t

ij i j p i j ij i j i j

K E dz E E dz K E dz N N dz

K E E dz N N x dz K E dz E dz

   

   

       = + − = + +

       = + − + = +

   

     

( )

( )
( )

36 37

37 77 47 78 57

0 0 0 0

0 044

55 58 88

0 0

,

2

L L L L

ij i j i j ij i j i j

m tL L
p

ij i j i j

K E dz E dz K E dz E E dz

N N I
K E E E dz dz

A

   

 

       = + = + −

+
   = + + +

   

 
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( ) ( )

( ) ( )

45

25 28 56 68

0 0

46

35 38 57 78

0 0

L L

ij i j i j

L L

ij i j i j

K E E dz E E dz

K E E dz E E dz

 

 

   = + + +

   = + + +

 

 

 

( ) ( )

( )

47

45 48 88 55

0 0

55

22 26 66

0 0 0

56

23 27 36 67

0 0 0 0

L L

ij i j i j

L L L

ij i j i j i j i j

L L L L

ij i j i j i j i j

K E E dz E E dz

K E dz E dz E dz

K E dz E dz E dz E dz

 

   

   

   = + + −

       = + + +

       = + + +

 

  

   

 

( ) ( )

( )

( )

57

24 28 25 46 68 56

0 0 0 0

66

33 37 77

0 0 0

67

34 38 35 47 7

0 0 0

,

L L L L

ij i j i j i j i j

L L L

ij i j i j i j i j

L L L

ij i j i j i j

K E dz E E dz E dz E E dz

K E dz E dz E dz

K E dz E E dz E dz E

   

   

  

       = + − + + −

       = + + +

     = + − + +

   

  

   ( )

( ) ( ) ( )

8 57

0

77

44 48 45 88 58 55

0 0 0

,

2

L

i j

L L L

ij i j i j i j i j

E dz

K E dz E E dz E E E dz



   

 −

       = + − + + − +



  

 (4-19) 

The buckling responses of the laminated composite thin-walled beam can be obtained 

by solving − =
g

K K 0 . 

4.3. Numerical results 

The laminated composite thin-walled I-beam in this numerical study is made of glass-

epoxy materials with the following properties: 1 53.78GPaE = , 2 17.93GPaE = ,

12 13 8.96GPaG G= = , 23 3.45GPaG = , 12 0.25 = . The thermal expansion coefficients of glass 

and epoxy are 7 1

1 6.7 10 K − −=   and 6 1

2 3.6 10 K − −=   respectively. The geometry of the 

laminated composite thin-walled I-beam is shown in Fig. 4-2 with 1 2 3 0.05mb b b= = = , 

1 2 3 0.00208mh h h= = = . 
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4.3.1. Convergence and verification study 

This section conducts a convergence study of the present solution for buckling analysis 

of laminated composite thin-walled I-beams under mechanical loads.  For Table 4-2, the 

laminated composite I-beam’s length is expressed as 3/ 40L b = . The laminated angle-ply 

for all the flanges and web is 
4[45 / 45 ]o o

s− . It can be observed in Table 4-2 that the results 

of this chapter’s approach achieve numerical convergence at 8m =  and agree with the results 

of Nguyen et al. [147]. Therefore, the series number 8m =  is applied in subsequent analyses. 

To further verify the current solution in mechanical environment, Table 4-3 presents 

the effects of the various fibre angle lay-ups, boundary conditions and the length-to-depth 

ratio on the laminated composite I-beam’s critical buckling loads. It can be seen that in both 

cases of 3/ 20L b =  and 3/ 80L b = , the critical buckling loads decrease with the increasing 

fibre angle o  of the 
4[ , ]o o

s −  lay-up. The buckling results of the laminated composite I-

beam with S-S boundary condition and 3/ 80L b = , C-F boundary condition and 3/ 20L b =  

show good agreements with past researches from Kim et al. [152]  and Vo and Lee [124]. 

More results are computed for the laminated composite I-beam set-up in Table 4-3 but with 

more cases of fibre angle o  . These results are plotted for 3/ 20L b =  and 3/ 80L b =  in Fig.4-

3.  

Table 4-2: Convergence of critical buckling loads (kN) for the laminated composite thin-

walled I-beams under mechanical load 

BCs Reference m      
  2 4 6 8 10 12 
S-S Present 2.931 2.679 2.671 2.671 2.671 2.671 

Nguyen et al. (Shear) [147] 2.752 2.690 2.671 2.671 2.671 2.671 
Nguyen et al. (No shear) [147] 2.755 2.692 2.673 2.673 2.673 2.673 

C-F Present 3.852 1.564 0.738 0.671 0.668 0.669 
Nguyen et al. (Shear) [147] 0.706 0.668 0.668 0.668 0.668 0.668 
Nguyen et al. (No shear) [147] 0.706 0.668 0.668 0.668 0.668 0.668 

C-C Present 10.76

8 

10.65

9 

10.65

7 

10.65

7 

10.65

7 

10.65

7 
Nguyen et al. (Shear) [147] 10.79

7 

10.67

8 

10.65

7 

10.65

7 

10.65

7 

10.65

7 
Nguyen et al. (No shear) [147] 10.83

2 

10.71

2 

10.69

1 

10.69

1 

10.69

1 

10.69

1 
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Table 4-3: Comparison of critical buckling loads (N) of the thin-walled composite I-beams 

under mechanical loads 

BC Reference Fibre angle 
[0]16 [15/-

15]4s 

[30/-

30]4s 

[45/-

45]4s 

[60/-

60]4s 

[75/-

75]4s 

[90/-

90]4s 

[0/90]4s 

L/b3=80 
S-S Present 

(Shear) 

1438.1 1299.4 965.0 668.1 528.6 487.0 479.6 959.0 
Kim et al. 

 (No shear) 

[152] 

1438.8 1300.0 965.2 668.2 528.7 487.1 - 959.3 

C-F Present 

(Shear) 

361.2 326.4 242.4 167.8 132.7 122.3 120.4 240.9 
C-C Present 

(Shear) 

5743.3 5191.0 3856.8 2670.6 2113.2 1946.7 1917.1 3831.4 
L/b3=20 
S-S Present 

(Shear) 

22832.7 20660.1 15376.7 10657.3 8433.9 7767.7 7648.6 15255.8 
C-F Present 

(Shear) 

5768.6 5213.8 3873.7 2682.4 2122.5 1955.2 1925.5 3848.3 
Vo and Lee 

(Shear) [124] 

5741.5 5189.0 3854.5 2668.4 2111.3 1945.1 - 3829.8 

Kim et al. 

(No 

shear)[152] 

5755.2 5199.8 3861.0 2672.7 2114.7 1948.3 - 3857.8 

C-C Present 

(Shear) 

77772.9 72116.0 57102.8 42069.5 33438.5 30632.4 29873.

4 

53993.2 
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               a) 3/ 80L b =                                                               b) 3/ 20L b =  

Figure 4-3: Critical buckling loads (N) for the glass-epoxy composite I-beam with respect 

to fibre angle for different boundary conditions 

4.3.2 Thermal buckling stability  

This section aims to study the effect of fibre angle, length-to-depth ratio and boundary 

conditions on the thermal buckling stability of the laminated composite thin-walled I-beams. 

The critical buckling temperature for various fibre angle lay-ups, boundary conditions and 

length-to-depth ratios are plotted in Fig.4-4 and 4-5. It can be seen that the critical buckling 

temperature slightly increases when o  goes from 0o to 20o  and drop sharply when o  is in 

the range of 20o-70o before plateauing afterwards. This trend is particularly clearer when the 

beam is under C-C boundary condition.  

Moreover, the laminated composite I-beam can withstand much more temperature rise and 

thermal load with 3/ 20L b =  compared to 3/ 80L b = . Fig.4-5 demonstrates better the effects  

of length-to-depth ratios on the thermal buckling stability of the laminated composite I-

beams. The thin-walled beam is drastically more stable at low 3/L b  and the 3/L b  becomes  
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less significant when 3/ 30L b  . 

             a) 3/ 80L b =                                                             b) 3/ 20L b =  

Figure 4-5: Critical buckling temperature crT  ( o K ) for the glass-epoxy composite I-beam 

 

4. Conclusion 

A shear-deformable thin-walled beam model and a hybrid series solution are presented in 

this study. The glass-epoxy composite I-beam is investigated for its mechanical and thermal 

buckling stability. This model can predict accurately the critical buckling loads and critical 

Figure 4-4: Critical buckling temperature  ( o K ) for the laminated composite I-beam 

with various length-to-depth ratios 3/L b  
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buckling temperature for different beam configurations. The effects of fibre angle lay-up, 

boundary conditions and length-to-depth ratios are shown in the numerical results. The 

beam’s buckling capacity is higher for low fibre angle, low length-to-depth ratios and 

clamped-clamped boundary condition. The present model is shown to be valid for buckling 

analysis of laminated composite I-beam under mechanical and thermal loads.   
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CHAPTER 5 : STOCHASTIC ANALYSIS OF THE THIN-WALLED COMPOSITE 

BEAMS USING MONTE CARLO SIMULATION, POLYNOMIAL CHAOS 

EXPANSION AND ARTIFICIAL NEURAL NETWORK 

 

Building on the deterministic and stochastic analyses of solid and thin-walled beams in 

previous chapters, this chapter introduces a novel sinusoidal higher-order shear deformation 

theory for stochastic analysis of laminated composite thin-walled beams with open sections. 

The deterministic solution framework, developed using Hamilton’s principle and Ritz-type 

exponential shape functions, serves as the foundation for exploring the effects of 

uncertainties in material properties and external loads on the beams' static responses. Several 

mechanical parameters of laminated composite materials are randomised and plugged into 

the beam solver to investigate the beam's stochastic flexural behaviors. The computational 

cost and accuracy of the polynomial chaos expansion (PCE) method with both projection 

and linear regression approaches are presented and evaluated by comparing its results with 

crude Monte Carlo simulation (MCS). This comparison allows for a thorough assessment 

of the PCE method's performance. Additionally, a sensitivity analysis is conducted to 

compare the relative significance of the uncertainty in material properties and loads on the 

stochastic responses. The supervised training of the artificial neural network (ANN) based 

on the MCS beam data is also conducted. The findings about the stochastic outputs are 

introduced in various statistical metrics and illustrations to demonstrate the influences of 

material properties’ randomness on different laminated composite thin-walled beam 

configurations. This chapter integrates advanced deterministic and stochastic approaches, 

culminating in a comprehensive framework for uncertainty quantification in thin-walled 

composite structures. 

5.1. Introduction 

A literature survey reveals that though many researches have been performed in examining 

stochastic responses of laminated composite plates with different approaches [42, 96, 97, 

105, 157-163], the number of studies on stochastic behaviors of laminated composite thin-
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walled beams is extremely limited. To compute the stochastic responses of the beam, the 

crude Monte Carlo Simulation (MCS) is the simplest. However, when the beam’s outcome 

of interest takes minutes or hours to compute, the surrogate model is preferred. This 

surrogate model can save computational cost by learning patterns from much fewer data 

points and provide the highly similar outputs of MCS with a higher number of simulations. 

In recent years, the artificial neural network (ANNs) based surrogate modeling has seen a 

growing trend and has been applied to many engineering problems involving uncertainties. 

[164] proposed a deep collocation method that is based on the feedforward deep neural 

network (DNN) to study the bending of Kirchoff plates. [165] opted for the DNN to 

approximate the solution of the partial differential equations of a mechanical system. [166] 

used an improved DNN method based on a deep autoencoder to minimise the total potential 

energy and thus, compute the bending, vibration and buckling behaviours of Kirchoff plates. 

[167] made use of the ANN and the balancing composite motion optimization algorithm to 

study the functionally graded porous plates with uncertainties in material properties. Despite 

its ease of implementation, the ANN-based surrogate model requires further steps to 

compute sensitivity indices of the input variables. This drawback is not the case with the 

polynomial chaos expansion (PCE) method [168]. Besides, when the size of the random 

input vector is reasonably small, the PCE method is more efficient in providing the 

stochastic responses of a mechanical system [169]. Recent researches have paid attention to 

the application of PCE in mechanical systems. Bui et al. [11], [170] investigated stochastic 

buckling and free vibration behaviors of functionally graded sandwich thin-walled beams 

based on the FTWT and PCE with spectral projection approach. The effects of transverse 

shear strains and uncertainty of mechanical loads and materials properties on flexural 

behaviors of laminated composite thin-walled beams using the sinusoidal HTWT have not 

been carried out, this gap needs to be considered further.   

5.2. Theoretical formulation  

Consider a laminated composite thin-walled I-section beam with widths ( )1 2 3, ,b b b  and 

thicknesses ( )1 2 3, ,h h h  as in Fig. 5-1 in which Cartesian coordinate system ( ), ,x y z , local 
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coordinate system ( ), ,n s z  and contour coordinate s  along the profile of the section are used 

for the theoretical formulation. The angle of orientation between ( ), ,n s z  and ( ), ,x y z  

coordinate systems is namely  , the pole point P  with coordinates ( ),P Px x  is considered as 

the shear center of the section. Moreover, it is assumed that the displacements are small, the 

section contour does not deform in its own plane, and the transverse shear strains vary 

nonlinearly under a sinusoidal function in the wall thickness.  

 

Figure 5-1: Thin-walled coordinate systems 

The thin-walled beam theory in this Chapter is similar to the one presented in Chapter II, 

apart from the fact that the shear function describing transverse shear strains is a sinusoidal 

function. The geometry and dimension notations of the I-beam in this Chapter are shown in 

Fig. 5-2. 
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Figure 5-2: Geometry of laminated composite thin-walled I-beams 

5.2.1. Polynomial chaos expansion  

The responses for computational models with input uncertainties can be approximated by 

using a series of orthogonal functions as follows: 

 ( ) ( )
0

i i

i

r 


=

= q q  (5-1) 

where q  is a vector of d  independent random variables mapped to physical random 

parameters; i  are multivariate orthogonal basis functions; i  are the unknown coefficients. 

In order to determine these coefficients i , two main following approaches could be 

considered: polynomial chaos expansion (PCE) and stochastic collocation. In the PCE 

approach, the coefficients are estimated by fitting a suitable set of basis functions using 

either a projection approach or least-square regression. Meanwhile, the stochastic 

collocation approach constructs interpolation polynomials for known coefficients at specific 

collocation points [108]. In this manuscript, the PCE method is developed using multivariate 

Hermite polynomials as basis functions and standard normal variables q  as inputs [171].  

In practice, the number of series terms in Eq. (5-1) is reduced to a carefully chosen finite 
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number, so that the model responses are sufficiently accurate while using a minimal 

computing resource. Given rvN  random variables and polynomial order p , the number of 

polynomial terms N  is the permutation of p  and rvN , which can be expressed as: 

( )!

! !

rv

rv

N p
N

N p

+
= , Eq. (5-1) therefore becomes: 

 ( ) ( )
1

0

N

i i

i

r  
−

=

=  +q q  (5-2) 

where the basis functions i  are multivariate Hermite polynomials and the associated 

coefficients i  need to be determined to minimize the residual term. 

5.2.2. Spectral projection approach 

In the spectral projection approach, the residual term must be orthogonal to the projection 

of the response in the selected space. Therefore, the inner product of the residual and each 

basis function is zero. By taking the inner product of both sides of Eq. (5-2) with j  and 

enforcing orthogonality: 

 
0

, ,
N

j i i j

i

r 
=

 =    (5-3) 

Because j  are mutually orthogonal, Eq. (5-3) becomes: 

 ( )
, 1

, ,

i

i i Q

i i i i

r
r d 


= = 

     q q  (5-4) 

In order to solve for i  in Eq. (5-4), a number of sampling responses r  is required. The 

multidimensional integral representing the inner product of beam responses r  and the basis 

function   are calculated using the Gaussian quadrature numerical method. The order p  

of the basis function and the number or quadrature points sn  are chosen based on the 

stochastic model precision requirement. For a beam model with rvN random input variables 

and thp  order Hermite basis functions, the number of quadrature points are given as 

( 1) rvN

sn p= + . This also means sn  samples of beam model need to be generated and solved. 

On the account of this sn  formula, the computational cost of this spectral projection 
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approach does not scale up well with a high order basis function and large number of random 

input parameters. 

5.2.3. Least-square regression approach 

Let  1,..., sN
= q q  be a set of ( )s sN N N  realizations of input random vector, and 

 1,..., sN
r r=R  be corresponding output evaluations ( )( ), 1,...,i i

sr r i N= =q . The vector of 

residuals can be estimated from Eq. (5-2) in the compact form: 

 T = −R Ω  (5-5) 

where Ω  is the matrix whose elements are given by ( ) , 1,...,i

ij j si N = =q ; 1,...,j N= . The 

coefficients   are estimated by minimizing the 2L − norm (least-square regression) of the 

residual followed as: 

 
2

2
 min TArg = −R Ω  (5-6) 

Solving Eq. (5-6), the coefficients are given by: 

 ( )
1

T T
−

= Ω Ω Ω R  (5-7) 

5.2.4 Sensitivity analysis 

In addition to the mere stochastic output of the beam model, the variance-based 

quantification of each random input parameter’s influence on the model output is also 

discussed in this chapter. The sources of variance in the model output can be attributed to 

individual inputs, and thus, the importance of each input can be ranked accordingly. Among 

various sensitivity analysis methods, the Sobol indices [109] are the most widely used one. 

The Sobol’s first-order and total-order indices are given by Saltelli et al. [110] as follows: 

First-order Sobol index: 
~

( ( | ))

( )

i
i

i

q k i

i

Var E r
S

Var r

=
q

q
q  (5-8) 

Total-order Sobol index: 
~

~( ( | ))
1

( )

i i

i

Ti

Var E r
S

Var r
= −

q q
q

 (5-9) 

Both kinds of these Sobol indices are normalised by ( )Var r  but the difference in meaning 



143 

 

is first-order Sobol indices measure only the impact of a sole particular input variable i
q , 

while total-order Sobol indices also take into account the impact of interactions between i
q  

and other variables k i
q  .These indices can be computed using crude Monte Carlo simulation 

with the computational cost of ( 2)rv sN N+   or using PCE with no additional cost. The 

Sobol’s first-order and total-order indices can be estimated as follows: 

 
( )

i
i

D
S

Var r
=  (5-10) 

 
( )

Ti
Ti

D
S

Var r
=  (5-11) 

where 2 ( ), ( )
i

i i

i j j j

j

D j


=   q q , 
i

  comprises all indices j  such that the multivariate 

function j  only contains the variable i
q ; 2 (q), (q)

Ti

Ti j j j

j

D 


=   , 
Ti

  comprises all 

indices j  such that the multivariate function j must contain variable i
q ; index j  depends 

on how the list of multivariate functions is sorted. 

5.2.5 Artificial neural network (ANN) 

The Artificial Neural Networks (ANNs) in this chapter consist of layers of interconnected 

neurons organized into three main layers: the input layer, hidden layer(s), and the output 

layer. This architecture is shown in Fig.5-2. The input layer receives the raw input data 

whose each variable is assigned into a node. Each connection between an input node and a 

neuron in the hidden layer contributes to the weighted sum of inputs for that neuron. The 

initial weight values are random to avoid identical and redundant neurons in the network.  

The weighted sum is then passed through an activation function. Activation functions are 

preferably non-linear so that the neural network can learn complex models and their data 

relationship better. The weighted sum and activation function steps are repeated for the 

output layer, producing the final output of the neural network. The difference between this 

predicted output and the true output obtained from the beam model are assessed using a loss 

(or cost) function. Usually, further training iterations or epochs are needed to adjust the 
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weight and minimise the loss function. In the present study, the mean square error (MSE) is 

used as the loss function. The root mean square error (RMSE) of the test set is also computed 

in this chapter for future references. 

The network uses the computed loss to update its weights and bias through a process known 

as backpropagation. This involves calculating the gradient of the loss with respect to the 

weights and adjusting the weights in the opposite direction of the gradient to minimize the 

loss. This chapter applies the Levenberg-Marquardt backpropagation algorithm to train the 

ANN from the stochastic thin-walled beam data. The predicted output data of ANN and 

PCE are compared in terms of computing performance and accuracy. 

5.3. Numerical results 

The numerical studies in this section can be separated into two parts. Firstly, the present 

thin-walled I-beam model with fixed material properties are analysed and verified with other 

previous works. In the second part, the chosen beam’s material properties are randomly 

generated to be the stochastic input variables for the Monte Carlo Simulation (MCS) and 

Polynomial Chaos Expansion (PCE) numerical analysis.  

The beams studied throughout this section are laminated composite thin-walled I-beams 

composed of 16 angle plies with uniform thickness. Unless stated otherwise, these are made 

from glass-epoxy material whose mechanical properties are as follows: 1 53.78E GPa= ,

2 3 17.93E E GPa= = , 12 13 8.96G G GPa= = , 23 3.45G GPa= , 12 13 0.25 = = . These material 

properties along with the applied uniformly distributed load (UDL) q  are the six stochastic 

input parameters that are randomised based on the lognormal distribution and the coefficient 

of variation 0.1CoV = . This CoV is the ratio between the sample’s standard deviation and 

mean. Referring to Fig. 5-3, the dimensions of the top flange, bottom flange and the web are 

1 2 3 0.00208h h h m= = =  and 1 2 3 0.05b b b m= = = . The beam’s length-to-depth ratio varies 

between the forthcoming examples and can be from 3/ 5L b =  to 3/ 50L b = .  

5.3.1 Deterministic beam model 

Example 1: Convergence study 
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This example examines the convergence of the current solution for analyzing the 

displacement of composite I-beams under different boundary conditions, namely, simply 

supported (S-S), clamped-free (C-F), and clamped-clamped (C-C). The angle-ply stacking 

sequence for the I-beams‘ flanges and web is 
4[45 / 45 ]o o

s− , and these 16 laminate plies have 

a uniform thickness. The beam is under a UDL 1 /q kN m= . The results presented in Table 

5-1 reveal that the proposed solutions converge with series number 10m =  for S-S and C-F 

boundary conditions and 8m =  for C-C boundary condition. These series numbers will be 

employed in subsequent analyses accordingly. 

Table 5-1: Convergence of deterministic mid-span displacement for laminated composite 

thin-walled I-beam with different boundary conditions 

BC  m       

 2 4 6 8 10 12 

S-S 13.000 13.398 13.484 13.478 13.479 13.479 

C-C 2.744 2.735 2.738 2.740 2.740 2.739 

C-F 44.312 45.679 45.806 45.799 45.802 45.802 

 

Example 2: Verification and parametric study 

For the purpose of verification, this section compare the predictions made by the present 

beam model with the past experimental test [172] and other authors’ results [33, 36]. The 

following tables and figures describe the static behavior of isotropic steel beam and 

composite I-beams with different symmetrical lay-up [ / ]o o

4s −  in both flanges and the 

web.  

Fig. 5-3 manifests the accuracy of the present thin-walled beam model in the matching of 

mid-span deflections with the test results conducted by [172]. According to Colombi and 

Poggi, standard hot rolled carbon steel profiles HEA 140 of quality Fe E 275 were used for 

the experiments. There is no definite specifications of the carbon steel used and its material 

properties can vary based on several factors such as heat treatment, manufacturing process 

and steel alloy composition. Therefore, the predictions computed in Fig.5-4 are for the 
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isotropic steel beams with the following assumed properties: 190E GPa= , 73G GPa=  and 

0.3v = . 

 

Table 5-2 presents the simply supported laminated composite thin-walled beam’s mid-span 

deflection under a UDL 1 /q kN m=  . It is evident that the current solutions for FTWT align 

exceptionally well with the findings of previous studies and the ABAQUS software [33, 36]. 

Moreover, Table 5-3 further confirms the accuracy of the present deterministic beam model 

under C-C and C-F BCs by demonstrating that the present FTWT results are highly 

consistent with earlier study by Nguyen and Nguyen [173]. It can also be seen that the beam 

deflections increase as the ply angles increase, and the deflection of the 4[0 / 90 ]o o

s  beam is 

similar to that of the 4[30 / 30 ]o o

s− . However, due to the additional shear effect, the results 

for STWT in both Tables 5-2 and 5-3 are slightly higher than FTWT and CTWT. The 

discrepancies due to this shear effect particularly grow wider as the beam becomes thicker. 

To demonstrate this remark, Table 5-4 compares the FTWT and the STWT for the laminated 

Figure 5-3: Verification with experimental static test of the HEA 140 carbon steel beam 

(.., 73G GPa= , 0.3v =  ) 
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composite thin-walled beams with 3/ 5L b = and 3/ 10L b =  under all boundary conditions. 

The beam’s mid-span displacements computed using STWT are considerably higher than 

when using FTWT. Furthermore, the higher-order shear effect on the laminated composite 

thin-walled beam’s mid-span displacement is computed for many cases of the beam’s lay-

up and length-to-height ratios 3/L b . This so-called higher-order shear effect is defined as 

the percentage difference between the beam responses yielded from the STWT and FTWT. 

It is observed from Fig.5-5 that the shear effect is the highest at 3/ 5L b = and drastically 

drops as the 3/L b  increases to 10 and subsequently, 15. After the point where 3/ 15L b = , the 

plots for all cases of beam lay-ups reach a plateau with the increasing value of the abscissa. 

Apart from the aforementioned pattern, it is clear that the shear effect on the beam under C-

C boundary condition is roughly more than double the shear effect on the cantilever beam. 

These findings are beneficial in accurately predicting the laminated composite thick thin-

walled beam’s behaviors under extremely high loads. These results indicate that thick and 

short beams in bending are more likely to fail due to the transverse shear stress. 
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Table 5-2: Verification of deterministic mid-span displacements for laminated composite 

thin-walled I-beam under a uniformly distributed load (cm, 3/ 50L b = , S-S BC) 

Lay-ups References 

 CTWT  

[36] 

FTWT [33] ABAQUS  

[36] 

Present 

(FTWT) 

Present 

(STWT)  
16

0  6.233 6.259 6.340 6.280 6.327 

 
4

15 / 15
s

−  6.899 6.923 6.989 6.940 6.981 

 
4

30 / 30
s

−  9.290 9.314 9.360 9.323 9.356 

 
4

45 / 45
s

−  13.421 13.446 13.479 13.450 13.480 

 
4

60 / 60
s

−  16.962 16.992 17.023 16.990 17.019 

 
4

75 / 75
s

−  18.411 18.449 18.490 18.440 18.468 

 
4

0 / 90
s
 9.299 9.381 9.400 9.383 9.416 

 

 

Table 5-3: Verification of deterministic mid-span displacements for laminated composite 

thin-walled I-beam under a uniformly distributed load (cm, 3/ 50L b = , C-F and C-C BCs) 

Lay-ups 
C-F  C-C 

 Present 

(FTWT) 

Present 

(STWT) 

Nguyen and 

Nguyen 

[173] 

 Present 

(FTWT) 

Present 

(STWT) 

Nguyen 

and 

Nguyen 

[173] 

 
16

0  21.332 21.472 21.274  1.292 1.344 1.274 

 
4

15 / 15
s

−  23.577 23.699 23.535  1.420 1.459 1.406 

 
4

30 / 30
s

−  31.685 31.783 31.666  1.890 1.922 1.884 

 
4

45 / 45
s

−  45.718 45.805 45.718  2.712 2.741 2.713 

 
4

60 / 60
s

−  57.755 57.839 57.777  3.420 3.447 3.427 

 
4

75 / 75
s

−  62.682 62.765 62.728  3.709 3.737 3.724 

 
4

0 / 90
s
 31.888 31.986 31.889  1.904 1.935 1.904 

 

5.3.2 Stochastic analysis 

The procedures for the stochastic analysis is presented in the Fig.5-4 flowchart. While 

Section 3.1 emphasizes the accuracy of the sinusoidal thin-walled beam model, this section 

aims to maximise the efficiency of the computational model and thus, reduce the computing 
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time. On average, it takes authors’ computer 100 seconds to run a case of thin-walled beam 

analysis. Most of this computing time is attributed to the evaluation of many integrals for 

the material coefficients and stiffness matrix. In order to make the MCS with 610  samples 

feasible, all these integrals are pre-computed and then later assembled every time a set of 

stochastic inputs is generated. The computing time displayed in Tables 5-5 to 5-7 are 

measured from the moment that the aforementioned integrals have been pre-computed to 

when all the desired outputs have been found. Apparently, the time measured here are 

subjected to the researchers’ computer system but it should provide a good reference for 

comparing the methods’ efficiency. The applied UDL q  in this section are 10 /q kN m=  for 
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C-C boundary condition and 1 /q kN m=  for S-S and C-F boundary conditions.     

 

Example 3: Statistics of the laminated composite thin-walled beam outputs 

The accuracy and efficiency of the Polynomial Chaos Expansion (PCE) surrogate model are 

verified through Monte Carlo Simulation (MCS) with 100,000sN =  samples (S-S and CF 

boundary conditions) and 1,000,000sN =  samples (C-C boundary condition). It would have 

taken days to compute the 100,000 outputs for a case of beam using MCS, but in this chapter, 

Figure 5-4: Flowchart for the stochastic static analysis of thin-walled I-beams using 

Polynomial Chaos expansion and Monte Carlo Simulation 
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the time-consuming integrals of material coefficients and stiffness matrix are pre-computed. 

This leads to a great reduction in computing time, as shown in Table 5-5 to 5-7 but this 

workaround might not be possible for other stochastic mechanical models. For the PCE 

method, the third-order Hermite polynomials with six variables are employed. These  

polynomials are presented in the Appendix. To construct the PCE model, 252 and 4,096 

output samples from the beam solver are needed for the Least-square regression [162] 

approach and Spectral projection (SP) approaches, respectively. Tables 5-5 to 5-7 compare 

the four first statistical moments (mean, standard deviation, skewness, and kurtosis) of the 

mid-span and end-span displacements obtained from the MCS and PCE models.  

The mean and standard deviation of the fundamental frequencies from both the MCS and 

PCE models show excellent agreements in all cases. Most of the skewness and kurtosis 

values also closely match, with only a few cases showing slight differences in these higher-

order statistical moments. Both the LR and SP approaches using the PCE method prove to 

be far more efficient than the MCS by reducing the computing time significantly while 

possessing closely similar key statistical metrics. 

T 
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able 5-4: Mean, standard deviation, kurtosis and skewness of mid-span transverse 

displacement ( mm ) for laminated composite thin-walled beams with different lay-ups and 

S-S boundary condition 

Lay-ups  
Statistical 

moments 

3/ 20L b =   3/ 50L b =  

LR SP MC  LR SP MC 

 
4

0 / 90
s
 Mean 1.76 1.76 1.77  63.87 63.94 63.93 

 SD 0.24 0.24 0.24  9.00 8.99 9.04 

 Kurtosis 3.33 3.32 3.31  3.29 3.32 3.34 

 Skewness 0.42 0.42 0.42  0.42 0.42 0.43 

Computing time (s) 0.58 3.95 73.72  0.77 3.10 81.27 

 
4

15 / 15
s

−  Mean 1.91 1.91 1.91  70.41 70.41 70.41 

 SD 0.26 0.25 0.26  9.54 9.56 9.55 

 Kurtosis 3.30 3.24 3.28  3.31 3.29 3.27 

 Skewness 0.40 0.39 0.40  0.41 0.41 0.40 

Computing time (s) 0.46 3.60 89.91  0.46 3.40 96.35 

 
4

30 / 30
s

−  Mean 2.50 2.50 2.50  94.20 94.28 94.31 

 SD 0.31 0.31 0.31  11.62 11.60 11.66 

 Kurtosis 3.28 3.28 3.25  3.23 3.21 3.22 

 Skewness 0.38 0.38 0.38  0.37 0.36 0.36 

Computing time (s) 0.36 3.20 88.50  0.41 3.14 98.31 

 
4

45 / 45
s

−  Mean 3.55 3.56 3.56  136.05 135.92 136.01 

 SD 0.44 0.44 0.44  16.96 16.84 17.00 

 Kurtosis 3.29 3.23 3.31  3.35 3.26 3.29 

 Skewness 0.39 0.37 0.39  0.42 0.38 0.39 

Computing time (s) 0.39 2.90 92.68  0.38 3.19 98.40 
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Table 5-5: Mean, standard deviation, kurtosis and skewness of mid-span transverse 

displacement ( mm ) for laminated composite beams with different lay-ups and C-F 

boundary condition 

 

Lay-ups  
Statistical 

moments 

3/ 10L b =   3/ 20L b =  

LR SP MC  LR SP MC 

 
4

0 / 90
s
 Mean 1.12 1.12 1.12  16.07 16.08 16.08 

 SD 0.15 0.15 0.15  2.24 2.24 2.23 

 Kurtosis 3.29 3.32 3.31  33.14 3.34 3.36 

 Skewness 0.40 0.42 0.41  4.19 0.43 0.43 

Computing time (s) 0.79 3.84 79.19  1.10 3.30 79.62 

 
4

15 / 15
s

−  Mean 1.20 1.20 1.20  17.62 17.63 17.62 

 SD 0.16 0.16 0.16  2.37 2.38 2.36 

 Kurtosis 3.31 3.28 3.28  32.70 3.27 3.29 

 Skewness 0.41 0.40 0.39  3.99 0.40 0.40 

Computing time (s) 0.50 3.01 88.34  0.90 3.15 87.62 

 
4

30 / 30
s

−  Mean 1.54 1.54 1.54  23.42 23.41 23.39 

 SD 0.19 0.19 0.19  2.88 2.89 2.88 

 Kurtosis 3.27 3.21 3.26  32.38 3.26 3.22 

 Skewness 0.37 0.37 0.38  3.68 0.39 0.38 

Computing time (s) 0.43 2.80 89.26  0.80 3.02 103.35 

 
4

45 / 45
s

−  Mean 2.17 2.17 2.17  33.63 33.65 33.64 

 SD 0.27 0.27 0.27  4.17 4.18 4.16 

 Kurtosis 3.26 3.24 3.28  32.61 3.26 3.30 

 Skewness 0.37 0.37 0.38  3.82 0.38 0.39 

Computing time (s) 0.48 2.78 88.30  0.92 3.38 100.93 
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Table 5-6: Mean, standard deviation, kurtosis and skewness of mid-span transverse 

displacement ( mm ) for laminated composite beams with different lay-ups and C-C 

boundary condition 

Lay-ups  
Statistical 

moments 

3/ 20L b =   3/ 50L b =  

LR SP MC  LR SP MC 

 
4

0 / 90
s
 Mean 4.69 4.69 4.69  135.07 135.09 135.09 

 SD 0.58 0.58 0.58  18.52 18.51 18.53 

 Kurtosis 3.24 3.26 3.25  3.31 3.32 3.33 

 Skewness 0.39 0.38 0.38  0.42 0.42 0.42 

Computing time (s) 0.71 3.59 521.79  1.04 4.00 521.69 

 
4

15 / 15
s

−  Mean 4.83 4.84 4.84  147.12 147.11 147.13 

 SD 0.60 0.60 0.61  19.64 19.68 19.66 

 Kurtosis 3.22 3.26 3.27  3.29 3.28 3.29 

 Skewness 0.37 0.38 0.38  0.41 0.40 0.41 

Computing time (s) 0.48 3.57 574.66  0.94 3.93 590.87 

 
4

30 / 30
s

−  Mean 5.81 5.81 5.81  193.60 193.49 193.50 

 SD 0.70 0.70 0.70  23.76 23.73 23.78 

 Kurtosis 3.21 3.25 3.22  3.18 3.24 3.24 

 Skewness 0.37 0.36 0.36  0.35 0.37 0.37 

Computing time (s) 0.31 3.08 582.50  0.88 3.78 590.42 

 
4

45 / 45
s

−  Mean 7.83 7.84 7.84  276.39 276.40 276.35 

 SD 0.95 0.96 0.96  34.30 34.26 34.29 

 Kurtosis 3.40 3.24 3.26  3.27 3.27 3.26 

 Skewness 0.40 0.37 0.38  0.38 0.39 0.38 

Computing time (s) 0.33 3.25 582.67  0.91 3.15 590.90 
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To better visualise the output data, Fig. 5-5 and 5-6 show the probability density function 

(PDF) and cumulative  distribution function (CDF) plots produced from the MCS and PCE 

methods for the quantity of interest (QoI). The PDF and CDF graphs for outputs from MCS 

and PCE are coincident in most beam displacement values. The only differences are at the 

peaks of the graphs for PDF and below the part where 3( ) 10P X x −   for CDF. This is due 

to the lack of samples at those certain points in the output data distribution.  

        a) S-S boundary condition                                    b. C-C boundary condition  

                                                 c) C-F boundary condition 

 

Figure 5-5: Probability density function (PDF) of the MCS and PCE methods for the laminated composite 

thin-walled glass-epoxy beams’ displacement (mm) with S-S, C-F ( 510sN = ) boundary conditions ( 610sN = ) 
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a) S-S                                                                         b) C-C 

 

c) C-F 

 

  

  

Figure 5-6: Cumulative distribution function (CDF) of the MCS and PCE methods for the laminated composite 

glass-epoxy thin-walled beam displacement (mm) with S-S, C-F ( 510sN = ) boundary conditions ( 610sN = ) 
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 Zooming in the sample output data, Fig. 5-7 to 5-9 show the percentage difference 

between the MCS outputs and PCE-LR or SP outputs simulation-by-simulation. For every 

simulation, the random input parameters for both MCS and PCE methods are identical. For 

the S-S and C-F boundary conditions with 100,000sN = , the error percentage are mostly 

from 0% to -0.2% with some outliers from +1.5% to -1.0%. For the C-C boundary conditions 

with a bigger sample size 610sN = , the percentage error points tend to be on the negative 

side, most being less than -0.2%.  

 It is not feasible for the structural designer to guarantee the absolute safety of the 

beam due to countless sources of uncertainties. Design calculations are based on the 

characteristic load and characteristic strength which have a reasonably low probability of 

nonconforming. For instance, the characteristic yield stress of steel is typically defined as 

the yield stress threshold below which no more than 5% of the test values are anticipated to 

fall. It is resource-intensive to conduct the beam’s mechanical testing and produce the 

probability distribution of the load applied and the beam’s strength. Therefore, the PCE 

method presented in this chapter helps save time and cost by significantly reducing the 

number of test samples, but still give a comparable results to the crude MCS testing. 

                 a. MCS vs PCE-LR           b. MCS vs PCE-SP 

Figure 5-7: Percentage error in each simulation between the PCE surrogate responses and the  

deterministic glass-epoxy beam model responses computed from the same input parameters  

( 510sN = , 4[45 / 45 ]o o

s− , C-F boundary condition, 3/ 20L b = ) 
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a. MCS vs PCE-LR           b. MCS vs PCE-SP  

 

        a. MCS vs PCE-LR           b. MCS vs PCE-SP   

Figure 5-8: Percentage error in each simulation between the PCE surrogate responses and the  

deterministic glass-epoxy beam model responses computed from the same input parameters  

( 510sN = , 4[45 / 45 ]o o

s− , S-S boundary condition, 3/ 20L b = ) 

Figure 5-9: Percentage error in each simulation between the PCE surrogate responses and the  

deterministic beam model responses computed from the same input parameters  

( 610sN = , 4[45 / 45 ]o o

s− , C-C boundary condition, 3/ 20L b = ) 
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Example 4: Sensitivity analysis 

The study also examines the influence of each random input on the variation of the model 

responses. The first-order Sobol index is used to measure the parameters’ influence on the 

variance of the model output without considering the effect of parameters’ interaction. Since 

the Sobol indices are not affected by the boundary conditions, only Sobol indices for 

cantilever beams are shown. Fig. 5-10 compares the first-order Sobol indices for static 

analysis using the MCS and PCE methods across all beam lay-ups. It is evident that the 

Sobol indices computed from the polynomial expansion coefficients closely match those 

calculated from the MCS. The sensitivity study reveals that the PCE method is significantly 

more efficient than the MCS. While the PCE method can compute the Sobol indices with 

no extra computing cost, the MCS demands at least (N 2)rv sN+   simulations based on 

several efficient algorithm proposed by Saltelli et al. [110] and 2

sN  simulations based on 

the raw mathematical definition of Sobol indices. Fig. 5-11 presents the total Sobol indices 

bar graphs with the same settings and beam configurations as Fig. 5-10. It is observed that 

the differences between the first- and total Sobol sensitivity indices are small for all 

variables.  

Figure 5-10: First order Sobol indices for six random input parameters of different thin-

walled glass-epoxy beam lay-ups  (C-F boundary condition, ) 
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a. MCS                                                                   b. PCE  

Comparing the influences of the input variables, 23G  and 12v  play an insignificant role in the 

beam static responses with the Sobol indices equal to zero. The influence of 1E , 2E  and 12G  

change with the beam fibre-angle lay-ups and this information can be useful in the 

composite structure design. It is apparent that the variation in the applied UDL contributes 

the most to the beam’s displacement, but the fluctuation of the Sobol indices for q  as the 

fibre angle increases is interesting to see. These findings allow the structural designer to 

determine the most influential material properties on the static behaviour of various thin-

walled composite beams’ configurations. Thus, fewer mechanical testing is required to 

ensure the beams’ quality. 

5.3.3 Artificial neural network (ANN) 

Example 5: Compare ANN with PCE and MCS 

 This example makes a comparison between ANN, PCE, and MCS’s accuracy and learning 

capability. The MCS with 100,000SN =  samples are the input training data and test data for 

the predictions of PCE and ANN. Table 5-8 presents the statistical moments, computing 

time, and the mean square error of the three methods with various attributes. The ANN is 

computed using the MATLAB “nntool” and setting the number of epochs equal to 300. The 

Figure 5-11: Total order Sobol indices for six random input parameters of different thin-walled 

beam lay-ups  (C-F boundary condition, ) 
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hyperparameters, such as the number of of hidden layers and the number of neurons, are 

calibrated so that the MSE and RMSE are close to the results of PCE. The ANN with 1 

hidden layer and 8 neurons is sufficient compared to PCE. Even though the mean, standard 

deviation (SD), kurtosis and skewness of the output distribution for ANN and PCE are 

almost the same as the MCS, the ANN method takes much more time than the PCE. The 

PCE’s advantage over ANN has been shown in Example 4, where Sobol’s sensitivity indices 

can be computed from the coefficients for free of computing cost..  

 While the ANN can produce much faster predictions than the MCS, it does requires 

(N 2)rv sN+   more output data for the Sobol indices. Nonetheless, the PCE method suffers 

when the beam model contains a higher number of random input variables, which translates 

to a higher dimensional PCE model. The ANN otherwise can be conveniently tuned by 

changing many hyperparameters. Fig. 5-12 displays the quantile-quantile plot between the 

outputs of MCS and ANN with different layer sizes. The output points in Fig. 5-12a, 5-12b, 

and 5-12d create a thick line around the ANN=MCS line, which means the errors are high, 

especially at the upper part of the tenth deciles. The accuracy is observably improved in Fig. 

5-12c, 5-12e, and 5-12f when the number of neurons increases. 

 Table 5-7: Comparison between the ANN, PCE and MCS for 100,000SN =  samples of 

laminated composite beams with 3/ 20L b = , 
4[45 /-45 ]o o

S
 lay-ups and C-F boundary 

condition 

 

  

Method Attribute Training 

data 

(Ntrain) 

Mean SD Kurto

- 

sis 

Skew- 

ness 

Time 

(s) 

MSE RMSE 

ANN 1 hidden 

layer, 9 

neurons 

252 33.612

1 

4.169

3 

3.283

3 

0.390

2 

26.5 1.05E-5 3.24E-3  
1 hidden 

layer, 8 

neurons 

4096 33.604

3 

4.166

8 

3.259

1 

0.381

8 

25.2 8.76E-6 2.96E-3  
2 hidden 

layers, 7 

neurons 

each 

252 33.611

3 

4.170

0 

3.266

6 

0.384

8 

40.1 5.62E-5 7.49E-3  
2 hidden 

layers, 6 

neurons 

each 

4096 33.613

9 

4.172

8 

3.271

1 

0.385

0 

32.8

3 

5.31E-5 7.29E-3 

PCE Least-

square 

regression 

252 33.635

8 

4.185

5 

3.283

1 

0.388

8 

1.8 7.99E-06 2.80E-3  
Spectral 

projection 

(SP) 

4096 33.635

9 

4.186

1 

3.287

0 

0.389

9 

2.6 4.32E-06 2.10E-3 

MCS Ns=100,000 - 33.644

9 

4.171

0 

3.285

8 

0.390

7 

100.

9 

- - 
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a) 1 hidden layers, 2 neurons                                        b) 1 hidden layers, 3 neurons 

c) 1 hidden layers, 4 neurons                                    d) 2 hidden layers, 2 neurons each  

 e) 2 hidden layers, 3 neurons each                   f) 2 hidden layers, 4 neurons each 

  

Figure 5-12: Quantile-quantile plot for comparing the 100,000 test outputs of MCS and 

ANN with different hidden layers’ size ( 3/ 20L b = , 4[45 /-45 ]o o

S , C-F boundary condition ) 
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5.4. Conclusion 

This chapter presented a stochastic model for analyzing the static behavior of laminated 

composite thin-walled beams with an I-section based on a novel sinusoidal higher-order 

shear deformation thin-walled beam theory. The material properties of the laminated 

composite material are assumed to follow lognormal distributions, and their uncertainty is 

fed into a beam solver for the computation of sample stochastic outputs. The surrogate 

models based on Polynomial Chaos Expansion (PCE) and Artificial Neural Network (ANN) 

are developed to evaluate the stochastic responses efficiently. The benchmarks for accuracy 

and efficiency are the stochastic responses obtained from crude Monte Carlo simulation. 

The study also includes a sensitivity analysis to compare the importance of uncertainty in 

material properties to the stochastic responses. In conclusion, the present work’s findings 

can be distilled into the following points: 

• The proposed STWT is found to be efficient and accurate in predicting flexural 

behaviors of laminated composite thin-walled beams with open sections. The 

laminated composite thin-walled I-beam’s displacements are higher than those from 

the CTWT and FTWT theories.  

• The higher-order shear deformation effect on the displacement of thin-walled 

laminated composite beams is significant for thick beams 3( / 15)L b  . 

• The PCE method has been shown to be able to preserve the stochastic output 

distribution with a considerably fewer required number of simulations, thus with 

much lower computing expense in which the LR and SP approaches only required 

252 and 4,096 samples, respectively, in comparison with 100,000 samples from the 

MCS. 

• The PCE method requires no extra computing cost to determine the Sobol indices, 

while the MCS, in the best case, demands more sample runs proportional to the 

number of random input parameters rvN  and the chosen base number of samples sN  

( rv s(N +2)× N ).  
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• The sensitivity analysis helps detect and eliminate insignificant variables, which in 

turn speeds up the stochastic model even more. The numerical results showed that 

the applied external load is the most critical variable affecting the flexural behaviors 

of the laminated composite thin-walled beams. 

• Both supervised-learning ANN and PCE can accurately predict a high number of  

composite I-beams’ outputs.  

• ANN costs more computational time than PCE with a low number of random 

input variables. 

• ANN can only prove its superiority over PCE when the dimensionality is high 

(large number of random input variables). Since PCE faces the curse of 

dimensionality severely, ANNs handle high-dimensional problems better due 

to their ability to learn complex nonlinear mappings using various activation 

functions. 
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CHAPTER 6 : SIZE-DEPENDENT BEHAVIOURS OF FUNCTIONALLY GRADED 

SANDWICH THIN-WALLED BEAMS BASED ON THE MODIFIED COUPLE 

STRESS THEORY 

 

Expanding the scope of the macro thin-walled composite beams discussed in earlier 

chapters, this chapter examines the static and vibration analysis of functionally graded 

sandwich thin-walled microbeams using the modified couple stress theory. The material 

properties in both web and flanges are varied continuously through their thickness. The 

equations of motion are derived and solved by the Ritz method. Numerical results are 

computed to investigate the effects of material distribution, span-to-height’s ratio, and 

material length scale parameters on the deflections and natural frequencies of microbeams 

for various boundary conditions. The microbeams with the size effect are predicted to be 

much stiffer than their macro counterparts. The results of the analysis indicate that bending 

and vibration of functionally graded sandwich thin-walled microbeams are greatly 

influenced by the variations of parameters mentioned earlier. The results offer benchmark 

data for future research in microstructure engineering. 

 

6.1. Introduction 

Owing to the high weight-to-stiffness ratio and performance of electro-thermo-mechanical 

properties, laminated composite and functionally graded (FG) structures have been 

employed in many engineering fields such as aerospace, automotive engineering, 

construction and many others. In the aerospace sector where the materials must undergo 

intense mechanical and thermal conditions, FG materials have proven to be applicable in 

numerous components. To name a few, some examples are the rocket nozzle, the spacecraft 

truss structure, the heat exchange panels, the reflector, the rocket engine and various micro-

electro-mechanical systems [174-176]. The recent developments in the FG materials 

promise its important applications for thin-walled beams. Literature review shows that 

although considerable number of studies have been carried out on static and dynamic 
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responses of FG thin-walled beams, there is a limited number of works on their size-

dependent behaviours. In order to take the size effects into account, advanced theories with 

material length scale parameters (MLSPs), in which the modified coupled stress theory 

(MCT) is the most popular one, have been proposed. The MCT initiated by Yang et al. [177] 

accounts for the size effects with only one MLSP. Thanks to its simplicity, many size-

dependent FG microbeam and microplate models based on the MCT have been developed 

[178-187]. Although many chapters have been devoted for analysis of FG 

microplates/microbeams, there are very few studies for FG thin-walled nanobeams. Soltani 

et al. [188-190] used CTWBT and non-local elasticity theory of Eringen to study the stability 

of FG nano I-beams. However, there is no other investigation for FG thin-walled 

microbeams, this interesting and complicated topic needs to be studied further. 

This Chapter employs the FTWBT and MCT to investigate the static and vibration analysis 

of the FG sandwich thin-walled microbeams. The governing equations of motion are derived 

and then a hybrid series solution is developed. Verification studies are performed on the 

bending and vibration responses of FG sandwich thin-walled beams. Parametric study is 

carried out to depict the effects of material distribution and MLSP on their deflections and 

natural frequencies.  

6.2. Theoretical formulation  

Considering a FG sandwich thin-walled microbeam with length L  and open sections. As 

shown in Fig. 5-1, three sets of coordinate systems are examined. The following 

assumptions are made: the strains are small, the section contour does not deform in its own 

plane, the shear and warping strains are uniform and local buckling and pre-buckling 

deformations are negligible. 

6.2.1. Modified couple stress theory (MCT)  

The total energy of system is composed of the strain energy S , potential energy W  and 

kinetic energy K  as follows: 

 S W K = + −   (6-1) 
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Based on the MCT, the strain energy of the system S  is given by: 

 ( )U ij ij ij ij

V

m dV   = +  (6-2) 

where ,ij ij   are strains and symmetric rotation gradients; 
ij  is Cauchy stress; 

ijm  is the 

high-order stress corresponding with strain gradients ij . The components of strain ij  and 

strain gradients 
ij  are expressed in terms of the displacements iu  as follows: 

 ( ), ,

1

2
ij i j j iu u = +  (6-3a) 

  ( ), ,

1

4
ij n mj imn n mi jmnu e u e = +   (6-3b)  

where imne  is the permutation symbol; the comma in the subscript indicates the 

differentiation with respect to the variable that follows.  

The stress components ij  and ijm  are computed from constitutive equations as follows: 

  
2ij kk ij ij   = +   (6-4a) 

  22ij ijm l =   (6-4b) 

where ,   are Lamé constants; ij  is the Knonecker delta; l is the MLSP which can be 

determined by experimental works [191].  

The potential energy of the system W  subjected to a transverse load q  can be expressed 

as:  

 
0

L

W Pqv dz = −  (6-5) 

where Pv  is the transverse displacement at P .  
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The kinetic energy of the system K  is expressed by:  

 ( )( )2 2 21

2
K

V

z u v w dV = + +  (6-6) 

where ( )z  is the mass density; 
,tu u= , 

,tv v= , ,tw w=  are the velocities in the x − , y −  and 

z −directions, respectively. 

6.2.2. Kinematics 

In this chapter, the kinematics of the FTWBT at any points of the section can be derived 

from section 3.2.1 of Chapter 3 by setting 0 1,g g f n= = = . These displacements are 

expressed by:  

 ( ) ( ) ( ) ( ),, , P s Pu n s z u z y nx y z= − − −  (6-12a) 

 ( ) ( ) ( ) ( ),, , P s Pv n s z v z x ny x z= + + −  (6-12b) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(0) (0)

0 , ,

, , , , , ,

, ,

( ) ( )

xz s yz s

z s P z s P z s

w n s z w z z x ny z y nx

z F nr u z x ny v y nx

 



= + + + −

− − − + − −
 (6-12c) 

6.2.3. Strains 

Using the displacements in Eq. (6-12), the non-zero linear strains are given by: 

 ( ) ( ) ( )0 1
, ,z z zn s z n  = +  (6-13a) 

 ( ) ( ) ( )0 1
, ,sz sz szn s z n  = +  (6-13b) 

 ( ) ( )0
, ,nz nzn s z =  (6-13c) 

where 

 ( ) ( ) ( )( ) ( )( )0 0 0

0, , , , , ,, ( )z z xz z P zz yz z P zz zz ss z w u x v y F nr   = + − + − − −  (6-14a) 
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 ( ) ( )1 (0) (0)

, , , , , , ,, ( ) ( )z P zz yz z s P zz xz z s zz ss z v x u y r   = − − − +  (6-14b) 

 ( ) ( ) ( ) ( )0 0 0

, ,,sz xz s yz ss z x y  = +  (6-14c) 

 ( ) ( )1

,, 2sz zs z =  (6-14d) 

 ( ) ( ) ( ) ( )0 0 0

, ,,nz xz s yz ss z y x  = −  (6-14e) 

Moreover, the symmetric rotation gradients can be calculated by: 

 ( ), ,

1

2
ij i j j i  = +  (6-15) 

where i  is defined as: 

 ( ) ( )(0)

, , , , 1 ,

1 1
( )

2 2
x y z yz P z P z P zw v v v X u   = − = − − − −

 
  (6-16a) 

 ( ) ( )(0)

, , , , 2 ,

1 1
( )

2 2
y z x P z xz P z P zu w u u X v   = − = − − − −

 
  (6-16b) 

 ( ), ,

1

2
z x yv u = − =  (6-16c) 

Substituting Eq. (6-16) into Eq. (6-15), the non-zero rotation gradients are expressed as 

follows: 

 ,

1

2
xx z = −  (6-17a) 

 ,

1

2
yy z = −  (6-17b) 

 ,zz z =  (6-17c) 

 ( )(0)

, , , 1 ,

1
( )

4
xz yz P z z P zz P zzv v X x   = − − − −

   (6-17d) 
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 ( )(0)

, , , 2 ,

1
( )

4
yz P zz xz P z z P zzu u X y   = − − − −

 
 (6-17e) 

6.2.4. Stresses 

The constitutive equations can be written as: 

 

11

66

55

0 0

0 0

0 0

z z

sz sz

nz nz

Q

Q

Q

 

 

 

    
    

=    
    

    

 (6-18a) 

 2

1 0 0 0 0

0 1 0 0 0

2 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

xx xx

yy yy

zz zz

yz yz

xz xz

m

m

m l

m

m





 





    
    
       

 =   
    
    
        

 (6-18b) 

where ( )11Q E n= , 
( )

( )
66 55

2 1

E n
Q Q 


= = =

+
; ( )E n  is the Young’s modulus;   is the Poisson’s 

ratio, which is assumed to be constant. The effective mass density   and E  are expressed 

by: 

 ( )1c c m cV V  = + −   (6-19a) 

 ( )1c c m cE E V E V= + −   (6-19b) 

where the subscripts c  and m  indicate the ceramic and metal, cV  is the volume fraction of 

ceramic for I- and C-sections which are given as follows: 

• For C1 section (FG): 

 0.5

p

c

j

n
V

h

 
= + 
  

, 0.5 0.5j jh n h−    (6-20) 

• For C2, I2 sections and I1 section’s web (FG sandwich): 
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( )

0.5

0.5 1

p

j

c

j j

n h
V

h

 − +
 =
 −
 

, 0.5 0.5j j jh n h−   −  or 0.5 0.5j j jh n h    (6-21a) 

 1cV = , 0.5 0.5j j j jh n h −    (6-21b) 

• For I1-section’s flanges (FG sandwich): 

0.5

(1 )

p

j

c

j j

n h
V

h

 +
 =

−  

 , 0.5 (0.5 )j j jh n h−   −  (6-22a) 

1cV = , 0.5 (0.5 )j j jh n h−   − , (0.5 ) 0.5j j jh n h−    (6-22b) 

where p  is the power-law index, jh  (j 1,2,3)=  are the thicknesses of the top flange, bottom 

flange and web; j  ( 1,2,3)j =  are the thickness ratio of the ceramic for the top flange, 

bottom flange and web, respectively. The notations of 1 2 3 1 2 3, , , , ,h h h     in various sections 

are shown in Fig. 6-2 and Fig. 6-3.  

 
a) I-section 
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b) Channel section 

Figure 6-1: Geometry of FG thin-walled beams. 

 

Figure 6-2: Material distribution of thin-walled FG sandwich microbeams 
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6.2.5. Variational formulation  

The characteristic equations of the system can be derived from Eq. (6-1) based on 

Hamilton’s principle as follows: 

  ( )
2

1

0

t

S W K

t

dt   +  −  =    (6-23) 

The variation of the strain energy S  of the system is defined by: 

  
( )

( )2 2

S z z sz sz nz nz
V

xx xx yy yy zz zz xz xz yz yz
V

dV

m m m m m dV

      

    

 = + +

+ + + + +




  (6-24) 

where the shear correction coefficient is assumed to be unity. Substituting Eqs. (13) and (17) 

into Eq. (6-24) leads to have: 

  

( )

( ) ( )

( ) ( )

0

, , , ,

0

, , ,

, , , , , ,

0

L

S zz z yy y z xx x z zz

xx P z y yy P z x zz z z

L

zz z xx P zz y z yy x z P zz zz

T w M M M

V u V v M dx

M V u V v M dz



   



    

    

     

 = + + +


+ + + + +


 + + − + − +
 





  (6-25) 

where the stress resultants ( ), , , , , ,zz yy xx xx yy zzT M M M V V M  and ( ), , ,zz xx yyM M V V   

  are defined 

as follows: 

  ( ) ( )1 2, , , 1, , ,zz yy xx s z

A

T M M M X X nr F dsdn  = −    (6-26a) 

  ( ) ( ), , , ,, , , , 2xx yy zz sz s nz s sz s nz s sz

A

V V M x y y x n dsdn    = + −    (6-26b) 

  ( ), , , ,
2 2 2 2

yy yzxx xz
zz xx yy zz

A

m mm m
M V V m dsdn    

= − − 
 
    (6-26c) 

  ( ) ( )1 2xz P yz P

A

M m X x m X y dsdn


 = − − + −
    (6-26d) 

The rotation angles around the x −  and y −  axes are denoted as: 

  (0)

,x yz P zv = −   (6-26e)

(0)

,y xz P zu = −   (6-26f) 

The stress resultants given above are related to the displacement as follows: 
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( )0

11 12 13 17 ,

12 22 23 27 ,

13 23 33 37 ,

44 45 46 ,

45 55 56 ,3

46 56 66 ,

77 ,

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

zz z

yy y z

xx x z

xx P z y

yy P x

zz z

zz

T L L L L w

M L L L L

M L L L L

V L L L u

V L L L v

M L L L

M L













   
   
   
   
   

= +   
    +
   
   
   
    










 
 



 (6-27a) 

 

,11

, ,22 24

, ,33 34

,24 34 44

0 0 0

0 0

0 0

0

zzz

P zz y zxx

x z P zzyy

zz

HM

uH HV

vH HV

H H HM



















    
     −    =   

  −   
        

 (6-27b) 

where the stiffness components are defined by: 

 ( ) ( )11 11 12 11 11 , 13 11 11 ,, ,s s

s s s

L A ds L A x B y ds L A y B x ds= = + = −    

 ( )17 11 11s

s

L B r A F ds= − , ( )2 2

22 11 11 , 11 ,2 s s

s

L A x B xy D y ds= + +  

 ( )23 11 11 , , 11 , ,s s s s

s

L A xy B yy xx D x y ds = + − −   

 ( )27 11 11 , 11 ,s s s s

s

L A xF B xr y F D r y ds 
 = − + − +   

 ( )2 2

33 11 11 , 11 ,2 s s

s

L A y B x y D x ds= − +  

 ( )37 11 11 , 11 ,s s s s

s

L A yF B yr x F D r x ds 
 = − + + −   

 ( )2 2

44 66 , 55 ,s s

s

L A x A y ds= + , ( )45 66 55 , , 46 66 ,, 2s s s

s s

L A A x y ds L B x ds= − =   

 ( )2 2

55 66 , 55 ,s s

s

L A y A x ds= + , 56 66 ,2 s

s

L B y ds=  , 
66 664

s

L D ds=   

 ( )2 2

77 11 11 112 s s

s

L A F B r F D r ds = − +  

 2

11 3
A

H l dnds=  , 
2

22
4

A

l
H dnds=  , ( )

2

24 ,
4

s P

A

l
H y nx y dnds= − − −  
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2

33
4

A

l
H dnds=  , ( )

2

34 ,
4

s P

A

l
H x ny x dnds= − + −  

 ( ) ( )
2

2 2

44 , ,
4

s P s P

A

l
H x ny x y nx y dnds  = + − + − −

     

 ( ) ( )2, , 1, ,ij ij ij ij

s

A B D n n Q ds=    (6-28) 

The variation of potential energy W  of the system subjected to a transverse load q  can be 

expressed as:  

 
0

L

W Pq y dz  = −  (6-29) 

The variation of kinetic energy K  of the system is given by: 

( )( )

( ) ( ) ( ) ( )( )
( )( ) ( )( )

( ) ( )

0 0

1 2 1 3 1 6 10 13 ,

0

0 0

6 7 8 9 , 10 8 11 12 ,

0

2 3 4 5 , 13 9

K

L

P P P P y x z

y y x z x y x z

P P z y

n u u v v w w d

u m u m v m v m w m w m m m

m w m m m m w m m m

m u m v m m m w m

    

       

       

   


 = + + 

= − + + + + + −

+ + + − + + + −

 + − + + + + − − − 





12 14 ,x zm m dz  +
 

 (6-30) 

where the terms of mass im  are given as follows: 

  
( ) ( )

, ,

2 21 2 3 4 5

, ,

1, , ,
, , , ,

,

s P s P

A s P s P

y nx y x ny x
m m m m m dnds

y nx y x ny x


− − + −  
=  

− − + −  
  (6-31a) 

    6 7 8 9 , , ,, , , ( ) 1, , ,s s s

A

m m m m x ny x ny y nx F dnds= + + −  (6-31b) 

    10 11 12 , ,, , ( ) 1, ,s s

A

m m m y nx y nx F dnds= − −  (6-31c) 

    2

13 14, ,
A

m m F F dnds =   (6-31d) 

6.2.6. Hybrid series solution  

The displacement field is approximated via unknowns ( ( )Pju t , ( )Pjv t , ( )jw t , ( )yj t , ( )xj t  

and ( )j t ) and shape functions ( ( )3j x ) as follows: 
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  ( ) ( ) ( )1 2 3

1

, , , , ,
m

P P

j Pj Pj j

j

u u z t x u v t  
=

=   (6-32a) 

 ( ) ( ) ( ) ( )0

,

1

, , , , ,
m

x y j z j xj yj

j

w z t z w t    
=

=  (6-32b) 

It should be noted that hybrid shape functions are proposed in Table 6-1 by a combination 

of exponential and admissible trigonometric functions to satisfy various BCs such as simply-

supported (S-S), clamped-free (C-F) and clamped-clamped (C-C). 
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Table 6-1. Shape functions and essential BCs  

BC   3( )j x  
3 0x =  3x L=  

S-S 1
jz

L
z z

e
L L

−
 
− 

 
 

 

1 2 0P Pu u = = =  

 

 

1 2 0P Pu u = = =  

C-F 
2 jz

L
z

e
L

−
 
 
 

 
1 2 0P Pu u = = =  

1,3 2,3 ,3 0P Pu u = = =  

 

 

C-C 
2 2

1
jz

L
z z

e
L L

−
   

−   
   

 
1 2 0P Pu u = = =  

1,3 2,3 ,3 0P Pu u = = =  

 

1 2 0P Pu u = = =  

1,3 2,3 ,3 0P Pu u = = =  

  

Substituting Eq. (6-32) into Eq. (6-25), (6-29) and (6-30), and then plugging the subsequent 

results into Eq. (6-23) leads to the characteristic equations for bending and vibration analysis 

of FG sandwich thin-walled microbeams as follows: 

 + =Kd Md F  (6-33) 

where , ,K M F  are the stiffness matrix, the mass matrix and the force vector, respectively; 

T

 =  
P P

1 2 3 2 1d u u u θ θ Φ  is the displacement vector. It is noted that the stiffness 

matrix K  can be divided into that of strain part 
K  and that of strain gradient 

K , i.e. 

 = +K K K  as follows: 

 

11 12 14 15 16

12 22 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

    

    

     


     

     

     

 
 
 
 

=  
 
 
 
  

K K 0 K K K

K K 0 K K K

K K K K K K
K

K K K K K K

K K K K K K

K K K K K K

 (6-34a) 
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11 14 16

12 22 25 26

14 44 46

25 55 56

16 26 46 56 66

  

   



  

  

    

 
 
 
 

=  
 
 
 
  

K 0 0 K 0 K

K K 0 0 K K

0 0 0 0 0 0
K

K 0 0 K 0 K

0 K 0 0 K K

K K 0 K K K

 (6-34b) 

where 

 11 11

44ij ijK L S = , 12 11

45ij ijK L S = , 14 11

44ij ijK L S = , 15 11

45ij ijK L S = , 16 11

46ij ijK L S =  

 22 11

55ij ijK L S = , 24 11

45ij ijK L S = , 25 11

55ij ijK L S = , 26 11

56ij ijK L S =  

 33 22

11ij ijK L S = , 34 22

12ij ijK L S = , 35 22

13ij ijK L S = , 36 22

17ij ijK L S =  

 44 22 11

22 44ij ij ijK L S L S = + , 45 22 11

23 45ij ij ijK L S L S = +  

 46 22 11

27 46ij ij ijK L S L S = + , 55 22 11

33 55ij ij ijK L S L S = +  

 56 22 11

37 56ij ij ijK L S L S = + , 66 22 11

77 66ij ij ijK L S L S = +   

 11 22

22ij ijK H S = , 14 22

22ij ijK H S = − , 16 22

24ij ijK H S =  

 22 22

23ij ijK H S = , 25 22

23ij ijK H S = − , 26 22

34ij ijK H S = −  

 44 22

22ij ijK H S = , 46 22

24ij ijK H S = − , 55 22

23ij ijK H S =  

 55 22

23ij ijK H S = , 56 22

34ij ijK H S = , 66 11 22

11 44ij ij ijK H S H S = +  

 
0

sL r
jrs i

ij r s
S dz

z z

 
=

    (6-35) 

The components of mass matrix M  are given by: 

 

11 16

22 26

33 34 35 36

34 44 45 46

35 45 55 56

16 26 36 46 56 66

T

T

T T

T T T T T

 
 
 
 

=  
 
 
 
  

M 0 0 0 0 M

0 M 0 0 0 M

0 0 M M M M
M

0 0 M M M M

0 0 M M M M

M M M M M M

 (6-36) 

where 

 11 00

1ij ijM m S= , 16 00

2ij ijM m S= − , 22 00

1ij ijM m S= , 26 00

3ij ijM m S= , 33 11

1ij ijM m S=  
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 34 11

6ij ijM m S= , 35 11

10ij ijM M S= , 36 11

13ij ijM m S= − , 44 11

7ij ijM m S= , 45 11

8ij ijM m S=   

 46 11

9ij ijM m S= − , 55 11

11ij ijM m S= , 56 11

12ij ijM m S= − , ( )66 11 00

14 4 5ij ij ijM m S m m S= + +  (6-37)  

The non-zero components of load vector  0 0 0 0 0
T

=F f  are given by: 

 if =
0

L

iq dz   (6-38) 

6.3. Numerical results 

In this section, several numerical examples for FG thin-walled sandwich microbeams with 

and without the size-effect are presented. The geometries of I- and C-sections are given in 

Fig. 6-3 by 1 2 3h h h h= = = , 3 40b h= . For C1 and C2-section, 1 2 20b b h= =  while for I1 and 

I2-section, 1 20b h= , 2 10b h= . Unless stated otherwise, the thickness ratios of ceramic 

material are given as: for I1, 1 2 30.9, 0.1, 0.4  = = = ; for I2, 1 2 3 0.1  = = =  and for C2, 

1 2 3 0.3  = = = . The following material properties are used for the static analysis: 

320.7cE GPa= , 105.69mE GPa= , 0.3c m  = = =  and the vibration analysis: 380cE GPa= , 

70mE GPa= , 33960 /c kg m = , 32702 /m kg m = , 0.3c m  = = = . The MLSP is assumed to 

be 15l m= for the analysis of all subsequent sections. The non-dimensional deflections and 

frequencies of microbeams are revealed as follows.  

Non-dimensional deflection under point load (P): 

 
3

2 23
1000P PcE hb

u u
PL

=   (6-39) 

Non-dimensional deflection under uniform distributed load (q): 

 
3

2 24
1000P PcE hb

u u
qL

=   (6-40) 

Non-dimensional frequency: 

 
2

3

m

m

L

b E


 =  (6-41) 
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6.3.1 Convergence study 

FG thin-walled C1-beams ( 5p = , 3/ 20L b =  and 40) under uniformly distributed load q  

with various BCs are analysed. Their fundamental frequencies and mid-span deflections are 

presented in Table 6-2. The beam height-to-material length scale ratio / 03b l =  refers to 

macrobeam while / 13b l =  is for microbeam. It can be seen that in all cases, the series 

number 10m =  ensures the convergence of the present solution. For that reason, 10m =  will 

be used in the subsequent sections. 

Table 6-2: Convergence of fundamental frequencies and mid-span deflections of FG 

sandwich thin-walled C1-beams ( 5p = ) 

/3b l  
BC 

  

m            

2 4 6 8 10 12 

Non-dimensional fundamental frequency 

1 

S-S 8.157 8.051 8.020 8.020 8.020 8.020 

C-F 2.900 2.861 2.859 2.859 2.859 2.859 

C-C 18.186 18.121 18.118 18.116 18.115 18.115 

0 

S-S 2.039 2.012 2.005 2.005 2.005 2.005 

C-F 0.725 0.715 0.714 0.714 0.714 0.714 

C-C 4.546 4.529 4.529 4.529 4.529 4.529 

Non-dimensional mid-span displacement 

1 

S-S 26.205 26.993 27.164 27.151 27.153 27.153 

C-F 89.072 91.847 92.131 92.115 92.123 92.122 

C-C 5.704 5.696 5.714 5.722 5.723 5.722 

0 

S-S 86.280 88.895 89.461 89.418 89.424 89.423 

C-F 293.611 302.730 303.642 303.599 303.640 303.635 

C-C 18.550 18.514 18.561 18.589 18.589 18.590 

  

6.3.2 Verification studies 

Since there is no available results on the FG sandwich thin-walled microbeams, the 
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verification is carried out with those of macrobeams ( 3 / 0b l = ).   

Example 1: FG thin-walled C1- and C2-beams are considered. Tables 6-3 and 6-4 display 

the mid-span deflection (mm) under a uniformly distributed load 500 /q N m=  and 

fundamental frequencies of the C1-beam. The first four natural frequencies of the C2-beam 

with various material power index p  are given in Table 6-5. In Table 6-3, the bending results 

show good agreements with those given by Nguyen et al. [192] for both cases of 3/ 20L b =  

and 3/ 50L b = . As predicted, the deflections increase with the increase of the power index 

p . In Tables 6-4 and 6-5, the fundamental frequencies are compared with the results from 

Nguyen et al. [193] and Nguyen et al. [192]. It can be seen that the results align well with 

those from previous studies, especially the one using shear deformable theory. 

Table 6-3: Verification on the mid-span deflections (mm) of FG sandwich C1- beams 

BC Theory 
p  

0 0.5 1 2 5 10 

3/ 20L b = , Uniformly distributed load 500 /q N m=  

S-S Present 0.394 0.507 0.592 0.712 0.892 1.008 

 Nguyen et al. (Shear) [192] 0.396 0.510 0.596 0.716 0.897 1.014 

 Nguyen et al. (No shear) 

[192]] 

0.390 0.502 0.586 0.705 0.883 0.998 

C-F Present 1.337 1.722 2.011 2.418 3.030 3.424 

 Nguyen et al. (Shear) [192]] 1.343 1.730  2.021  2.429  3.044  3.440 

 Nguyen et al. (No shear) 

[192]] 

1.325  1.706  1.993  2.396  3.003  3.393 

C-C Present 0.082 0.105 0.123 0.148 0.185 0.210 

 Nguyen et al. (Shear) [192]] 0.084  0.108  0.126  0.152  0.190  0.215 

 Nguyen et al. (No shear) 

[192]] 

0.078  0.100  0.117  0.141  0.177  0.200 

3/ 50L b = , Uniformly distributed load 500 /q N m=  

S-S Present 15.249 19.637 22.939 27.572 34.554 39.047 

 Nguyen et al. (Shear) [192] 15.261  19.654  22.958  27.596  34.583  39.080 

 Nguyen et al. (No shear) [192] 15.223  19.605  22.900  27.527  34.496  38.982 

C-F Present 51.834 66.752 77.972 93.726 117.455 132.731 

 Nguyen et al. (Shear) [192] 51.872  66.802  78.030  93.796  117.543  132.829 
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 Nguyen et al. (No shear) [192] 51.759  66.655  77.859  93.590  117.285  132.539 

C-C Present 3.069 3.952 4.617 5.550 6.955 7.859 

 Nguyen et al. (Shear) [192] 3.082  3.969  4.637  5.573  6.984  7.893 

 Nguyen et al. (No shear) [192] 3.045  3.921  4.580  5.505  6.899  7.797 

Table 6-4: Verification on the fundamental frequencies of FG thin-walled S-S C1-beams 

( 3/ 40L b = ) 

Theory   
p  

0 0.5 1 2 5 10 

Present 

1  3.0659 2.7541 2.5543 2.3112 2.0047 1.8348 

2  4.3456 3.8292 3.5581 3.2963 3.0128 2.8087 

3  10.2076 9.1571 8.5057 7.7367 6.7841 6.2312 

4  12.0947 10.7398 9.9695 9.1286 7.9979 7.3273 

Nguyen et al. 

[193] 

1  3.0668 2.7612 2.5642 2.3227 2.0148 1.8421 

2  4.3475 3.8641 3.6385 3.4141 3.1054 2.8575 

3  10.2254 9.2060 8.5828 7.8407 6.8811 6.2951 

4  12.1029 10.8223 10.1441 9.2903 8.0589 7.3684 

Nguyen et al. 

[192] 

(Shear) 

1  3.0659 2.7541 2.5544 2.3114 2.0048 1.8349 

2  4.3462 3.8270 3.5533 3.2895 3.0075 2.8059 

3  10.1965 9.1416 8.4879 7.7173 6.7663 6.2169 

4  12.0939 10.7356 9.9661 9.1447 8.0110 7.3327 

Nguyen et al. 

[192] 

(No shear) 

1  3.0668 2.7549 2.5551 2.3119 2.0054 1.8354 

2  4.3475 3.8653 3.6402 3.4168 3.1088 2.8599 

3  10.2254 9.2126 8.5910 7.8480 6.8848 6.2971 

4  12.1028 10.7996 10.1011 9.2302 8.0168 7.3391 

 

 

Table 6-5: Verification on fundamental frequencies of FG thin-walled S-S C2- beams 

( 3/ 40L b = ) 

Theory   
p  

0 0.5 1 2 5 10 
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Present 

1  3.0659 2.8667 2.7484 2.6137 2.4585 2.3796 

2  4.3456 3.7623 3.4420 3.1188 2.8245 2.7139 

3  10.2076 9.4192 8.9713 8.4818 7.9459 7.6852 

4  12.0947 10.8030 10.0971 9.3697 8.6553 8.3493 

Nguyen et al. 

[193] 

1  3.0668 2.8676 2.7492 2.6145 2.4592 2.3803 

2  4.3475 3.7636 3.4431 3.1197 2.8252 2.7146 

3  10.2254 9.4364 8.9881 8.4980 7.9612 7.7001 

4  12.1029 10.8096 10.1029 9.3747 8.6598 8.3535 

 

Example 2: FG thin-walled sandwich I1- and I2-beams with 3/ 10L b = and 20 are 

considered. The mid-span displacements are presented in Table 6-6 and 6-7 for the I1- and 

I2-beams subjected to a concentrated load at mid span. Good agreement is observed between 

the present results and those accounting for shear effect given by Kim and Lee [194] and 

Nguyen et al. [195]. Furthermore, Table 6-6 to 6-8 compares the fundamental frequencies 

between the present model and those from Nguyen et al. [193]. Again, excellent agreement 

between these results is found for different values of ceramic thickness ratio j  and power 

index p .  
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Table 6-6: Verification on the mid-span deflections of FG thin-walled I2-beams under concentrated load at mid-span with 

different boundary conditions  

BC Reference 3/ 10L b =  3/ 20L b =  

p=0 1 2 5 p=0 1 2 5 

S-S Present 82.963 118.814 138.803 166.876 80.347 115.064 134.430 161.615 

 Nguyen et al. 

(Shear) 

[195] 

82.965 118.813 138.799 166.879 80.346 115.064 134.424 161.614 

 Nguyen et al. 

(No shear) 

[195] 

79.476 113.816 132.962 159.863 79.473 113.815 132.964 159.859 

C-F Present 166.157 237.953 277.989 334.219 160.796 230.275 269.020 323.436 

 Nguyen et al. 

(Shear) 

[195] 

166.026 237.761 277.765 333.951 160.761 230.227 268.963 323.367 

 Nguyen et al. 

(No shear) 

[195] 

159.009 227.716 266.027 319.841 159.007 227.715 266.028 319.839 

C-C Present 23.321 33.365 38.974 46.851 20.717 29.659 34.650 41.658 

 Nguyen et al. 

(Shear) 

[195] 

23.251 33.212 38.689 46.655 20.663 29.603 34.589 41.588 

 Nguyen et al. 

(No shear) 

[195] 

19.871 28.363 33.039 39.844 19.8169 24.1543 26.1739 28.7235 
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Table 6-7: Verification on the non-dimensional fundamental frequencies of FG thin-walled 

S-S I1- beams ( 3/ 40L b = ) 

Section Theory p  
3  

0 

 

0.2 

 

0.4 

 

0.6 

 

0.8  

 

1 

M1 [193] 

( 1 0.9 = , 

2 0.1 = ) 

Present 
1 1.516 1.504 1.493 1.485 1.478 1.471 

5 1.511 1.486 1.468 1.455 1.446 1.438 

Nguyen et 

al. [193] 

1 1.530 1.515 1.503 1.491 1.482 1.475 

5 1.559 1.522 1.493 1.472 1.456 1.444 

M2 [193] 

( 1 0.1 = , 

2 0.9 = ) 

Present 
1 1.334 1.322 1.311 1.301 1.292 1.284 

5 1.165 1.144 1.125 1.108 1.093 1.079 

Nguyen et 

al. [193] 

1 1.327 1.316 1.306 1.297 1.288 1.281 

5 1.153 1.133 1.116 1.101 1.087 1.074 

6.3.3 Parametric study 

In this section, the results are computed for the FG thin-walled microbeams with various 

/ 1,2,43b l =  along with those from macrobeam / 03b l =  to investigate the size effect.  

Example 3: The mid-span deflections and fundamental frequencies of FG thin-walled C1-

beams are shown in Tables 6-9 and 6-10. As seen in Table 6-8, in the cases where 

/ 1,2,43b l = , the size-dependent effect is significant. The size effect makes the beam stiffer 

which results in a smaller mid-span deflection and larger frequencies. 
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Table 6-8: Size effects on the mid-span deflections of FG thin-walled C1-section 

microbeams under uniformly distributed load  

B

C /

3b

l
 3/ 10L b =  3/ 20L b =  

p=0 1 2 5 p=0 1 2 5 

SS 0 40.682 61.198 73.563 92.187 39.463 59.364 71.358 89.424 

 1 12.501 18.805 22.604 28.327 11.983 18.025 21.667 27.153 

 2 25.858 38.898 46.756 58.595 25.042 37.670 45.281 56.745 

 4 35.563 53.497 64.305 80.586 34.492 51.885 62.367 78.158 

CF 0 137.612 207.009 248.835 311.834 133.997 201.570 242.296 303.640 

 1 42.090 63.315 76.107 95.377 40.654 61.154 73.510 92.123 

 2 87.326 131.362 157.903 197.883 85.012 127.882 153.719 192.639 

 4 120.218 180.842 217.380 272.417 117.110 176.165 211.757 265.371 

C

C 
0 9.383 14.117 16.965 21.483 8.209 12.341 14.834 18.592 

 1 2.982 4.485 5.392 6.758 2.526 3.799 4.566 5.723 

 2 5.965 8.963 10.774 13.507 5.214 7.843 9.426 11.815 

 4 8.182 12.309 14.788 18.540 7.163 10.786 12.965 16.249 
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Table 6-9: Size effects on the lowest frequencies of FG thin-walled S-S C1-section 

microbeams ( 3/ 10L b = ) 

/3b l    
p  

0 0.5 1 2 5 10 

0 

1  2.530 2.267 2.106 1.917 1.685 1.549 

2  3.053 2.743 2.544 2.302 1.997 1.828 

3  9.406 8.475 7.874 7.136 6.193 5.661 

4  9.509 8.553 7.944 7.207 6.275 5.746 

1 

1  11.982 10.809 10.049 9.110 7.903 7.219 

2  13.597 12.269 11.408 10.343 8.972 8.195 

3  45.890 41.402 38.490 34.896 30.270 27.651 

4  49.831 44.968 41.810 37.910 32.886 30.037 

2 

1  6.595 5.945 5.525 5.007 4.344 3.969 

2  9.432 8.511 7.914 7.175 6.224 5.685 

3  25.859 23.315 21.667 19.638 17.035 15.565 

4  34.818 31.422 29.216 26.492 22.980 20.989 

4 

1  4.231 3.809 3.537 3.204 2.779 2.541 

2  7.977 7.199 6.694 6.070 5.265 4.809 

3  16.682 15.020 13.948 12.634 10.959 10.020 

4  28.861 26.050 24.224 21.968 19.057 17.404 

 

It can also be seen from Figs. 6-4 and 6-5 that under all boundary conditions, the beam’s 

bending and vibration responses experience a drastic change from / 13b l =  to / 23b l =  but 

the slope quickly becomes less steep when / 23b l  . To better understand the the influences 

of the flange-width-to –MLSP ratio ( 1 /b l ) on the dynamic behaviours of these C1 FG 

microbeams, the first three natural frequencies are shown in Fig. 6-6. Since the microbeam’s 

geometrical shape is preserved and is set with 3 12b b= , the 1 /b l  ratio’s effects on the 

frequencies at all modes are proportional to the /3b l  ratio, which can be deduced by 

comparing Figs. 6-5 and  6-6. Additionally, it is interesting to see the very sharp drop of the 

frequencies in the third mode compared to first one in all boundary conditions when 

1 / 5b l   . Besides, the second frequencies converge to the macro beam value when 1 / 20b l = , 

which is much quicker than the other two modes. 
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a) S-S         b) C-C   

c) C-F 

 

Figure 6-3: Effects of  on the mid-span deflections of FG thin-walled C1-beams under uniformly 

distributed load  
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a) S-S            b) C-C   

c) C-F 

 Figure 6-4: Effects of 3 /b l  on the fundamental frequency of FG thin-walled 

C1-beams ( )/ 103L b =  

 

 

 

 

Example 4: This example investigates the vibration of FG thin-walled C2-beam. The 
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present solution in Table 6-10 shows that when taking the size-dependent effect into 

account, the fundamental frequencies at 3 / 1b l =  are more than 4 times greater than at 

3 / 0b l = . As 3 /b l  ratio increases, the vibration responses decrease and become closer to 

those of the macrobeam model. This pattern applies for all values of power index p  and all 

three boundary conditions as can be seen in Table 6-10 and Fig. 6-6. It is also worth pointing 

out that in Fig. 6-6, at 3 / 0b l = , there is only a slight decrease in fundamental frequency 

when the power index p  changes from 0 to 1. Nonetheless, at 3 / 1b l = , a big difference in 

the fundamental frequencies compared between the microbeam and macrobeam model can 

be observed. Figure 6-8 shows the first two mode shapes when 3 / 0b l =  and 3 / 1b l = . It is 

noticeable that the first mode of the macrobeam is torsion mode. The second mode of 

marcobeam can be observed to be very similar to the first one of microbeams which are 

bending mode. The second mode of microbeam is also bending mode. The understanding of 

the beam vibrational mode can help detect defects and prevent structural failures. 

Table 6-10: Size effects on the lowest frequencies of FG thin-walled S-S C1-section 

microbeams ( 3/ 10L b = ) 

/3b l    
p  

0 0.5 1 2 5 10 

0 

1  2.530 2.267 2.106 1.917 1.685 1.549 

2  3.053 2.743 2.544 2.302 1.997 1.828 

3  9.406 8.475 7.874 7.136 6.193 5.661 

4  9.509 8.553 7.944 7.207 6.275 5.746 

1 

1  11.982 10.809 10.049 9.110 7.903 7.219 

2  13.597 12.269 11.408 10.343 8.972 8.195 

3  45.890 41.402 38.490 34.896 30.270 27.651 

4  49.831 44.968 41.810 37.910 32.886 30.037 

2 

1  6.595 5.945 5.525 5.007 4.344 3.969 

2  9.432 8.511 7.914 7.175 6.224 5.685 

3  25.859 23.315 21.667 19.638 17.035 15.565 

4  34.818 31.422 29.216 26.492 22.980 20.989 
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4 

1  4.231 3.809 3.537 3.204 2.779 2.541 

2  7.977 7.199 6.694 6.070 5.265 4.809 

3  16.682 15.020 13.948 12.634 10.959 10.020 

4  28.861 26.050 24.224 21.968 19.057 17.404 

 

a) S-S            b) C-C 

c) C-F 

Example 5: The size-dependent effect is investigated on the FG thin-walled I1- and I2-

beams subjected to a concentrated load at mid-span and their mid-span displacements are 

Figure 6-5: Effects of 1 /b l  on the first three natural frequencies of FG thin-walled C1-beams 

( )/ 10, 13L b p= =  
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provided in Tables 6-11 and 6-12. The lower values demonstrate a stiffer beam, the 

microbeams again show an increase in stiffness compared to its macro beam counterpart. 

The lower the 3 /b l  ratio is, the stiffer the microbeam becomes. As shown in Table 6-12, the 

mid-span displacement when 3 / 0b l =  is four to five times greater than when 3 / 1b l = . Fig. 

6-9 further demonstrates the variation of the mid span displacement with different values of 

power index p  and /3b l  ratios. 

Table 6-11: Size effects on the mid-span deflections of FG thin-walled I1-section 

microbeams under concentrated load at mid-span  

BC /3b l  
3/ 10L b =  3/ 20L b =  

p=0 1 2 5 p=0 1 2 5 

S-

S 
0 82.963 118.814 138.803 166.876 80.347 98.142 106.445 116.663 

 1 23.664 33.889 39.590 47.599 22.620 27.298 29.354 31.773 

 2 50.620 72.491 84.688 101.818 48.952 59.403 64.125 69.799 

 4 71.483 102.372 119.597 143.787 69.231 84.371 91.351 99.879 

C-

F 
0 166.157 202.853 219.929 240.911 160.796 196.412 213.026 233.472 

 1 47.307 57.068 61.350 66.380 45.262 54.622 58.738 63.579 

 2 101.263 122.821 132.542 144.202 97.956 118.867 128.318 139.673 

 4 143.087 174.283 188.641 206.135 138.546 168.838 182.814 199.870 

C-

C 
0 23.321 28.389 30.771 33.611 20.717 25.285 27.416 30.029 

 1 6.889 8.299 8.915 9.633 5.908 7.126 7.671 8.290 

 2 14.244 17.237 18.592 20.184 12.638 15.327 16.455 17.993 

 4 20.045 24.371 26.899 28.627 17.848 21.739 24.020 25.721 
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Table 6-12: Size effects on the mid-span deflections of FG I2-section microbeams under 

concentrated load at mid-span  

BC /3b l  
3/ 10L b =  3/ 20L b =  

  p=0 1 2 5 0 1 2 5 

S-S 0 82.963 118.814 138.803 166.876 80.347 115.064 134.431 161.617 

 1 23.664 33.889 39.590 47.599 22.620 32.393 37.843 45.497 

 2 50.620 72.491 84.688 101.818 48.952 70.103 81.897 98.463 

 4 71.483 102.372 119.597 143.787 69.232 99.152 115.827 139.259 

C-F 0 166.157 237.953 277.989 334.219 160.796 230.276 269.020 323.436 

 1 47.307 67.746 79.144 95.153 45.262 64.818 75.723 91.040 

 2 101.263 145.017 169.416 203.684 97.956 140.281 163.883 197.033 

 4 143.087 204.914 239.391 287.814 138.546 198.410 231.793 278.679 

C-C 0 23.321 33.365 38.974 46.851 20.713 29.668 34.652 41.675 

 1 6.889 9.866 11.525 13.857 5.907 8.462 9.884 11.882 

 2 14.242 20.389 23.814 28.632 12.643 18.102 21.161 25.421 

 4 20.066 28.614 33.572 40.320 17.851 25.553 29.860 35.902 
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a) S-S 

 

  
b) C-C 
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c) C-F 

Figure 6-6: Effects of 3 /b l and p  on the fundamental frequency of FG sandwich thin-

walled C2-beams ( )/ 103L b =  under various boundary conditions 

Example 6: Vibration analysis of the FG sandwich I1- and I2-microbeams is carried out. 

Tables 6-13 and 6-14 display the first four natural frequencies of simply-supported beams 

when / 0,1,2,43b l = . At 0p = , both sections are fully made of ceramic material and 

therefore, the results for both sections are identical. Nonetheless, across all values of p , the 

size-dependent effects on the microbeam are conspicuous as observed in previous examples. 

The beam becomes stiffer and thus, has higher dimensionless fundamental frequencies when 

the /3b l  ratio gets smaller. Besides, Fig. 6-8 shows the first two mode shapes of the micro- 

and macro-I1 S-S beams. Both the mode shapes of the macro I1-beam are torsion mode 

while those of micro I1-beam are bending mode. In Table 6-13 and 6-14, the frequencies in 

all modes of both I1- and I2- microbeam at / 13b l = are 5 to 12 times more than those of the 
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macrobeam at / 03b l = . Thus, the microbeam is less likely to fail than the macrobeams made 

from the same FG material.  

Table 6-13: Size effects on the lowest frequencies of FG thin-walled S-S I1-section 

microbeams ( 3/ 10L b = ) 

/3b l    
p  

0 0.5 1 2 5 10 

0 

1  1.178 1.084 1.028 0.967 0.899 0.867 

2  2.440 2.374 2.346 2.322 2.303 2.295 

3  3.959 3.590 3.370 3.119 2.831 2.683 

4  7.163 6.802 6.583 6.328 5.946 5.601 

1 

1  11.728 11.211 10.919 10.602 10.255 10.086 

2  13.429 12.808 12.450 12.052 11.605 11.382 

3  45.203 43.201 42.074 40.847 39.503 38.848 

4  49.542 47.269 45.966 44.522 42.906 42.103 

2 

1  6.068 5.814 5.671 5.516 5.346 5.263 

2  9.171 8.730 8.469 8.172 7.829 7.654 

3  23.986 22.976 22.408 21.791 21.117 20.789 

4  34.271 32.639 31.678 30.589 29.336 28.698 

4 

1  3.326 3.210 3.145 3.075 2.999 2.962 

2  7.716 7.334 7.104 6.838 6.524 6.362 

3  13.232 12.768 12.508 12.227 11.922 11.774 

4  28.860 27.445 26.596 25.618 24.471 23.878 
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Table 6-14: Size effects on the lowest frequencies of FG thin-walled S-S I2-section 

microbeams ( 3/ 10L b = ) 

/3b l    
p  

0 0.5 1 2 5 10 

0 

1  1.178 1.032 0.947 0.856 0.766 0.726 

2  2.440 2.168 2.011 1.838 1.648 1.555 

3  3.959 3.533 3.283 3.004 2.694 2.541 

4  7.163 6.544 6.155 5.688 5.113 4.801 

1 

1  11.728 10.715 10.078 9.314 8.372 7.861 

2  13.429 12.270 11.540 10.665 9.586 9.002 

3  45.203 41.301 38.844 35.900 32.267 30.300 

4  49.542 45.266 42.573 39.346 35.365 33.209 

2 

1  6.068 5.544 5.214 4.819 4.331 4.067 

2  9.171 8.379 7.881 7.283 6.546 6.147 

3  23.986 21.915 20.611 19.048 17.121 16.077 

4  34.271 31.313 29.450 27.217 24.464 22.972 

4 

1  3.326 3.038 2.857 2.641 2.373 2.229 

2  7.716 7.050 6.631 6.128 5.508 5.172 

3  13.232 12.089 11.369 10.507 9.444 8.868 

4  28.860 26.369 24.800 22.920 20.601 19.345 
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3/ 0l b =  3/ 1l b =  

  

3/ 0l b =  3/ 1l b =  

 

Figure 6-7: The first two mode shapes of FG thin-walled C2-section macro- and micro- beams (, , S-S 

boundary condition) 
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a) S-S 

 
b) C-C 

  
c) C-F 

Figure 6-8: Effects of 3 /b l and p  on the mid-span displacement of the FG sandwich thin-

walled I2-beams ( )/ 103L b =  under various boundary conditions 
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6.4. Conclusions 

By using the first-order shear deformation theory and modified couple stress theory, this 

chapter studied for the first time the size-dependent behaviours of functionally graded 

sandwich thin-walled C and I-beams. The effects of boundary conditions, material 

distribution, beam length-to-height ratio and material length scale parameter were 

investigated. The following findings were drawn from the numerical results: 

• The size-dependent effect made the FG thin-walled microbeams considerably stiffer, 

which in turn reduced the beam’s bending transverse deflections and increased the 

beam’s fundamental frequencies. 

• The mid-span displacement of the C1 and I2 microbeams converged to the values of 

their macro-beam counterparts at / 203b l =  under all three boundary conditions 

• The fundamental frequency of the C1 and C2 microbeams converged to their 

macrobeam values quickly under C-F condition at / 203b l =  but converged much 

slower under S-S and C-C condition at / 1003b l =  
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CHAPTER 7 : VIBRATION AND BUCKLING ANALYSIS OF POROUS METAL 

FOAM THIN-WALLED BEAMS WITH CLOSED SECTION 

 

Extending the exploration of thin-walled beam behaviors to innovative material composition  

and closed cross-section, this chapter investigates the vibration and buckling analysis of 

porous metal foam thin-walled box beams. These beams exhibit a unique structural 

configuration with symmetrical and asymmetrical porosity distributions along their wall 

thickness, thereby altering their effective mechanical properties. The first-order shear 

deformable thin-walled beam theory is employed and the governing equations are derived 

using the Hamilton’s principle. Numerical results are presented for porous metal foam thin-

walled box beams under simply-supported, clamped-clamped and clamped-free boundary 

conditions. The effects of various porosity parameters, length-to-side and side-to-wall-

thickness ratios on the beams’ performance are also examined. A comprehensive 

comparison between the porous metal foam thin-walled box beams and their counterparts 

in the form of equivalent homogeneous and functionally graded thin-walled beams are 

presented. The findings contribute to the advancement of thin-walled beam theories and 

offer benchmarks for future studies in lightweight and high-performance structural 

applications. 

7.1. Introduction 

Previous Chapters have not performed the analysis on closed-section thin-walled beams 

(CSTWB). Henceforth, this Chapter fills in this void in this thesis. Compared to open-

sectioned thin-walled beams, CSTWB possesses increased torsional rigidity, thanks to its 

closed shape. This is crucial in applications where resistance to twisting or torsional 

deformation is important. CSTWB also exhibit superior resistance to buckling compared to 

open-section beams. Choi and Kim [196] proposed a higher-order Vlasov’s torsion theory 

that incorporates extra sectional deformation modes for thin-walled box beams. By using 

FTWBT, Ziane et al. [197] investigated the free vibration of FG thin-walled box beam. 
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Many other authors have investigated the FG thin-walled closed section beams but not 

porous metal foam (PMF) particularly. 

Recently, the exceptional material attributes of PMF have increasingly enticed researchers 

to explore its characteristics and behaviors for various structures. Despite the growing 

number of recent researches in PMF beams with rectangle sections [198-202], there are no 

studies on the mechanical responses of PMF thin-walled beams. Only several earlier 

researches investigated static and dynamic responses of FG thin-walled beams with 

porosity. By using the FTWBT and Galerkin method, Ziane et al. [203] analysed the thermal 

effects on the stability of FG box beams with porosity and Farsadi [204] investigated the 

statics and dynamics of FG thin-walled rotating blades with porosity.  

This Chapter aims to study vibration and buckling analysis of the PMF box beam using the 

FTWBT for the first time. Both symmetric and nonsymmetric porosity distributions via the 

thickness are considered. Governing equations are derived from the Hamilton’s principle 

and are solved using the Ritz-type hybrid series solution. The effects of porosity 

configurations, boundary conditions, length-to-height ratio, height-to-wall-thickness ratio 

and cross-section shapes on the vibration and buckling analysis of PMF thin-walled box 

beams are evaluated. These insights can contribute to the future analysis and design 

considerations in multiple state-of-the-art engineering fields. 

7.2. Theoretical formulation  

This chapter considers a PMF thin-walled box beam with length L . For simplicity purpose, 

the following assumptions are made: the strains are small and the section contour does not 

deform in its own plane, the shear and warping shear strains are uniform over the section, 

local buckling and pre-buckling deformation are negligible.  
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7.2.1. Kinematics 

The kinematics of the FTWBT at any points of the section can be derived from section 3.2.1 

of Chapter 3 by setting 0 1,g g f n= = = . These displacements are expressed by:  

 ( ) ( ) ( ) ( ),, , P s Pu n s z u z y nx y z= − − −    (7-1a) 

 ( ) ( ) ( ) ( ),, , P s Pv n s z v z x ny x z= + + −    (7-1b) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(0) (0)

0 , ,

, , , , , ,

, ,

( ) ( )

xz s yz s

z s P z s P z s

w n s z w z z x ny z y nx

z F nr u z x ny v y nx

 



= + + + −

− − − + − −
   (7-1c) 

where ( )F s  is a warping function defined by: 

 ( ) ( )
0

2
s

n

s

F s r s ds


 
= − 

 
   (7-2) 

where   is the area enclosed by the contour line of the beam and   is the cross-section 

perimeter. 

7.2.2. Strains 

The linear non-zero strains related to the displacements in Eq. (7-6) are given by: 

 ( ) ( ) ( )0 1
, ,z z zn s z n  = +  (7-3a) 

 ( ) ( ) ( )0 1
, ,sz sz szn s z n  = +  (7-3b) 

 ( ) ( )0
, ,nz nzn s z =  (7-3c) 

where 

 ( ) ( ) ( )0 0

, , , ,,z z y z x z zzs z w x y F   = + + −  (7-4a) 

 ( ) ( )1

, , , , ,,z y z s x z s zz ss z y x r   = − +  (7-4b) 

 ( ) ( ) ( ) ( )0 0 0

, ,,sz xz s yz ss z x y  = +  (7-4c) 

 ( ) ( )1

,, 2sz zs z =  (7-4d) 
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 ( ) ( ) ( ) ( )0 0 0

, ,,nz xz s yz ss z y x  = −  (7-4e) 

7.2.3. Stress 

The stress-strain relation of the PMF thin-walled beams whose properties vary continuously 

in the thickness can be written as follows: 

 

11

66

55

0 0

0 0

0 0

z z

sz sz

nz nz

Q

Q

Q

 

 

 

    
    

=    
    

    

 (7-5) 

where ( )11Q E n= , 
( )

( )
66 55

2 1

E n
Q Q


= =

+
; ( )E n  is Young’s modulus;   is constant Poisson’s 

ratio. In this study, two porosity patterns [51-53] of PMF thin-walled beams are considered 

as indicated in Fig. 7-2.  

Symmetric pore distribution (Type A) 

 ( ) max 01 cos
n

E n E e
h

  
= −   

  
 (7-6a) 

  ( ) max 1 cosm

n
n e

h


 

  
= −   

  
 (7-6b) 

Asymmetric pore distribution (Type B) 

  ( ) max 01 cos
2 4

n
E n E e

h

   
= − +  

  
 (7-6a) 

  ( ) max 1 cos
2 4

m

n
n e

h

 
 

  
= − +  

  
 (7-6b) 

where: maxE  and max  are the maximum values of Young’s modulus and mass density, 

respectively; 0e  and 01 1me e= − −  are the porosity parameters; ( )n  is mass density of the 

PMF thin-walled beams. 
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a) Symmetric pore distribution (Type A) 

b) Asymmetric pore distribution (Type B) 

7.2.4. Variational formulation and Solution 

The variational formulation and solution in this Chapter is based on the FTWBT mentioned 

in Chapter II. The approximation functions for the Ritz-type solution is shown in Table 7-

1. These functions are combined of exponential and admissible trigonometric functions to 

satisfy various boundary conditions.  

  

Figure 7-1: Porous metal foam (PMF) material distribution in the wall thickness 
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Table 7-1: Shape functions and essential BCs of PMF thin-walled box beams 

 

BC   3( )j x  0z =  z L=  

S-S ( ) 1
jz

L
z

z L e
L

−
 

− − 
 

 
 

0  = = =  

 

 
0  = = =  

C-F 

2 jz

L
z

e
L

−
 
 
 

 

0  = = =  

,3 ,3 ,3 0  = = =  

2 1 0   = = = =  

 

C-C 

2 2

1
jz

L
z z

e
L L

−
   

−   
   

 

0  = = =  

,3 ,3 ,3 0  = = =  

2 1 0   = = = =  

0  = = =  

,3 ,3 ,3 0  = = =  

2 1 0   = = = =  

 

7.3. Numerical results 

The present FTWBT beam model for the PMF box beams is compared and computed for 

different cases in this section. Porous alumina is chosen to be the material of the studied 

beams. The material has been widely used in the industry due to many advantages such as 

cost, environmental sustainability, and production time. Its properties in this chapter are 

assumed to be max 380E GPa= , 0.3v = , 3

max 3800kgm −= . The following subsections 

investigate the impacts of porosity, boundary conditions and geometry on the buckling and 

vibration stability of the PMF thin-walled box beams. It is noted that when 0 0e = , the PMF 

thin-walled box beam is isotropic, homogenous and pore-less. 

7.3.1 Convergence study 

By refering to the geometry symbols shown in Fig. 7-3, the convergence and accuracy of 

the present solution are studied for the sample thin-walled box beams with the following 

dimensions: 

Buckling analysis: 1 2 3 4 0.005h h h h h m= = = = = , 1 3 0.1b b m= = , 2 4 0.2b b m= = , 8mL = . 

Vibration analysis: 1 2 3 4 0.000762h h h h h m= = = = = , 1 3 0.0136b b m h= = − , 
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2 4 0.0242b b m h= = − , 0.762mL = . 

 

Figure 7-2: Geometry of PMF thin-walled box beams. 

 

Table 7-2 shows the fundamental frequencies and the critical buckling loads of the PMF 

thin-walled box beams as the series number m  increases. It can be seen that the present 

solution converges at series number 8m =  for all boundary conditions. For that reason, this 

series number is applied in the upcoming examples. 
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Table 7-2: Convergence of fundamental frequencies ( Hz ) and critical buckling load (MN) 

of the FGP thin-walled box beams 

BCs 
m       

2 4 6 8 10 12 

Critical buckling loads (MN) 

S-S 0.24018 0.23473 0.23307 0.23305 0.23305 0.23305 

C-C 0.45929 0.45862 0.45851 0.45851 0.45851 0.45851 

C-F 0.06162 0.05830 0.05830 0.05830 0.05830 0.05830 

Fundamental frequencies (Hz) 

S-S 141.27 139.43 138.90 138.90 138.90 138.90 

C-C 203.98 197.32 196.29 196.13 196.12 196.11 

C-F 50.22 49.55 49.51 49.51 49.51 49.51 

 

7.3.2 Verification study 

Since there is no previous numerical data for the vibration and buckling analysis of the PMF 

thin-walled box beams, the present solutions are verified with those of Ziane et al. [197] and 

Lanc et al. [205] for metal-ceramic FG thin-walled box beams. The material properties used 

by Ziane et al. [197] are: 380 , 70c mE GPa E GPa= = , 3 33800 , 2707c mkgm kgm − −= = , 0.3 = . 

The material properties used by Lanc et al. [205] are: 380 , 70c mE GPa E GPa= = , 0.3 = .  

Example 1: The buckling responses of the present beam model align exceptionally with 

those computed by Lanc et al. [205] as shown in Tables 7-3 and 7-4. The solutions are 

computed with the different BCs (simply supported S-S, clamped-clamped C-C, clamped-

free C-F) and, power-law indices p  and types of FG material distribution. It is noted that 

while Lanc et al. [205] used the CTWBT, this chapter applies the FTWBT. Therefore, the 

buckling loads computed by the present model are expected to be lower than those of [205], 

which is shown in all cases. Nonetheless, the differences are only noticeable in S-S and C-

C boundary conditions. This is due to the shear effects being only significant when the 

length-to-height ratio 3/L b  is low but the current beam’s 3/L b  ratio equals 80 which is 
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relatively high. The buckling responses for the FG box beams with 3/ 10L b = and 3/ 20L b =  

are included in Tables 7-3 and 7-4 for future investigation of this shear effect. 

Table 7-3: Verification the critical buckling loads ( 610 N ) of the FG thin-walled box beams 

BC Mode Reference 
p  

0 1 2 5 10 1000 

3/ b 80L =  

CF Y Present 0.08550 0.05162 0.04000 0.02809 0.02255 0.01583  
Y Lanc [205] 0.08552 0.05163 0.04001 0.02810 0.02255 0.01583  
X Present 0.24406 0.14551 0.11232 0.07886 0.06351 0.04516  
X Lanc [205] 0.24420 0.14559 0.11239 0.07890 0.06355 0.04519 

SS Y Present 0.34182 0.20637 0.15991 0.11231 0.09014 0.06327  
Y Lanc [205] 0.34209 0.20654 0.16004 0.11240 0.09022 0.06332  
X Present 0.97463 0.58105 0.44854 0.31490 0.25363 0.18036  
X Lanc [205] 0.97683 0.58237 0.44956 0.31562 0.25421 0.18076 

CC Y Present 1.36407 0.82351 0.63810 0.44815 0.35972 0.25248  
Y Lanc [205] 1.36903 0.82655 0.64047 0.44982 0.36105 0.25340  
X Present 3.87270 2.30870 1.78217 1.25117 1.00776 0.71664  
X Lanc [205] 3.90921 2.33061 1.79912 1.26307 1.01732 0.72340 

3/ b 20L =  

CF Y Present 1.36407 0.82351 0.63810 0.44815 0.35972 0.25248 

 X Present 3.87270 2.30870 1.78217 1.25117 1.00776 0.71664 

SS Y Present 5.40583 3.26299 2.52819 1.77558 1.42530 1.00060 

 X Present 15.09092 8.99483 6.94309 4.87435 3.92625 2.79256 

CC Y Present 20.85207 12.57769 9.74325 6.84270 5.49386 3.85957 

 X Present 54.71422 32.59172 25.15278 17.65808 14.22589 10.12471 

3/ b 10L =  

CF Y Present 5.40583 3.26299 2.52818 1.77558 1.42530 1.00059 

 X Present 15.09092 8.99483 6.94309 4.87435 3.92625 2.79256 

SS Y Present 20.85207 12.57770 9.74325 6.84270 5.49386 3.85957 

 X Present 54.71424 32.59172 25.15278 17.65808 14.22590 10.12471 

CC Y Present 72.99406 43.92641 34.00344 23.87902 19.18438 13.51007 

 X Present 159.24272 94.70104 73.04994 51.28126 41.33262 29.46647 
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Table 7-4: Verification the critical buckling loads ( 610 N ) of the FG thin-walled box beams 

( 1-2-1 skin-core-skin ratio) 

 

BC Mode Reference 0 1 2 5 10 1000 

3/ b 80L =  

CF 

Y Present 0.08550 0.06805 0.06224 0.05642 0.05378 0.05064 

Y Lanc [205] 0.08552 0.06807 0.06225 0.05643 0.05379 0.05062 

X Present 0.24406 0.19428 0.17769 0.16109 0.15355 0.14460 

X Lanc [205] 0.24420 0.19439 0.17779 0.16119 0.15364 0.14458 

SS 

Y Present 0.34182 0.27205 0.24880 0.22555 0.21499 0.20246 

Y Lanc [205] 0.34209 0.27227 0.24900 0.22574 0.21517 0.20248 

X Present 0.97463 0.77583 0.70957 0.64330 0.61319 0.57744 

X Lanc [205] 0.97683 0.77758 0.71117 0.64476 0.61457 0.57835 

CC 

Y Present 1.36407 1.08565 0.99287 0.90011 0.85795 0.80793 

Y Lanc [205] 1.36903 1.08959 0.99648 0.90338 0.86107 0.81031 

X Present 3.87270 3.08276 2.81946 2.55617 2.43650 2.29448 

X Lanc [205] 3.90921 3.11182 2.84604 2.58027 2.45947 2.31451 

3/ b 20L =  

CF Y Present 1.36407 1.08565 0.99287 0.90011 0.85795 0.80793 

 X Present 3.87270 3.08276 2.81946 2.55617 2.43650 2.29448 

SS Y Present 5.40583 4.30245 3.93476 3.56716 3.40010 3.20186 

 X Present 15.09092 12.01275 10.98674 9.96077 9.49444 8.94101 

CC Y Present 20.85207 16.59609 15.17782 13.75985 13.11544 12.35078 

 X Present 54.71422 43.55403 39.83412 36.11434 34.42360 32.41701 

3/ b 10L =  

CF Y Present 5.40583 4.30245 3.93476 3.56716 3.40009 3.20186 

 X Present 15.09092 12.01275 10.98674 9.96077 9.49444 8.94100 

SS Y Present 20.85207 16.59609 15.17782 13.75985 13.11545 12.35078 



211 

 

 X Present 54.71424 43.55404 39.83414 36.11436 34.42361 32.41705 

CC Y Present 72.99406 58.09715 53.13269 48.16917 45.91341 43.23662 

 X Present 159.24272 126.76267 115.93624 105.11024 100.18945 94.34946 

 

Example 2: The free vibration of the present thin-walled and thick-walled box beam is 

examined. Table 7-5 shows excellent agreements between the present solutions with those 

from Ziane et al. [197] and Abaqus software [197] for all cases of 0.2, 1, 10p p p= = =  under 

various BCs (S-S, C-C, C-F). Even though FTWBT is used in both studies, , the formulation 

of the stress resultants displayed in Eq. (7-16) of this chapter is different from previous one 

[197]. The natural frequencies shown in [197] are for the bending modes in X and Y-

direction which are equivalent to those in 1x −  and 2x − directions of this Chapter.  

Table 7-5: Verification of vibration analysis ( /rad s ) of the PMF thin-walled and thick-

walled box beams 

BC Reference 
p=0.2 p =1 p =10 

Mode Y Mode X Mode Y Mode X Mode Y Mode X 

Thin-walled box beam 

CF 

Present 324.84 510.28 285.79 446.86 203.40 317.90 

Ziane [197] 324.61 509.80 285.57 446.42 203.24 317.61 

Abaqus [197] 321.65 509.00 283.05 447.19 203.16 319.36 

SS 

Present 911.37 1430.56 801.81 1252.75 570.65 891.23 

Ziane [197] 909.98 1427.72 800.50 1250.22 569.72 889.43 

Abaqus [197] 913.20 1433.70 805.30 1261.20 574.16 898.29 

CC 

Present 2060.33 3221.20 1812.57 2820.71 1290.01 2006.70 

Ziane [197] 2044.51 3189.01 1797.73 2791.97 1279.39 1986.23 

Abaqus [197] 1998.40 3180.80 1752.90 2789.90 1256.40 1992.50 

Thick-walled box beam 

CF Present 243.02 477.86 223.50 422.91 160.59 301.28 
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Ziane [197] 242.87 476.97 223.32 422.08 160.45 300.68 

Abaqus [197] 254.13 492.69 236.17 448.12 171.46 322.42 

SS 

Present 681.37 1335.44 626.59 1181.78 450.20 841.90 

Ziane [197] 680.53 1330.39 625.55 1176.97 449.41 838.44 

Abaqus [197] 709.67 1372.60 659.38 1248.00 478.70 897.87 

CC 

Present 1535.21 2958.56 1410.85 2616.54 1013.56 1863.88 

Ziane [197] 1525.49 2903.00 1398.94 2563.97 1004.50 1826.14 

Abaqus [197] 1584.90 3025.70 1469.40 2744.90 1067.40 1974.80 

 

7.3.3 Parametric study 

This section investigates the effects of porosity distribution (type A and B), porosity 

parameters, boundary conditions and geometryon the buckling and vibration responses of 

PMF thin-walled box beam. The PMF thin-walled box beams considered are made from 

porous alumina with the following properties: max 380E GPa= , 3

max 3800kgm −= , 0.3 = . 

Unless stated otherwise, the geometry of the beam in this parametric study section, as 

displayed in Fig.7-3, is 1 2 3 4 0.005h h h h h m= = = = = , 2 4 1 32 2 0.2mb b b b= = = = . The 

percentage differences of the beams’ responses between the porosity distribution type A and 

type B are computed as 100%
typeA typeB

typeA

response response

response

−
 .  

Example 3: This example aims to investigate effects of porosity parameters and BCs on 

buckling and vibration of PMF thin-walled box beams. The length-to-height ratio 3/ bL  

equals to 10 or 80 for the buckling analysis, and equals to 10 for the vibration analysis. Table 

7-6 and Fig.7-4 show the critical buckling loads (MN) while Table 7-7 and Fig.7-5 show the 

natural frequencies (Hz) of the PMF beams for various 0e  all three BCs (S-S, C-C, C-F). In 

Tables 7-6, when 3/ b 80L = , the first buckling mode of the S-S and C-F beams is always 

2x −mode but that of C-C beams is torsional mode. When 3/ b 10L = , the buckling loads are 

much higher than when 3/ b 80L = , but these loads also decreases as the porosity parameter 
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0e  rises. Meanwhile, in case 3/ b 10L = , Table 7-7 shows that the first vibration mode is 

always torsional mode and the torsional frequencies computed are significantly lower than 

those of bending modes. Considering Fig. 7-4 and 7-5, it can be seen from Eqs. (7-10) and 

(7-11) that the increasing porosity parameter 0e  leads to the decrement of the Young’s 

modulus and the mass of porous beams. Consequently, as the 0e  increases from 0 to 0.7, the 

critical buckling loads decreases by up to 44%. However, there is a less drastic drop in 

natural frequencies since natural frequencies are inversely proportional to the square root of 

mass. The reduction in the beams’ stiffness is offset by the lower beams’ mass and therefore, 

when 0e  increases from 0 to 0.7, the natural frequencies for all bending modes decrease by 

11.7%. Interestingly, apart from the torsional mode when the beam is under the C-C 

boundary condition, there is minimal difference across all values of 0e .      
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Table 7-6: Buckling loads (MN) of PMF thin-walled box beam with various values of  

porosity parameter 0e  

BC Mode 
e0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Type A, 3/ b 80L =  

S-S 
2x  0.3201 0.2983 0.2766 0.2548 0.2330 0.2113 0.1895 

1x  0.9126 0.8505 0.7885 0.7265 0.6644 0.6024 0.5403 

C-C 

Min 0.5743 0.5512 0.5280 0.5048 0.4817 0.4585 0.4353 

2x  1.3641 1.2773 1.1904 1.1036 1.0168 0.9300 0.8432 

1x  3.8727 3.6262 3.3796 3.1331 2.8866 2.6400 2.3935 

C-F 
2x  0.0855 0.0801 0.0746 0.0692 0.0637 0.0583 0.0529 

1x  0.2441 0.2285 0.2130 0.1975 0.1819 0.1664 0.1508 

Type B, 3/ b 80L =  

S-S 
2x  0.3206 0.2993 0.2781 0.2568 0.2356 0.2143 0.1931 

X 0.9131 0.8516 0.7900 0.7285 0.6669 0.6054 0.5439 

C-C 

Min 0.5405 0.5066 0.4728 0.4389 0.4051 0.3712 0.3373 

2x  1.2793 1.1945 1.1096 1.0248 0.9400 0.8552 0.7704 

1x  3.6282 3.3836 3.1391 2.8945 2.6500 2.4055 2.1609 

C-F 
2x  0.0802 0.0749 0.0696 0.0642 0.0589 0.0536 0.0483 

1x  0.2287 0.2132 0.1978 0.1824 0.1670 0.1516 0.1362 

Type A, 3/ b 10L =  

SS 

Min 1.7772 1.6709 1.5646 1.4583 1.3520 1.2457 1.1394 

2x  19.5250 18.1979 16.8708 15.5437 14.2166 12.8895 11.5624 

1x  51.2312 47.7481 44.2651 40.7820 37.2990 33.8159 30.3329 

CC 

Min 5.7006 5.3282 4.9559 4.5835 4.2111 3.8387 3.4664 

2x  68.3483 63.7026 59.0568 54.4111 49.7653 45.1195 40.4738 

1x  149.1054 138.9680 128.8307 118.6933 108.5559 98.4186 88.2812 

CF 

Min 0.7964 0.7566 0.7168 0.6770 0.6372 0.5974 0.5576 

2x  5.0618 4.7177 4.3737 4.0297 3.6856 3.3416 2.9975 

1x  14.1302 13.1696 12.2089 11.2482 10.2876 9.3269 8.3662 
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Table 7-7: Natural frequencies (Hz) of PMF box beam with various values of porosity 

parameter 0e  ( 3/ b 10L = ) 

BC Mode 
0e  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Type A 

SS Min 203.11 200.60 198.08 195.57 193.11 190.78 188.72 187.20 

 
2x  670.41 659.59 648.46 637.05 625.43 613.72 602.23 591.60 

 
1x  1072.96 1055.63 1037.81 1019.54 1000.93 982.18 963.77 946.73 

CC Min 412.80 406.62 400.31 393.89 387.42 381.00 374.85 369.41 

 
2x  1398.49 1375.91 1352.70 1328.90 1304.65 1280.23 1256.25 1234.06 

 
1x  2014.93 1982.39 1948.93 1914.62 1879.66 1844.45 1809.88 1777.88 

CF Min 92.39 91.58 90.79 90.04 89.36 88.78 88.40 88.34 

 
2x  242.98 239.05 235.02 230.89 226.67 222.43 218.27 214.41 

 
1x  399.37 392.92 386.29 379.49 372.56 365.58 358.73 352.39 

Type B 

BC Mode 
0e  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

SS Min 203.11 199.95 196.70 193.38 190.02 186.65 183.37 180.38 

 
2x  670.41 660.08 649.49 638.69 627.76 616.85 606.29 596.77 

 
1x  1072.96 1055.88 1038.34 1020.39 1002.13 983.80 965.87 949.41 

CC Min 412.80 406.14 399.31 392.29 385.15 377.95 370.87 364.30 

 
2x  1398.49 1376.78 1354.53 1331.81 1308.78 1285.76 1263.43 1243.21 

 
1x  2014.93 1982.72 1949.62 1915.71 1881.21 1846.54 1812.59 1781.34 

CF Min 92.39 91.02 89.62 88.19 86.75 85.33 83.96 82.75 

 
2x  242.98 239.24 235.41 231.50 227.54 223.60 219.78 216.35 

 
1x  399.37 393.02 386.50 379.83 373.04 366.23 359.57 353.46 
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a) Buckling loads (MN) of type A 

 
b) Percentage difference of buckling loads between types A and B 
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Figure 7-4: Buckling loads (MN) of PMF thin-walled box beams with respect to various 

values of porosity parameter 0e   

Example 4: The objective of this example is to consider the effect of length-to-height ratio 

3/L b  on buckling and free vibration of PMF thin-walled box beams. The PMF thin-walled 

box beams with the aforementioned dimensions and 0 0.5e =  is examined in this example. 

The beam’s height is kept constant with 3 20.5 0.1b b m= =  and the wall thickness is 

1 2 3 4 0.005h h h h h m= = = = = . While keeping the beam’s height 3b  intact for both the 

buckling and vibration analysis, the length is varied for multiple 3/L b  ratios ranging from 

3/ 10L b =  to 3/ 50L b = . Tables 7-8 and 7-9 show the critical buckling loads (MN) and the 

natural frequencies (Hz) of the studied PMF thin-walled beams. It is apparent that the short 

beams are much stiffer than the long ones which can be seen from both Tables, Figs. 7-6 and 

7-7. The critical buckling loads and natural frequencies are subjected to exponential decay 

where the decay constant increases in the order of C-F<S-S<C-F boundary conditions. 

Comparing the porosity distribution types A and B, there is minimal difference of the critical 

Figure 7-3: Natural frequencies of the type A PMF thin-walled box beams with 

respect to various values of porosity parameter   

 



218 

 

buckling loads and fundamental frequencies across all values of 3/ bL . When 3/ b 35L  , the 

critical buckling loads of the cantilevered type A and type B PMF box beams are identical. 

Moreover, Figs. 7-8 and 7-9 display the buckling and free vibration mode shapes of the type-

A PMF box beams. The ascending order of the beams’ responses are with reference to the 

torsional, and  modes respectively. In Fig. 7-8 where the beam is under S-S boundary 

condition, the shapes of the beam’s highest displacement variable is a half wave. 

Nonetheless, for cantilevered beams in Fig. 7-9 these shapes are a quarter wave. 

 

Table 7-8: Buckling loads (MN) of PMF thin-walled box beams with various values of 3/L b  

( 0 0.5e = ) 

BC 
Mod

e 
3/L b  

10 20 30 40 50 60 70 

Type A 

S-S 

Min 1.35198 0.63720 0.50483 0.45851 0.43706 0.41405 0.30431 

2x  14.21660 3.68563 1.64936 0.93001 0.59587 0.41405 0.30431 

1x  37.29898 10.28758 4.66139 2.64005 1.69502 1.17914 0.86721 

C-

C 

Min 4.21110 1.35198 0.82252 0.63720 0.55143 0.50483 0.47674 

2x  49.76530 14.21660 6.48998 3.68563 2.36932 1.64935 1.21355 

1x  108.55587 37.29896 17.81220 10.28758 6.66666 4.66139 3.43892 

C-F 

Min 0.63720 0.45851 0.41405 0.23305 0.14919 0.10362 0.07614 

2x  3.68563 0.93001 0.41405 0.23305 0.14919 0.10362 0.07614 

1x  10.28758 2.64005 1.17914 0.66441 0.42556 0.29566 0.21728 

Type B 

S-S 

Min 1.29757 0.58356 0.45134 0.40506 0.38364 0.37201 0.30760 

2x  14.36292 3.72498 1.66709 0.94003 0.60230 0.41852 0.30760 

1x  37.42319 10.32539 4.67886 2.65001 1.70144 1.18361 0.87051 

C-

C 

Min 4.15358 1.29757 0.76868 0.58356 0.49788 0.45134 0.42328 

2x  50.21296 14.36292 6.55861 3.72498 2.39473 1.66709 1.22661 

1x  108.81873 37.42322 17.87596 10.32539 6.69147 4.67886 3.45186 

C-F 

Min 0.58356 0.40506 0.37201 0.23556 0.15080 0.10474 0.07696 

2x  3.72498 0.94003 0.41852 0.23556 0.15080 0.10474 0.07696 

1x  10.32539 2.65001 1.18361 0.66694 0.42718 0.29678 0.21810 

Table 7-9: Natural frequencies (Hz) of PMF thin-walled box beams with various values of 
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3/L b  ( 0 0.5e = )Tub 

BC Mode 
3/L b  

10 15 20 25 30 35 40 

Type A 

SS 

Min 190.78 99.24 65.52 48.76 38.88 32.39 27.79 

2x  613.72 277.71 157.23 100.94 70.21 51.64 39.56 

1x  982.18 457.05 261.64 168.86 117.81 86.80 66.58 

CC 

Min 381.00 178.83 107.55 74.11 55.59 44.12 36.44 

2x  1280.23 604.67 348.17 225.35 157.47 116.13 89.14 

1x  1844.45 936.03 557.45 367.28 259.33 192.50 148.39 

CF 

Min 88.78 50.48 34.68 26.21 20.99 17.47 14.11 

2x  222.43 99.72 56.27 36.06 25.06 18.42 14.11 

1x  365.58 166.35 94.38 60.65 42.21 31.05 23.80 

Type B 

SS 

Min 186.65 95.80 62.61 46.27 36.71 30.48 26.09 

2x  616.85 279.17 158.07 101.47 70.59 51.91 39.77 

1x  983.80 457.86 262.11 169.17 118.03 86.96 66.71 

CC 

Min 377.95 176.29 105.29 72.08 53.74 42.43 34.89 

2x  1285.76 607.60 349.94 226.52 158.30 116.75 89.61 

1x  1846.54 937.39 558.35 367.91 259.78 182.06 148.66 

CF 

Min 85.33 48.09 32.89 24.78 19.80 16.45 14.06 

2x  223.60 100.25 56.57 36.26 25.20 18.52 14.19 

1x  366.23 166.66 94.56 60.76 42.29 31.11 23.84 
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Figure 7-6: Critical buckling loads (MN) of FGP type A and B box beams 

with various values of 3/L b  

Figure 7-5: Natural frequencies of PMF thin-walled box beams with respect to 

3/L b   ( 0 0.5e = , S-S boundary condition) 
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Figure 7-7: Buckling mode shapes of type-B PMF thin-walled box beams with 0 0.5e = , S-

S boundary condition and 3/ 10L b =  
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Figure 7-8: Free vibration mode shapes of type-A PMF thin-walled box beams with 

0 0.5e = , C-F boundary condition and 3/ 10L b =  
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Example 5: This example is to examine the effect of height-to-thickness ratio on buckling 

and vibration responses of PMF thin-walled box beams. In this example, the PMF thin-

walled box beams with 0 0.5e = ,  are considered. The thickness of the beam walls is fixed at 

1 2 3 4 0.005h h h h h m= = = = =  for both the buckling analysis and for the vibration analysis. 

Tables 7-10, 7-11 and Figs. 7-10, 7-11 demonstrate the variation of the critical buckling 

loads and natural frequencies as the beams’ height 3b increase by the factor of 3 / 5b h =  to 

50. The buckling loads in bending mode 1x  and 2x  become larger as the 3 /b h  ratio increase 

in all boundary condition cases. However, the lowest critical buckling loads dip slightly 

from 3 / 5b h =  to 25 before rising slowly up until 3 / 50b h =  in the S-S and C-C boundary 

condition cases. This trend is opposite to that of the C-F case where the lowest critical 

buckling loads increase from 3 / 5b h =  to 15 but gradually drop afterwards. On the other 

hand, the natural frequencies experience an exponential decay as the height-to-thickness 

ratio rises. Comparing the responses of beams with type A and type B porosity distributions, 

Fig. 7-11b shows little discrepancy when the beams are in mode 1x  and 2x . The differences 

are only significant in the cases of the lowest mode. Under the C-C boundary condition, the 

beam’s lowest mode is torsional mode for all 3 /b h  ratios and the highest percentage 

difference is 6%. The sudden change of the “mode min” plots for SS and CF boundary 

condition at 3 / 10b h =  and 3 / 15b h =  respectively are due to the fact that at these thresholds, 

the type-A PMF beams’ lowest mode transitions from 2x -bending mode to torsion mode, 

while the type-B PMF beams’ lowest mode remains torsional. 
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Table 7-10: Buckling loads (MN) of PMF thin-walled box beams with various values of 

3 /b h  ( 3/ b 20L = , 0 0.5e = ) 

BC Mode 
3 /b h  

5 10 15 20 25 30 35 40 

Type A 

S-S 

Min 0.9331 0.9186 0.7114 0.6372 0.6163 0.6221 0.6432 0.6737 

2x  0.9331 1.8475 2.7660 3.6856 4.6056 5.5258 6.4462 7.3666 

1x  2.5775 5.1460 7.7166 10.2876 12.8588 15.4301 18.0015 20.5729 

C-C 

Min 1.8503 1.2829 1.2502 1.3520 1.5077 1.6905 1.8886 2.0964 

2x  3.5977 7.1257 10.6692 14.2166 17.7655 21.3152 24.8654 28.4158 

1x  9.3431 18.6568 27.9771 37.2990 46.6215 55.9444 65.2674 74.5906 

C-F 

Min 0.2355 0.4662 0.5767 0.4585 0.3935 0.3550 0.3318 0.3181 

2x  0.2355 0.4662 0.6980 0.9300 1.1622 1.3943 1.6266 1.8588 

1x  0.6615 1.3206 1.9803 2.6400 3.2999 3.9597 4.6196 5.2795 

Type B 

S-S 

Min 0.9712 0.8115 0.6399 0.5836 0.5734 0.5863 0.6125 0.6469 

2x  0.9712 1.8864 2.8053 3.7250 4.6451 5.5653 6.4857 7.4061 

1x  2.6147 5.1836 7.7543 10.3254 12.8967 15.4680 18.0394 20.6108 

C-C 

Min 1.6336 1.1742 1.1776 1.2976 1.4642 1.6542 1.8575 2.0692 

2x  3.7389 7.2704 10.8150 14.3629 17.9122 21.4621 25.0124 28.5629 

1x  9.4651 18.7803 28.1011 37.4232 46.7459 56.0688 65.3919 74.7151 

C-F 

Min 0.2452 0.4761 0.5055 0.4051 0.3507 0.3194 0.3013 0.2913 

2x  0.2452 0.4761 0.7080 0.9400 1.1722 1.4044 1.6366 1.8689 

1x  0.6713 1.3305 1.9902 2.6500 3.3099 3.9697 4.6296 5.2895 
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Table 7-11: Natural frequencies (Hz) of PMF thin-walled box beams with various values 

of 3 /b h  ( 3/ b 20L = , 0 0.5e = ) 

BC Mode 
3 /b h  

5 10 15 20 25 30 35 40 

Type A 

SS 

Min 632.89 222.50 106.58 65.52 46.11 35.24 28.43 23.82 

2x  632.89 314.86 209.71 157.23 125.77 104.80 89.82 78.59 

1x  1047.67 523.38 348.87 261.64 209.30 174.42 149.50 130.81 

CC 

Min 969.31 292.53 158.61 107.55 81.43 65.66 55.11 47.55 

2x  1401.05 697.18 464.37 348.17 278.50 232.06 198.90 174.03 

1x  2231.92 1115.11 743.30 557.45 445.95 371.62 318.53 278.71 

CF 

Min 226.50 112.68 57.41 34.68 23.71 17.53 13.67 11.09 

2x  226.50 112.68 75.05 56.27 45.01 37.50 32.14 28.12 

1x  377.94 188.80 125.85 94.38 75.50 62.92 53.93 47.19 

Type B 

SS 

Min 645.64 208.55 100.90 62.61 44.42 34.18 27.73 23.32 

2x  645.64 318.15 211.19 158.07 126.30 105.17 90.10 78.80 

1x  1055.15 525.28 349.71 262.11 209.61 174.63 149.66 130.93 

CC 

Min 908.45 279.63 153.83 105.29 80.19 64.92 54.63 47.22 

2x  1427.96 704.13 467.49 349.94 279.63 232.85 199.48 174.48 

1x  2246.02 1118.69 744.90 558.35 446.53 372.02 318.82 278.94 

CF 

Min 231.10 112.43 54.21 32.89 22.57 16.74 13.10 10.67 

2x  231.10 113.87 75.58 56.57 45.20 37.64 32.24 28.20 

1x  380.70 189.50 126.16 94.56 75.62 63.00 53.99 47.23 
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Figure 7-9: Buckling loads (MN) of type-A PMF thin-walled box beams with respect to 

various values of 3 /b h  

  



227 

 

 

a) Natural frequencies (Hz) of type A 

 
b) Percentage difference of natural frequencies between types A and B 

Figure 7-10: Natural frequencies (Hz) of PMF thin-walled box beams with respect to 

various values of 3 /b h  
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7.4. Conclusion 

The first-order-shear-deformable thin-walled beam model for the buckling and vibration 

analysis of porous metal foam thin-walled box beam is proposed in this Chapter. The 

Hamilton’s principles and hybrid series solution have been used to solve for the beams’ 

responses. Both the symmetric (Type A) and nonsymmetric (Type B) porosity distributions 

are examined. In additions, the beams are studied by varying the following parameters: 

boundary conditions, porosity parameter, length-to-height ratio, height-to-thickness ratio 

and width-to-height ratio. From the analysis, the ensuing conclusions are drawn: 

- The increasing porosity parameter 0e  reduces both the critical buckling loads and 

natural frequencies of the porous beams but the effects are more significant in the 

buckling responses. The difference between type A and type B porous beams with 

respect to 0e  is only noticeable in the lowest mode in C-C boundary condition. 

- The increasing length-to-height ratio 3/L b  drastically reduce the critical buckling 

loads and natural frequencies especially when the 3/L b  goes from 10 to 30. At certain 

values of , the lowest mode of the PMF box beam changes from the torsional mode 

to the bending mode under S-S and C-F boundary conditions 

- The increasing height-to-thickness ratio 3 /b h  raises the critical buckling loads in 

bending mode significantly but does not quite affect the lowest mode .  

- The increasing height-to-thickness ratio 3 /b h  lowers the natural frequencies of all 

modes in the way of a negative exponential relationship. 
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CHAPTER 8 : CONCLUSION AND FUTURE DIRECTIONS 

 

8.1. Conclusion 

In conclusion, this thesis has delved into the comprehensive study of thin-walled 

beams, emphasizing their widespread applications in diverse engineering domains such as 

civil, aerospace, and automobile engineering due to their notable advantages in load-

carrying capacity and lightweight properties. The investigation primarily focused on 

understanding the structural responses of thin-walled beams with different cross-section 

shapes, addressing the static, buckling and dynamic responses to  mechanical and thermal 

loads. This thesis has made several novel contributions to the field of thin-walled composite 

beam analysis, advancing both theoretical modeling and computational methodologies. The 

research objectives outlined in the first chapter have been systematically addressed, leading 

to significant advancements in the computational modeling and analysis of composite thin-

walled beams. 

For static analysis, it developed a robust framework for accurately predicting beam 

deflection and buckling stability under varied thermal and mechanical loading conditions. 

The vibration analysis extended this understanding by investigating fundamental 

frequencies and mode shapes, with a particular focus on torsional modes in open-section 

beams. Building on classical models such as Vlasov’s theory and first-order shear 

deformable thin-walled beam theory, the thesis introduced a general higher-order shear 

deformable thin-walled beam theory. This new model demonstrates superior predictive 

capability, especially for thin-walled beams with low length-to-depth ratios, addressing 

limitations in existing theories. A robust MATLAB-based computational framework was 

successfully developed and validated, demonstrating the effectiveness of higher-order shear 

deformation theory in capturing the complex mechanical behavior of thin-walled beam 

structures. The influence of material heterogeneity was also thoroughly investigated, 

revealing its critical role in structural performance. 

A significant contribution of this work lies in its stochastic analysis framework, which 

incorporates material property randomness to account for real-world uncertainties. The 
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integration of probabilistic methods provided a comprehensive approach to quantifying 

uncertainties in material properties, geometric imperfections, and loading conditions. The 

development of a novel beam solver, utilizing hybrid series-type approximation functions 

combined with Polynomial Chaos Expansion (PCE) and Artificial Neural Networks 

(ANNs), represents a major innovation. The solver achieves highly efficient evaluations of 

stochastic responses, requiring only 256 training samples to produce accurate results 

comparable to Monte Carlo simulations with over 106  samples. This efficiency underscores 

its practical utility, offering a computationally viable alternative for uncertainty 

quantification in thin-walled composite beams. 

Furthermore, the thesis also carried out the size-dependent effects analysis, replacing 

classical continuum mechanics with the modified couple stress theory. The study of size-

dependent effects in micro-beams contributed valuable insights into scale-dependent 

behavior, enhancing the understanding of microscale structural applications. Numerical 

results elucidated the influences of material distribution, span-to-height ratio, and material 

length scale parameters on the bending and vibration behaviors of microbeams under 

various boundary conditions. The micro-beam exhibits much stiffer behaviours compared 

to its macro- counterpart. In addition, the thermal buckling analysis offered a deeper 

perspective on the stability of composite thin-walled beams under various thermal loading 

scenarios 

All theoretical and numerical models developed in this research were rigorously validated 

against analytical, numerical, and experimental benchmarks, ensuring their reliability and 

computational efficiency. This thesis not only enhances the theoretical foundation for thin-

walled beam modeling but also establishes benchmark results and computational tools for 

future research. By emphasizing accuracy, efficiency, and practical applicability, the 

findings have broad implications for the scientific and engineering communities, setting a 

new standard for the analysis and design of thin-walled composite structures. 

8.2. Future directions 

The thesis plans the following directions for the future researches: 
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• The thermal and hygro analysis of closed-section thin-walled beams with arbitary 

cross section shapes 

• The incorporation of isogeometric method to replace the Ritz solution in this thesis 

• The effects of geometrical nonlinearity on thin-walled beams 

• The effects of other loading conditions (moving loads, impact loads) on thin-walled 

beams 

• The Karhunen-Loeve expansion for the stochastic analysis of thin-walled beams 

• Artificial neural network’s hyperparameter optimisation 
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APPENDIX 

Third-order multivariate Hermite basis function i  for the Polynomial chaos expansion 

(PCE) in case the size of the input vector q is 6 (contains 6 random input variables) 

Index i  i  Index i  i  Index i  i  

1 1 29 3

1 13q q−  57 2 3 5q q q  

2 1q  30 2

2 1( 1)q q −  58 2 3 6q q q  

3 2q  31 2

3 1( 1)q q −  59 2

2 4( 1)q q −  

4 3q  32 2

4 1( 1)q q −  60 2 4 5q q q  

5 4q  33 2

5 1( 1)q q −  61 2 4 6q q q  

6 5q  34 2

6 1( 1)q q −  62 2

2 5( 1)q q −  

7 6q  35 2

1 2( 1)q q −  63 2 5 6q q q  

8 2

1 1q −  36 1 2 3q q q  64 2

2 6( 1)q q −  

9 1 2q q  37 1 2 4q q q  65 3

3 33q q−  

10 1 3q q  38 1 2 5q q q  66 2

4 3( 1)q q −  

11 1 4q q  39 1 2 6q q q  67 2

5 3( 1)q q −  

12 1 5q q  40 2

1 3( 1)q q −  68 2

6 3( 1)q q −  

13 1 6q q  41 1 3 4q q q  69 2

3 4( 1)q q −  

14 2

2 1q −  42 1 3 5q q q  70 3 4 5q q q  

15 2 3q q  43 1 3 6q q q  71 3 4 6q q q  

16 2 4q q  44 2

1 4( 1)q q −  72 2

3 5( 1)q q −  

17 2 5q q  45 1 4 5q q q  73 3 5 6q q q  

18 2 6q q  46 1 4 6q q q  74 2

3 6( 1)q q −  

19 2

3 1q −  47 2

1 5( 1)q q −  75 3

4 43q q−  
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20 3 4q q  48 1 5 6q q q  76 2

5 4( 1)q q −  

21 3 5q q  49 2

1 6( 1)q q −  77 2

6 4( 1)q q −  

22 3 6q q  50 3

2 23q q−  78 2

4 5( 1)q q −  

23 2

4 1q −  51 2

3 2( 1)q q −  79 4 5 6q q q  

24 4 5q q  52 2

4 2( 1)q q −  80 2

4 6( 1)q q −  

25 4 6q q  53 2

5 2( 1)q q −  81 3

5 53q q−  

26 2

5 1q −  54 2

6 2( 1)q q −  82 2

6 5( 1)q q −  

27 5 6q q  55 2

2 3( 1)q q −  83 2

5 6( 1)q q −  

28 2

6 1q −  56 2 3 4q q q  84 3

6 63q q−  

 

  



234 

 

REFERENCES 

1. MathWorks, MATLAB Neural Network Training (nntraintool). 2020 

2. Choi, Y.Y.K.G.-W.J.S., Analysis of Thin-Walled Beams. Solid Mechanics and Its 

Applications. 2023: Springer Singapore. 

3. Jansons, V. Kulakov, A. Aniskevich, and Lagzdiņš, Structural Composites − From 

Aerospace To Civil Engineering Applications. Innovations and Technologies News, 

2012. 17: p. 3-12 

4. Mohammadi, M., M. Rajabi, and M. Ghadiri, Functionally graded materials 

(FGMs): A review of classifications, fabrication methods and their applications. 

Processing and Application of Ceramics, 2021. 15: p. 319-

343.10.2298/PAC2104319M 

5. Young, R.J. and M. Liu, The microstructure of a graphene-reinforced tennis 

racquet. Journal of Materials Science, 2016. 51(8): p. 3861-3867.10.1007/s10853-

015-9705-6 

6. Bui, X.B., P.H. Ngo, and T.K. Nguyen, A unified third-order shear deformation 

theory for static analysis of laminated composite beams. Journal of Technical 

Education Science, 2019(55): p. 87-93 

7. Bui, X.B., T.K. Nguyen, Q.C. Le, and T.T.P. Nguyen. A novel two-variable model 

for bending analysis of laminated composite beams. in 2020 5th International 

Conference on Green Technology and Sustainable Development (GTSD). 2020. 

8. Bui, X.-B., A.-C. Nguyen, N.-D. Nguyen, T.-T. Do, and T.-K. Nguyen, Buckling 

analysis of laminated composite thin-walled I-beam under mechanical and thermal 

loads. Vietnam Journal of Mechanics, 2023. 45(1): p. 75-

90.https://doi.org/10.15625/0866-7136/17956 

9. Bui, X.-B., T.-K. Nguyen, T.T.-P. Nguyen, and V.-T. Nguyen. Stochastic Vibration 

Responses of Laminated Composite Beams Based on a Quasi-3D Theory. in 

ICSCEA 2021. 2023. Singapore: Springer Nature Singapore. 

10. Bui, X.-B., T.-K. Nguyen, N.-D. Nguyen, and T.P. Vo, A general higher-order 

shear deformation theory for buckling and free vibration analysis of laminated 

https://doi.org/10.15625/0866-7136/17956


235 

 

thin-walled composite I-beams. Composite Structures, 2022. 295: p. 

115775.https://doi.org/10.1016/j.compstruct.2022.115775 

11. Bui, X.-B., T.-K. Nguyen, and P.T.T. Nguyen, Stochastic vibration and buckling 

analysis of functionally graded sandwich thin-walled beams. Mechanics Based 

Design of Structures and Machines, 2023: p. 1-

23.https://doi.org/10.1080/15397734.2023.2165101 

12. Bui, X.-B., T.-K. Nguyen, A. Karamanli, and T.P. Vo, Size-dependent behaviours 

of functionally graded sandwich thin-walled beams based on the modified couple 

stress theory. Aerospace Science and Technology, 2023. 142: p. 

108664.https://doi.org/10.1016/j.ast.2023.108664 

13. Bui, X.-B., P.T.T. Nguyen, and T.-K. Nguyen, Spectral projection and linear 

regression approaches for stochastic flexural and vibration analysis of laminated 

composite beams. Archive of Applied Mechanics, 

2024.https://doi.org/10.1007/s00419-024-02565-x 

14. Carrera, E., G. Giunta, and M. Petrolo, Beam structures: classical and advanced 

theories. 2011, Chichester, United Kingdom: John Wiley and Sons. 

15. Timoshenko, S., Theory of Elasticity. 1934: McGraw-Hill. 

16. Franza, A., S. Acikgoz, and M.J. DeJong, Timoshenko beam models for the coupled 

analysis of building response to tunnelling. Tunnelling and Underground Space 

Technology, 2020. 96: p. 103160.https://doi.org/10.1016/j.tust.2019.103160 

17. Guiyun, X.I.A. and Z. Qingyuan, TIMOSHENKO BEAM THEORY AND ITS 

APPLICATIONS. MECHANICS IN ENGINEERING, 2015. 37(3): p. 302-

316.10.6052/1000-0879-14-080 

18. Wang, C.M., S. Kitipornchai, C.W. Lim, and M. Eisenberger, Beam Bending 

Solutions Based on Nonlocal Timoshenko Beam Theory. Journal of Engineering 

Mechanics, 2008. 134(6): p. 475-481.10.1061/(ASCE)0733-9399(2008)134:6(475) 

19. Kadoli, R., K. Akhtar, and N. Ganesan, Static analysis of functionally graded 

beams using higher order shear deformation theory. Applied Mathematical 

Modelling, 2008. 32(12): p. 2509-2525.https://doi.org/10.1016/j.apm.2007.09.015 

https://doi.org/10.1016/j.compstruct.2022.115775
https://doi.org/10.1080/15397734.2023.2165101
https://doi.org/10.1016/j.ast.2023.108664
https://doi.org/10.1007/s00419-024-02565-x
https://doi.org/10.1016/j.tust.2019.103160
https://doi.org/10.1016/j.apm.2007.09.015


236 

 

20. Ferreira, A.J.M., C.M.C. Roque, and P.A.L.S. Martins, Radial basis functions and 

higher-order shear deformation theories in the analysis of laminated composite 

beams and plates. Composite Structures, 2004. 66(1): p. 287-

293.https://doi.org/10.1016/j.compstruct.2004.04.050 

21. Subramanian, P., Dynamic analysis of laminated composite beams using higher 

order theories and finite elements. Composite Structures, 2006. 73(3): p. 342-

353.https://doi.org/10.1016/j.compstruct.2005.02.002 

22. Shao, D., S. Hu, Q. Wang, and F. Pang, Free vibration of refined higher-order 

shear deformation composite laminated beams with general boundary conditions. 

Composites Part B: Engineering, 2017. 108: p. 75-90 

23. Vo, T.P., H.-T. Thai, T.-K. Nguyen, F. Inam, and J. Lee, A quasi-3D theory for 

vibration and buckling of functionally graded sandwich beams. Composite 

Structures, 2015. 119: p. 1-12.https://doi.org/10.1016/j.compstruct.2014.08.006 

24. Nguyen, T.-K., T.P. Vo, and H.-T. Thai, Static and free vibration of axially loaded 

functionally graded beams based on the first-order shear deformation theory. 

Composites Part B: Engineering, 2013. 55: p. 147-

157.https://doi.org/10.1016/j.compositesb.2013.06.011 

25. Nguyen, T.-K., T.P. Vo, B.-D. Nguyen, and J. Lee, An analytical solution for 

buckling and vibration analysis of functionally graded sandwich beams using a 

quasi-3D shear deformation theory. Composite Structures, 2016. 156: p. 238-

252.https://doi.org/10.1016/j.compstruct.2015.11.074 

26. Hahn, H.T. and S.W. Tsai, Introduction to Composite Materials. 1980: Taylor & 

Francis. 

27. Sayyad, A.S. and Y.M. Ghugal, Bending, buckling and free vibration of laminated 

composite and sandwich beams: A critical review of literature. Composite 

Structures, 2017. 171: p. 486-504.https://doi.org/10.1016/j.compstruct.2017.03.053 

28. Thostenson, E.T., Z. Ren, and T.-W. Chou, Advances in the science and technology 

of carbon nanotubes and their composites: a review. Composites science and 

technology, 2001. 61(13): p. 1899-1912 

https://doi.org/10.1016/j.compstruct.2004.04.050
https://doi.org/10.1016/j.compstruct.2005.02.002
https://doi.org/10.1016/j.compstruct.2014.08.006
https://doi.org/10.1016/j.compositesb.2013.06.011
https://doi.org/10.1016/j.compstruct.2015.11.074
https://doi.org/10.1016/j.compstruct.2017.03.053


237 

 

29. Gay, D., S.V. Hoa, and S.W. Tsai, Composite Materials: Design and Applications. 

2002: CRC Press. 

30. Librescu, L. and O. Song, Thin-walled composite beams: theory and application. 

Vol. 131. 2005: Springer Science & Business Media. 

31. Vo, T.P., H.-T. Thai, T.-K. Nguyen, A. Maheri, and J. Lee, Finite element model 

for vibration and buckling of functionally graded sandwich beams based on a 

refined shear deformation theory. Engineering Structures, 2014. 64: p. 12-

22.https://doi.org/10.1016/j.engstruct.2014.01.029 

32. Nguyen, T.-K., N.-D. Nguyen, T.P. Vo, and H.-T. Thai, Trigonometric-series 

solution for analysis of laminated composite beams. Composite Structures, 2017. 

160: p. 142-151.https://doi.org/10.1016/j.compstruct.2016.10.033 

33. Lee, J., Flexural analysis of thin-walled composite beams using shear-deformable 

beam theory. Composite Structures, 2005. 70(2): p. 212-222 

34. Lee, J. and S.-E. Kim, Flexural–torsional buckling of thin-walled I-section 

composites. Computers & Structures, 2001. 79(10): p. 987-

995.https://doi.org/10.1016/S0045-7949(00)00195-4 

35. Lee, J., S.E. Kim, and K. Hong, Lateral buckling of I-section composite beams. 

Engineering Structures, 2002. 24(7): p. 955-964.https://doi.org/10.1016/S0141-

0296(02)00016-0 

36. Lee, J. and S.-h. Lee, Flexural–torsional behavior of thin-walled composite beams. 

Thin-Walled Structures, 2004. 42(9): p. 1293-

1305.https://doi.org/10.1016/j.tws.2004.03.015 

37. Ghane, M., A.R. Saidi, and R. Bahaadini, Vibration of fluid-conveying nanotubes 

subjected to magnetic field based on the thin-walled Timoshenko beam theory. 

Applied Mathematical Modelling, 2020. 80: p. 65-

83.https://doi.org/10.1016/j.apm.2019.11.034 

38. Xie, Y., J. Lei, S. Guo, S. Han, J. Ruan, and Y. He, Size-dependent vibration of 

multi-scale sandwich micro-beams: An experimental study and theoretical analysis. 

https://doi.org/10.1016/j.engstruct.2014.01.029
https://doi.org/10.1016/j.compstruct.2016.10.033
https://doi.org/10.1016/S0045-7949(00)00195-4
https://doi.org/10.1016/S0141-0296(02)00016-0
https://doi.org/10.1016/S0141-0296(02)00016-0
https://doi.org/10.1016/j.tws.2004.03.015
https://doi.org/10.1016/j.apm.2019.11.034


238 

 

Thin-Walled Structures, 2022. 175: p. 

109115.https://doi.org/10.1016/j.tws.2022.109115 

39. Nguyen, N.-D., T.-K. Nguyen, H.-T. Thai, and T.P. Vo, A Ritz type solution with 

exponential trial functions for laminated composite beams based on the modified 

couple stress theory. Composite Structures, 2018. 191: p. 154-

167.https://doi.org/10.1016/j.compstruct.2018.02.025 

40. Roudbari, M.A., T.D. Jorshari, C. Lü, R. Ansari, A.Z. Kouzani, and M. Amabili, A 

review of size-dependent continuum mechanics models for micro- and nano-

structures. Thin-Walled Structures, 2022. 170: p. 

108562.https://doi.org/10.1016/j.tws.2021.108562 

41. Trinh, M.-C. and H. Jun, Stochastic vibration analysis of functionally graded beams 

using artificial neural networks. Structural Engineering and Mechanics, 2021. 

78(5): p. 529-543 

42. Trinh, M.-C., S.-N. Nguyen, H. Jun, and T. Nguyen-Thoi, Stochastic buckling 

quantification of laminated composite plates using cell-based smoothed finite 

elements. Thin-Walled Structures, 2021. 163: p. 107674 

43. Sharma, H., S. Mukherjee, and R. Ganguli, Stochastic strain and stress 

computation of a higher-order sandwich beam using hybrid stochastic time domain 

spectral element method. Mechanics of Advanced Materials and Structures, 2022. 

29(4): p. 525-538 

44. Thuan, N. and T. Hien, Stochastic perturbation-based finite element for free 

vibration of functionally graded beams with an uncertain elastic modulus. 

Mechanics of Composite Materials, 2020. 56: p. 485-496 

45. Shen, Z., S. Hao, and H. Li, Comparison of various thin-walled composite beam 

models for thermally induced vibrations of spacecraft boom. Composite Structures, 

2023. 320: p. 117163 

46. Simonetti, S.K., G. Turkalj, and D. Lanc, Thermal buckling analysis of thin-walled 

closed section FG beam-type structures. Thin-walled structures, 2022. 181: p. 

110075 

https://doi.org/10.1016/j.tws.2022.109115
https://doi.org/10.1016/j.compstruct.2018.02.025
https://doi.org/10.1016/j.tws.2021.108562


239 

 

47. Nguyen, T.-K., B.-D. Nguyen, T.P. Vo, and H.-T. Thai, Hygro-thermal effects on 

vibration and thermal buckling behaviours of functionally graded beams. 

Composite Structures, 2017. 176: p. 1050-

1060.https://doi.org/10.1016/j.compstruct.2017.06.036 

48. Liviu Librescu, O.S., Thin-Walled Composite Beams. Solid Mechanics and Its 

Applications. 2006: Springer Dordrecht. 

49. Vlasov, V.Z., Thin-walled elastic beams. 1961, Published for the National Science 

Foundation, Washington, D.C., by the Israel Program for Scientific Translations 

Jerusalem: Jerusalem 

50. Reddy, J.N., Mechanics of Laminated Composite Plates and Shells. 2nd Edition ed. 

2003, Boca Raton: CRC Press. 

51. Gao, K., R. Li, and J. Yang, Dynamic characteristics of functionally graded porous 

beams with interval material properties. Engineering Structures, 2019. 197: p. 

109441 

52. Fang, W., T. Yu, and T.Q. Bui, Analysis of thick porous beams by a quasi-3D 

theory and isogeometric analysis. Composite Structures, 2019. 221: p. 110890 

53. Chen, D., J. Yang, and S. Kitipornchai, Elastic buckling and static bending of shear 

deformable functionally graded porous beam. Composite Structures, 2015. 133: p. 

54-61 

54. Szabados, T., An elementary introduction to the Wiener process and stochastic 

integrals. Studia Scientiarum Mathematicarum Hungarica, 2010. 31 

55. Andrews, G.E. and R. Askey. Classical orthogonal polynomials. in Polynômes 

Orthogonaux et Applications. 1985. Berlin, Heidelberg: Springer Berlin 

Heidelberg. 

56. Shen, D., H. Wu, B. Xia, and D. Gan, Polynomial Chaos Expansion for Parametric 

Problems in Engineering Systems: A Review. IEEE Systems Journal, 2020. 14(3): 

p. 4500-4514.10.1109/JSYST.2019.2957664 

https://doi.org/10.1016/j.compstruct.2017.06.036


240 

 

57. Hadigol, M. and A. Doostan, Least squares polynomial chaos expansion: A review 

of sampling strategies. Computer Methods in Applied Mechanics and Engineering, 

2018. 332: p. 382-407.https://doi.org/10.1016/j.cma.2017.12.019 

58. Lüthen, N., S. Marelli, and B. Sudret, Sparse Polynomial Chaos Expansions: 

Literature Survey and Benchmark. SIAM/ASA Journal on Uncertainty 

Quantification, 2021. 9(2): p. 593-649.10.1137/20M1315774 

59. Susac, F., E.F. Beznea, and N. Baroiu. Artificial neural network applied to 

prediction of buckling behavior of the thin walled box. in Advanced Engineering 

Forum. 2017. Trans Tech Publ. 

60. Jeon, J., J. Kim, J.J. Lee, D. Shin, and Y.Y. Kim, Development of deep learning-

based joint elements for thin-walled beam structures. Computers & Structures, 

2022. 260: p. 106714 

61. Torregrosa, A., A. Gil, P. Quintero, and A. Cremades, A reduced order model based 

on artificial neural networks for nonlinear aeroelastic phenomena and application 

to composite material beams. Composite Structures, 2022. 295: p. 115845 

62. Zenkour, A.M. and H.D. El-Shahrany, Control of a laminated composite plate 

resting on Pasternak’s foundations using magnetostrictive layers. Archive of 

Applied Mechanics, 2020. 90(9): p. 1943-1959.10.1007/s00419-020-01705-3 

63. Aydogdu, M., Vibration analysis of cross-ply laminated beams with general 

boundary conditions by Ritz method. International Journal of Mechanical Sciences, 

2005. 47(11): p. 1740-1755.https://doi.org/10.1016/j.ijmecsci.2005.06.010 

64. Daneshjou, K., A. Nouri, and R. Talebitooti, Sound transmission through laminated 

composite cylindrical shells using analytical model. Archive of Applied Mechanics, 

2007. 77(6): p. 363-379.10.1007/s00419-006-0096-7 

65. Kant, T., S.R. Marur, and G.S. Rao, Analytical solution to the dynamic analysis of 

laminated beams using higher order refined theory. Composite Structures, 1997. 

40(1): p. 1-9.https://doi.org/10.1016/S0263-8223(97)00133-5 

66. Karama, M., K.S. Afaq, and S. Mistou, Mechanical behaviour of laminated 

composite beam by the new multi-layered laminated composite structures model 

https://doi.org/10.1016/j.cma.2017.12.019
https://doi.org/10.1016/j.ijmecsci.2005.06.010
https://doi.org/10.1016/S0263-8223(97)00133-5


241 

 

with transverse shear stress continuity. International Journal of Solids and 

Structures, 2003. 40(6): p. 1525-1546.https://doi.org/10.1016/S0020-

7683(02)00647-9 

67. Khdeir, A.A. and J.N. Reddy, Free vibration of cross-ply laminated beams with 

arbitrary boundary conditions. International Journal of Engineering Science, 1994. 

32(12): p. 1971-1980.https://doi.org/10.1016/0020-7225(94)90093-0 

68. Ebrahimi, F. and M.F. Ahari, Magnetostriction-assisted active control of the multi-

layered nanoplates: effect of the porous functionally graded facesheets on the 

system’s behavior. Engineering with Computers, 2023. 39(1): p. 269-

283.10.1007/s00366-021-01539-9 

69. Dhore, N., L. Khalsa, and V. Varghese, Hygrothermoelastic analysis of non-simple 

nano-beam induced by ramp-type heating. Archive of Applied Mechanics, 

2023.10.1007/s00419-023-02444-x 

70. Chen, W. and X. Li, A new modified couple stress theory for anisotropic elasticity 

and microscale laminated Kirchhoff plate model. Archive of Applied Mechanics, 

2014. 84(3): p. 323-341.10.1007/s00419-013-0802-1 

71. Vo, T.P. and J. Lee, Geometrical nonlinear analysis of thin-walled composite 

beams using finite element method based on first order shear deformation theory. 

Archive of Applied Mechanics, 2011. 81(4): p. 419-435.10.1007/s00419-010-0407-

x 

72. Adam, C., D. Ladurner, and T. Furtmüller, Moderately large deflection of slightly 

curved layered beams with interlayer slip. Archive of Applied Mechanics, 2022. 

92(5): p. 1431-1450.10.1007/s00419-022-02119-z 

73. Zhang, Y., L. Zhang, and S. Zhang, Exact series solutions of composite beams with 

rotationally restrained boundary conditions: static analysis. Archive of Applied 

Mechanics, 2022. 92(12): p. 3999-4015.10.1007/s00419-022-02277-0 

74. Ebrahimi, F. and S.H.S. Hosseini, Nonlinear vibration and dynamic instability 

analysis nanobeams under thermo-magneto-mechanical loads: a parametric 

https://doi.org/10.1016/S0020-7683(02)00647-9
https://doi.org/10.1016/S0020-7683(02)00647-9
https://doi.org/10.1016/0020-7225(94)90093-0


242 

 

excitation study. Engineering with Computers, 2021. 37(1): p. 395-

408.10.1007/s00366-019-00830-0 

75. Ebrahimi, F., M. karimiasl, and V. Mahesh, Chaotic dynamics and forced harmonic 

vibration analysis of magneto-electro-viscoelastic multiscale composite nanobeam. 

Engineering with Computers, 2021. 37(2): p. 937-950.10.1007/s00366-019-00865-

3 

76. Selvamani, R., R. Loganathan, and F. Ebrahimi, Nonlocal State-Space Strain 

Gradient Approach to the Vibration of Piezoelectric Functionally Graded 

Nanobeam. Engineering Transactions; Vol 70, No 4 (2022), 2022 

77. Selvamani, R., J. Rexy, and F. Ebrahimi, Vibration Analysis of a Magneto Thermo 

Electrical Nano Fiber Reinforced with Graphene Oxide Powder Under Refined 

Beam Model. Journal of Solid Mechanics, 2021. 13(1): p. 80-

94.10.22034/jsm.2020.1895052.1557 

78. Ellali, M., M. Bouazza, and K. Amara, Thermal buckling of a sandwich beam 

attached with piezoelectric layers via the shear deformation theory. Archive of 

Applied Mechanics, 2022. 92(3): p. 657-665.10.1007/s00419-021-02094-x 

79. Jun, L., B. Yuchen, and H. Peng, A dynamic stiffness method for analysis of thermal 

effect on vibration and buckling of a laminated composite beam. Archive of 

Applied Mechanics, 2017. 87(8): p. 1295-1315.10.1007/s00419-017-1250-0 

80. Liu, L., W. Yang, Y. Chai, and G. Zhai, Vibration and thermal buckling analyses of 

multi-span composite lattice sandwich beams. Archive of Applied Mechanics, 

2021. 91(6): p. 2601-2616.10.1007/s00419-021-01908-2 

81. Beheshti-Aval, S.B. and M. Lezgy-Nazargah, A coupled refined high-order global-

local theory and finite element model for static electromechanical response of 

smart multilayered/sandwich beams. Archive of Applied Mechanics, 2012. 82(12): 

p. 1709-1752.10.1007/s00419-012-0621-9 

82. Vo, T.P., H.-T. Thai, and F. Inam, Axial-flexural coupled vibration and buckling of 

composite beams using sinusoidal shear deformation theory. Archive of Applied 

Mechanics, 2013. 83(4): p. 605-622.10.1007/s00419-012-0707-4 



243 

 

83. Vo, T.P. and H.-T. Thai, Static behavior of composite beams using various refined 

shear deformation theories. Composite Structures, 2012. 94(8): p. 2513-

2522.https://doi.org/10.1016/j.compstruct.2012.02.010 

84. Rakočević, M. and S. Popović, Bending analysis of simply supported rectangular 

laminated composite plates using a new computation method based on analytical 

solution of layerwise theory. Archive of Applied Mechanics, 2018. 88(5): p. 671-

689.10.1007/s00419-017-1334-x 

85. Gao, Y., H. Zhang, W. Yang, and D. He, A new bending model for composite 

laminated shells based on the refined zigzag theory. Archive of Applied Mechanics, 

2022. 92(10): p. 2899-2915.10.1007/s00419-022-02210-5 

86. Nguyen, N.-D., T.-K. Nguyen, T.P. Vo, and H.-T. Thai, Ritz-Based Analytical 

Solutions for Bending, Buckling and Vibration Behavior of Laminated Composite 

Beams. International Journal of Structural Stability and Dynamics, 2018. 18(11): p. 

1850130.10.1142/s0219455418501304 

87. Schuëller, G.I., Developments in stochastic structural mechanics. Archive of 

Applied Mechanics, 2006. 75(10): p. 755-773.10.1007/s00419-006-0067-z 

88. Liu, X., L. Jiang, P. Xiang, W. Zhou, Z. Lai, and Y. Feng, Stochastic finite element 

method based on point estimate and Karhunen–Loéve expansion. Archive of 

Applied Mechanics, 2021. 91(4): p. 1257-1271.10.1007/s00419-020-01819-8 

89. Batou, A. and C. Soize, Stochastic modeling and identification of an uncertain 

computational dynamical model with random fields properties and model 

uncertainties. Archive of Applied Mechanics, 2013. 83(6): p. 831-

848.10.1007/s00419-012-0720-7 

90. Füssl, J., G. Kandler, and J. Eberhardsteiner, Application of stochastic finite element 

approaches to wood-based products. Archive of Applied Mechanics, 2016. 86(1): 

p. 89-110.10.1007/s00419-015-1112-6 

91. Wang, L., Y. Liu, Y. Xie, and B. Chen, Impact load identification of composite 

laminated cylindrical shell with stochastic characteristic. Archive of Applied 

Mechanics, 2022. 92(4): p. 1397-1411.10.1007/s00419-022-02116-2 

https://doi.org/10.1016/j.compstruct.2012.02.010


244 

 

92. Stefanou, G., The stochastic finite element method: Past, present and future. 

Computer Methods in Applied Mechanics and Engineering, 2009. 198(9): p. 1031-

1051.https://doi.org/10.1016/j.cma.2008.11.007 

93. Rahman, S. and B.N. Rao, A perturbation method for stochastic meshless analysis 

in elastostatics. International Journal for Numerical Methods in Engineering, 2001. 

50(8): p. 1969-1991.https://doi.org/10.1002/nme.106 

94. Sahoo, R., N. Grover, and B.N. Singh, Random vibration response of composite–

sandwich laminates. Archive of Applied Mechanics, 2021. 91(9): p. 3755-

3771.10.1007/s00419-021-01976-4 

95. Li, H.-s., Z.-z. Lü, and Z.-f. Yue, Support vector machine for structural reliability 

analysis. Applied Mathematics and Mechanics, 2006. 27(10): p. 1295-

1303.10.1007/s10483-006-1001-z 

96. Peng, X., D. Li, H. Wu, Z. Liu, J. Li, S. Jiang, and J. Tan, Uncertainty analysis of 

composite laminated plate with data-driven polynomial chaos expansion method 

under insufficient input data of uncertain parameters. Composite Structures, 2019. 

209: p. 625-633.https://doi.org/10.1016/j.compstruct.2018.11.015 

97. Nguyen, H.X., T. Duy Hien, J. Lee, and H. Nguyen-Xuan, Stochastic buckling 

behaviour of laminated composite structures with uncertain material properties. 

Aerospace Science and Technology, 2017. 66: p. 274-

283.https://doi.org/10.1016/j.ast.2017.01.028 

98. Elishakoff, I. and E. Archaud, Modified Monte Carlo method for buckling analysis 

of nonlinear imperfect structures. Archive of Applied Mechanics, 2013. 83(9): p. 

1327-1339.10.1007/s00419-013-0749-2 

99. da S, C.R.Á. and R.M.F. Squarcio, The Neumann–Monte Carlo methodology 

applied to the quantification of uncertainty in the problem stochastic bending of the 

Levinson–Bickford beam. Archive of Applied Mechanics, 2023. 93(5): p. 2009-

2024.10.1007/s00419-023-02369-5 

100. Naskar, S., T. Mukhopadhyay, S. Sriramula, and S. Adhikari, Stochastic natural 

frequency analysis of damaged thin-walled laminated composite beams with 

https://doi.org/10.1016/j.cma.2008.11.007
https://doi.org/10.1002/nme.106
https://doi.org/10.1016/j.compstruct.2018.11.015
https://doi.org/10.1016/j.ast.2017.01.028


245 

 

uncertainty in micromechanical properties. Composite Structures, 2017. 160: p. 

312-334.https://doi.org/10.1016/j.compstruct.2016.10.035 

101. Li, J., X. Tian, Z. Han, and Y. Narita, Stochastic thermal buckling analysis of 

laminated plates using perturbation technique. Composite Structures, 2016. 139: p. 

1-12.https://doi.org/10.1016/j.compstruct.2015.11.076 

102. Onkar, A.K., C.S. Upadhyay, and D. Yadav, Stochastic Finite Element Buckling 

Analysis of Laminated Plates With Circular Cutout Under Uniaxial Compression. 

Journal of Applied Mechanics, 2006. 74(4): p. 798-809.10.1115/1.2711230 

103. Verma, V.K. and B.N. Singh, Thermal buckling of laminated composite plates with 

random geometric and material properties. International Journal of Structural 

Stability and Dynamics, 2009. 09(02): p. 187-211.10.1142/s0219455409002990 

104. Chandra, S., K. Sepahvand, V.A. Matsagar, and S. Marburg, Stochastic dynamic 

analysis of composite plate with random temperature increment. Composite 

Structures, 2019. 226: p. 111159.https://doi.org/10.1016/j.compstruct.2019.111159 

105. Chakraborty, S., B. Mandal, R. Chowdhury, and A. Chakrabarti, Stochastic free 

vibration analysis of laminated composite plates using polynomial correlated 

function expansion. Composite Structures, 2016. 135: p. 236-

249.https://doi.org/10.1016/j.compstruct.2015.09.044 

106. Bhattacharyya, B., On the use of sparse Bayesian learning-based polynomial chaos 

expansion for global reliability sensitivity analysis. Journal of Computational and 

Applied Mathematics, 2023. 420: p. 

114819.https://doi.org/10.1016/j.cam.2022.114819 

107. Nguyen, T.-K., N.-D. Nguyen, T. Vo, and T. Thai, Trigonometric-series solution 

for analysis of laminated composite beams. Composite Structures, 2016. 

160.10.1016/j.compstruct.2016.10.033 

108. Dalbey, K., M.S. Eldred, G. Geraci, J.D. Jakeman, K.A. Maupin, J.A. Monschke, 

D.T. Seidl, L.P. Swiler, A. Tran, F. Menhorn, and X. Zeng, Dakota A Multilevel 

Parallel Object-Oriented Framework for Design Optimization Parameter 

Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.12 

https://doi.org/10.1016/j.compstruct.2016.10.035
https://doi.org/10.1016/j.compstruct.2015.11.076
https://doi.org/10.1016/j.compstruct.2019.111159
https://doi.org/10.1016/j.compstruct.2015.09.044
https://doi.org/10.1016/j.cam.2022.114819


246 

 

Theory Manual. 2020, ; Sandia National Lab. (SNL-NM), Albuquerque, NM 

(United States). p. Medium: ED; Size: 128 p. 

109. Sobol, I.M., Sensitivity Estimates for Nonlinear Mathematical Models. 

Mathematical Modelling and Computational Experiments, 1993 

110. Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola, 

Variance based sensitivity analysis of model output. Design and estimator for the 

total sensitivity index. Computer Physics Communications, 2010. 181(2): p. 259-

270.https://doi.org/10.1016/j.cpc.2009.09.018 

111. Saltelli, A., M. Ratto, S. Tarantola, and F. Campolongo, Update 1 of: Sensitivity 

Analysis for Chemical Models. Chemical Reviews, 2012. 112(5): p. PR1-

PR21.10.1021/cr200301u 

112. Sudret, B., Global sensitivity analysis using polynomial chaos expansions. 

Reliability Engineering & System Safety, 2008. 93(7): p. 964-

979.https://doi.org/10.1016/j.ress.2007.04.002 

113. Nguyen, N.-D., T.-K. Nguyen, T.-N. Nguyen, and H.-T. Thai, New Ritz-solution 

shape functions for analysis of thermo-mechanical buckling and vibration of 

laminated composite beams. Composite Structures, 2018. 184: p. 452-

460.https://doi.org/10.1016/j.compstruct.2017.10.003 

114. Khdeir, A.A. and J.N. Reddy, An exact solution for the bending of thin and thick 

cross-ply laminated beams. Composite Structures, 1997. 37(2): p. 195-

203.https://doi.org/10.1016/S0263-8223(97)80012-8 

115. Piovan, M.T., J.M. Ramirez, and R. Sampaio, Dynamics of thin-walled composite 

beams: Analysis of parametric uncertainties. Composite Structures, 2013. 105: p. 

14-28 

116. Bauld, N.R. and T. Lih-Shyng, A Vlasov theory for fiber-reinforced beams with 

thin-walled open cross sections. International Journal of Solids and Structures, 

1984. 20(3): p. 277-297.https://doi.org/10.1016/0020-7683(84)90039-8 

https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1016/j.compstruct.2017.10.003
https://doi.org/10.1016/S0263-8223(97)80012-8
https://doi.org/10.1016/0020-7683(84)90039-8


247 

 

117. Pandey, M.D., M.Z. Kabir, and A.N. Sherbourne, Flexural-torsional stability of 

thin-walled composite I-section beams. Composites Engineering, 1995. 5(3): p. 

321-342.https://doi.org/10.1016/0961-9526(94)00101-E 

118. Lee, J. and S.-E. Kim, Free vibration of thin-walled composite beams with I-shaped 

cross-sections. Composite Structures, 2002. 55(2): p. 205-

215.https://doi.org/10.1016/S0263-8223(01)00150-7 

119. Latalski, J. and D. Zulli, Generalized Beam Theory for Thin-Walled Beams with 

Curvilinear Open Cross-Sections. Applied Sciences, 2020. 10(21): p. 7802 

120. Yu, W., D. Hodges, V. Volovoi, and E. Fuchs, A generalized Vlasov theory of 

composite beams. Thin-Walled Structures, 2005. 43: p. 1493-

1511.10.1016/j.tws.2005.02.003 

121. Maddur, S.S. and S.K. Chaturvedi, Laminated composite open profile sections: 

non-uniform torsion of I-sections. Composite Structures, 2000. 50(2): p. 159-

169.https://doi.org/10.1016/S0263-8223(00)00093-3 

122. Maddur, S.S. and S.K. Chaturvedi, Laminated composite open profile sections: first 

order shear deformation theory. Composite Structures, 1999. 45(2): p. 105-

114.https://doi.org/10.1016/S0263-8223(99)00005-7 

123. Qin, Z. and L. Librescu, On a shear-deformable theory of anisotropic thin-walled 

beams: further contribution and validations. Composite Structures, 2002. 56(4): p. 

345-358.https://doi.org/10.1016/S0263-8223(02)00019-3 

124. Vo, T.P. and J. Lee, Flexural–torsional coupled vibration and buckling of thin-

walled open section composite beams using shear-deformable beam theory. 

International Journal of Mechanical Sciences, 2009. 51(9): p. 631-

641.https://doi.org/10.1016/j.ijmecsci.2009.05.001 

125. Lee, J., Center of gravity and shear center of thin-walled open-section composite 

beams. Composite Structures, 2001. 52(2): p. 255-

260.https://doi.org/10.1016/S0263-8223(00)00177-X 

https://doi.org/10.1016/0961-9526(94)00101-E
https://doi.org/10.1016/S0263-8223(01)00150-7
https://doi.org/10.1016/S0263-8223(00)00093-3
https://doi.org/10.1016/S0263-8223(99)00005-7
https://doi.org/10.1016/S0263-8223(02)00019-3
https://doi.org/10.1016/j.ijmecsci.2009.05.001
https://doi.org/10.1016/S0263-8223(00)00177-X


248 

 

126. Jung, S. and J.-Y. Lee, Closed-form analysis of thin-walled composite I-beams 

considering non-classical effects. Composite Structures, 2003. 60: p. 9-

17.10.1016/S0263-8223(02)00318-5 

127. Kim, N.-I. and D.K. Shin, Coupled deflection analysis of thin-walled Timoshenko 

laminated composite beams. Computational Mechanics, 2008. 43(4): p. 

493.10.1007/s00466-008-0324-9 

128. Wu, L. and M. Mohareb, Finite element formulation for shear deformable thin-

walled beams. Canadian Journal of Civil Engineering, 2011. 38(4): p. 383-

392.10.1139/l11-007 

129. Carrera, E., F. Miglioretti, and M. Petrolo, Accuracy of refined finite elements for 

laminated plate analysis. Composite Structures, 2011. 93(5): p. 1311-

1327.10.1016/j.compstruct.2010.11.007 

130. Fazzolari, F.A. and E. Carrera, Refined hierarchical kinematics quasi-3D Ritz 

models for free vibration analysis of doubly curved FGM shells and sandwich 

shells with FGM core. Journal of Sound and Vibration, 2014. 333(5): p. 1485-

1508.https://doi.org/10.1016/j.jsv.2013.10.030 

131. Carrera, E., Transverse Normal Stress Effects in Multilayered Plates. Journal of 

Applied Mechanics, 1999. 66(4): p. 1004-1012.10.1115/1.2791769 

132. Robaldo, A., E. Carrera, and A. Benjeddou, A Unified Formulation for finite 

element analysis of piezoelectric plates. Computers & Structures - COMPUT 

STRUCT, 2006. 84: p. 1494-1505.10.1016/j.compstruc.2006.01.029 

133. Cinefra, M., E. Carrera, S. Brischetto, and S. Belouettar, ThermoMechanical 

Analysis Of Functionally Graded Shells. Journal of Thermal Stresses - J 

THERMAL STRESSES, 2010. 33: p. 942-963.10.1080/01495739.2010.482379 

134. Fazzolari, F. and E. Carrera, Thermal Stability of FGM Sandwich Plates Under 

Various Through-the-Thickness Temperature Distributions. Journal of Thermal 

Stresses, 2014. 37: p. 1449–1481.10.1080/01495739.2014.937251 

135. Pagani, A., E. Carrera, M. Boscolo, and J.R. Banerjee, Refined dynamic stiffness 

elements applied to free vibration analysis of generally laminated composite beams 

https://doi.org/10.1016/j.jsv.2013.10.030


249 

 

with arbitrary boundary conditions. Composite Structures, 2014. 110: p. 305-

316.https://doi.org/10.1016/j.compstruct.2013.12.010 

136. Carrera, E. and B. Kröplin, ZIGZAG AND INTERLAMINAR EQUILIBRIA 

EFFECTS IN LARGE-DEFLECTION AND POSTBUCKLING ANALYSIS OF 

MULTILAYERED PLATES. Mechanics of Composite Materials and Structures, 

1997. 4(1): p. 69-94.10.1080/10759419708945875 

137. Khalili, S.M.R., M. Botshekanan Dehkordi, E. Carrera, and M. Shariyat, Non-linear 

dynamic analysis of a sandwich beam with pseudoelastic SMA hybrid composite 

faces based on higher order finite element theory. Composite Structures, 2013. 96: 

p. 243-255.https://doi.org/10.1016/j.compstruct.2012.08.020 

138. Carrera, E., A. Pagani, and M. Petrolo, Classical, Refined, and Component-Wise 

Analysis of Reinforced-Shell Wing Structures. AIAA Journal, 2013. 51(5): p. 1255-

1268.10.2514/1.J052331 

139. Pagani, A., A.G. de Miguel, M. Petrolo, and E. Carrera, Analysis of laminated 

beams via Unified Formulation and Legendre polynomial expansions. Composite 

Structures, 2016. 156.10.1016/j.compstruct.2016.01.095 

140. Carrera, E., M. Petrolo, and E. Zappino, Performance of CUF Approach to Analyze 

the Structural Behavior of Slender Bodies. Journal of Structural Engineering, 2012. 

138: p. 285-297.10.1061/(ASCE)ST.1943-541X.0000402 

141. Carrera, E., M. Boscolo, and A. Robaldo, Hierarchic Multilayered Plate Elements 

for Coupled Multifield Problems of Piezoelectric Adaptive Structures: Formulation 

and Numerical Assessment. Archives of Computational Methods in Engineering, 

2007. 14(4): p. 383-430.10.1007/s11831-007-9012-8 

142. Carrera, E., M. Filippi, and E. Zappino, Free vibration analysis of rotating 

composite blades via Carrera Unified Formulation. Composite Structures, 2013. 

106: p. 317-325.10.1016/j.compstruct.2013.05.055 

143. Carrera, E., Temperature Profile Influence on Layered Plates Response 

Considering Classical and Advanced Theories. Aiaa Journal - AIAA J, 2002. 40: p. 

1885-1896.10.2514/2.1868 

https://doi.org/10.1016/j.compstruct.2013.12.010
https://doi.org/10.1016/j.compstruct.2012.08.020


250 

 

144. Chandiramani, N.K., L. Librescu, and C.D. Shete, On the free-vibration of rotating 

composite beams using a higher-order shear formulation. Aerospace Science and 

Technology, 2002. 6(8): p. 545-561.https://doi.org/10.1016/S1270-9638(02)01195-

1 

145. Bhaskar, K. and L. Librescu, A geometrically non-linear theory for laminated 

anisotropic thin-walled beams. International Journal of Engineering Science, 1995. 

33(9): p. 1331-1344 

146. Megson, T.H.G., Aircraft Structures for Engineering Students. Seventh Edition ed. 

2021, United Kingdom: Butterworth-Heinemann. 649. 

147. Nguyen, N.-D., T.-K. Nguyen, T. Vo, N. Thiện Nhân, and S. Lee, Vibration and 

buckling behaviours of thin-walled composite and functionally graded sandwich I-

beams. Composites Part B: Engineering, 2019. 

166.10.1016/j.compositesb.2019.02.033 

148. CortÍNez, V.H. and M.T. Piovan, VIBRATION AND BUCKLING OF COMPOSITE 

THIN-WALLED BEAMS WITH SHEAR DEFORMABILITY. Journal of Sound and 

Vibration, 2002. 258(4): p. 701-723.https://doi.org/10.1006/jsvi.2002.5146 

149. Piovan, M.T. and V.H. Cortínez, Mechanics of shear deformable thin-walled beams 

made of composite materials. Thin-Walled Structures, 2007. 45(1): p. 37-

62.https://doi.org/10.1016/j.tws.2006.12.001 

150. Kim, N.-I., D. Shin, and Y.S. Park, Dynamic stiffness matrix of thin-walled 

composite I-beam with symmetric and arbitrary laminations. Journal of Sound and 

Vibration, 2008. 318: p. 364-388.10.1016/j.jsv.2008.04.006 

151. Kim, N.-I. and J. Lee, Exact solutions for stability and free vibration of thin-walled 

Timoshenko laminated beams under variable forces. Archive of Applied 

Mechanics, 2014. 84(12): p. 1785-1809.10.1007/s00419-014-0886-2 

152. Kim, N.-I., D. Shin, and M.-Y. Kim, Flexural–torsional buckling loads for spatially 

coupled stability analysis of thin-walled composite columns. Advances in 

Engineering Software, 2008. 39: p. 949-961.10.1016/j.advengsoft.2008.03.001 

https://doi.org/10.1016/S1270-9638(02)01195-1
https://doi.org/10.1016/S1270-9638(02)01195-1
https://doi.org/10.1006/jsvi.2002.5146
https://doi.org/10.1016/j.tws.2006.12.001


251 

 

153. Trinh, L.C., T.P. Vo, H.-T. Thai, and T.-K. Nguyen, An analytical method for the 

vibration and buckling of functionally graded beams under mechanical and thermal 

loads. Composites Part B: Engineering, 2016. 100: p. 152-

163.https://doi.org/10.1016/j.compositesb.2016.06.067 

154. Li, X., Y.H. Li, and Y. Qin, Free vibration characteristics of a spinning composite 

thin-walled beam under hygrothermal environment. International Journal of 

Mechanical Sciences, 2016. 119: p. 253-

265.https://doi.org/10.1016/j.ijmecsci.2016.10.028 

155. Sun, Y. and S. Li, Thermal buckling and post-buckling of FGM Timoshenko beams 

on nonlinear elastic foundation. Journal of Thermal Stresses, 2016. 39: p. 11-

26.10.1080/01495739.2015.1120627 

156. Pantousa, D., Numerical study on thermal buckling of empty thin-walled steel tanks 

under multiple pool-fire scenarios. Thin-Walled Structures, 2018. 131: p. 577-

594.https://doi.org/10.1016/j.tws.2018.07.025 

157. Jagtap, K.R., A. Lal, and B.N. Singh, Stochastic nonlinear bending response of 

functionally graded material plate with random system properties in thermal 

environment. International Journal of Mechanics and Materials in Design, 2012. 

8(2): p. 149-167.10.1007/s10999-012-9183-9 

158. Borges, R.A., L.F.F. Rodovalho, T.d.P. Sales, and D.A. Rade, Stochastic 

eigenfrequency and buckling analyses of plates subjected to random temperature 

distributions. Mechanical Systems and Signal Processing, 2021. 147: p. 

107088.https://doi.org/10.1016/j.ymssp.2020.107088 

159. Kumar, R.R., T. Mukhopadhyay, K.M. Pandey, and S. Dey, Stochastic buckling 

analysis of sandwich plates: The importance of higher order modes. International 

Journal of Mechanical Sciences, 2019. 152: p. 630-

643.https://doi.org/10.1016/j.ijmecsci.2018.12.016 

160. Umesh, K. and R. Ganguli, Material Uncertainty Effect on Vibration Control of 

Smart Composite Plate Using Polynomial Chaos Expansion. Mechanics of 

https://doi.org/10.1016/j.compositesb.2016.06.067
https://doi.org/10.1016/j.ijmecsci.2016.10.028
https://doi.org/10.1016/j.tws.2018.07.025
https://doi.org/10.1016/j.ymssp.2020.107088
https://doi.org/10.1016/j.ijmecsci.2018.12.016


252 

 

Advanced Materials and Structures, 2013. 20(7): p. 580-

591.10.1080/15376494.2011.643279 

161. Sasikumar, P., A. Venketeswaran, R. Suresh, and S. Gupta, A data driven 

polynomial chaos based approach for stochastic analysis of CFRP laminated 

composite plates. Composite Structures, 2015. 125: p. 212-

227.https://doi.org/10.1016/j.compstruct.2015.02.010 

162. Shaker, A., W. Abdelrahman, M. Tawfik, and E.A. Sadek, Stochastic finite element 

analysis of the free vibration of laminated composite plates. Computational 

Mechanics, 2008. 41: p. 493-501.10.1007/s00466-007-0205-7 

163. Parhi, A. and B.N. Singh, Stochastic Response of Laminated Composite Shell Panel 

in Hygrothermal Environment. Mechanics Based Design of Structures and 

Machines, 2014. 42(4): p. 454-482.10.1080/15397734.2014.888006 

164. Guo, H., X. Zhuang, and T. Rabczuk, A Deep Collocation Method for the Bending 

Analysis of Kirchhoff Plate. Computers, Materials \& Continua, 2019. 

59(2).10.32604/cmc.2019.06660 

165. Samaniego, E., C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. 

Hamdia, X. Zhuang, and T. Rabczuk, An energy approach to the solution of partial 

differential equations in computational mechanics via machine learning: Concepts, 

implementation and applications. Computer Methods in Applied Mechanics and 

Engineering, 2020. 362: p. 112790.https://doi.org/10.1016/j.cma.2019.112790 

166. Zhuang, X., H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk, Deep autoencoder based 

energy method for the bending, vibration, and buckling analysis of Kirchhoff plates 

with transfer learning. European Journal of Mechanics - A/Solids, 2021. 87: p. 

104225.https://doi.org/10.1016/j.euromechsol.2021.104225 

167. Tran, V.-T., T.-K. Nguyen, H. Nguyen-Xuan, and M. Abdel Wahab, Vibration and 

buckling optimization of functionally graded porous microplates using BCMO-ANN 

algorithm. Thin-Walled Structures, 2023. 182: p. 

110267.https://doi.org/10.1016/j.tws.2022.110267 

https://doi.org/10.1016/j.compstruct.2015.02.010
https://doi.org/10.1016/j.cma.2019.112790
https://doi.org/10.1016/j.euromechsol.2021.104225
https://doi.org/10.1016/j.tws.2022.110267


253 

 

168. Tsokanas, N., T. Simpson, R. Pastorino, E. Chatzi, and B. Stojadinović, Model 

order reduction for real-time hybrid simulation: Comparing polynomial chaos 

expansion and neural network methods. Mechanism and Machine Theory, 2022. 

178: p. 105072.https://doi.org/10.1016/j.mechmachtheory.2022.105072 

169. Jakeman, J.D., M. Perego, and W.M. Severa, Neural Networks as Surrogates of 

Nonlinear High-Dimensional Parameter-to-Prediction Maps. 2018: United 

States.10.2172/1481639 

170. Tran, V.-T., T.-K. Nguyen, P.T.T. Nguyen, and T.P. Vo, Stochastic vibration and 

buckling analysis of functionally graded microplates with a unified higher-order 

shear deformation theory. Thin-Walled Structures, 2022. 177: p. 

109473.https://doi.org/10.1016/j.tws.2022.109473 

171. Xiu, D. and G.E. Karniadakis, The Wiener--Askey Polynomial Chaos for Stochastic 

Differential Equations. SIAM Journal on Scientific Computing, 2002. 24(2): p. 

619-644.10.1137/s1064827501387826 

172. Colombi, P. and C. Poggi, An experimental, analytical and numerical study of the 

static behavior of steel beams reinforced by pultruded CFRP strips. Composites 

Part B: Engineering, 2006. 37(1): p. 64-

73.https://doi.org/10.1016/j.compositesb.2005.03.002 

173. Nguyen, N.D. and T.K. Nguyen. Ritz Solution for Static Analysis of Thin-Walled 

Laminated Composite I-beams Based on First-Order Beam Theory. in 2020 5th 

International Conference on Green Technology and Sustainable Development 

(GTSD). 2020. 

174. Mahamood, R.M. and E.T. Akinlabi, Types of Functionally Graded Materials and 

Their Areas of Application, in Functionally Graded Materials, R.M. Mahamood 

and E.T. Akinlabi, Editors. 2017, Springer International Publishing: Cham. p. 9-21. 

175. Miteva, A. and A. Bouzekova-Penkova, Some aerospace applications of 

functionally graded materials. Aerospace Research in Bulgaria, 2021. 

33.https://doi.org/10.3897/arb.v33.e14 

https://doi.org/10.1016/j.mechmachtheory.2022.105072
https://doi.org/10.1016/j.tws.2022.109473
https://doi.org/10.1016/j.compositesb.2005.03.002
https://doi.org/10.3897/arb.v33.e14


254 

 

176. Osiander, R., M.A.G. Darrin, and J.L. Champion, MEMS and microstructures in 

aerospace applications. 2018: CRC press. 

177. Yang, F., A.C.M. Chong, D.C.C. Lam, and P. Tong, Couple stress based strain 

gradient theory for elasticity. International Journal of Solids and Structures, 2002. 

39(10): p. 2731-2743.https://doi.org/10.1016/S0020-7683(02)00152-X 

178. Fang, J., J. Gu, and H. Wang, Size-dependent three-dimensional free vibration of 

rotating functionally graded microbeams based on a modified couple stress theory. 

International Journal of Mechanical Sciences, 2018. 136: p. 188-

199.https://doi.org/10.1016/j.ijmecsci.2017.12.028 

179. Ke, L.-L. and Y.-S. Wang, Size effect on dynamic stability of functionally graded 

microbeams based on a modified couple stress theory. Composite Structures, 2011. 

93(2): p. 342-350.https://doi.org/10.1016/j.compstruct.2010.09.008 

180. Şimşek, M. and J.N. Reddy, Bending and vibration of functionally graded 

microbeams using a new higher order beam theory and the modified couple stress 

theory. International Journal of Engineering Science, 2013. 64: p. 37-

53.https://doi.org/10.1016/j.ijengsci.2012.12.002 

181. Thai, H.-T., T.P. Vo, T.-K. Nguyen, and J. Lee, Size-dependent behavior of 

functionally graded sandwich microbeams based on the modified couple stress 

theory. Composite Structures, 2015. 123: p. 337-

349.https://doi.org/10.1016/j.compstruct.2014.11.065 

182. Fan, F., Y. Xu, S. Sahmani, and B. Safaei, Modified couple stress-based 

geometrically nonlinear oscillations of porous functionally graded microplates 

using NURBS-based isogeometric approach. Computer Methods in Applied 

Mechanics and Engineering, 2020. 372: p. 

113400.https://doi.org/10.1016/j.cma.2020.113400 

183. Farzam, A. and B. Hassani, Isogeometric analysis of in-plane functionally graded 

porous microplates using modified couple stress theory. Aerospace Science and 

Technology, 2019. 91: p. 508-524.https://doi.org/10.1016/j.ast.2019.05.012 

https://doi.org/10.1016/S0020-7683(02)00152-X
https://doi.org/10.1016/j.ijmecsci.2017.12.028
https://doi.org/10.1016/j.compstruct.2010.09.008
https://doi.org/10.1016/j.ijengsci.2012.12.002
https://doi.org/10.1016/j.compstruct.2014.11.065
https://doi.org/10.1016/j.cma.2020.113400
https://doi.org/10.1016/j.ast.2019.05.012


255 

 

184. Kim, J., K. Żur, and J.N. Reddy, Bending, free vibration, and buckling of modified 

couples stress-based functionally graded porous micro-plates. Composite 

Structures, 2018. 209.10.1016/j.compstruct.2018.11.023 

185. Liu, H. and Q. Zhang, Nonlinear dynamics of two-directional functionally graded 

microbeam with geometrical imperfection using unified shear deformable beam 

theory. Applied Mathematical Modelling, 2021. 98: p. 783-

800.https://doi.org/10.1016/j.apm.2021.05.029 

186. Chen, X., Y. Lu, and Y. Li, Free vibration, buckling and dynamic stability of bi-

directional FG microbeam with a variable length scale parameter embedded in 

elastic medium. Applied Mathematical Modelling, 2019. 67: p. 430-

448.https://doi.org/10.1016/j.apm.2018.11.004 

187. Ebrahimi, F. and F. Mahmoodi, A modified couple stress theory for buckling 

analysis of higher order inhomogeneous microbeams with porosities. Proceedings 

of the Institution of Mechanical Engineers, Part C: Journal of Mechanical 

Engineering Science, 2019. 233(8): p. 2855-2866.10.1177/0954406218791642 

188. Soltani, M. and F. Atoufi, Non-local finite element formulation for stability analysis 

of thin-walled nanobeams with varying I-section. Acta Mechanica, 2022. 233(2): p. 

789-811.10.1007/s00707-021-03126-x 

189. Soltani, M., F. Atoufi, F. Mohri, R. Dimitri, and F. Tornabene, Nonlocal elasticity 

theory for lateral stability analysis of tapered thin-walled nanobeams with axially 

varying materials. Thin-Walled Structures, 2021. 159: p. 

107268.https://doi.org/10.1016/j.tws.2020.107268 

190. Soltani, M., A. Soltani, and O. Civalek, Interaction of the lateral buckling strength 

with the axial load for FG micro-sized I-section beam–columns. Thin-Walled 

Structures, 2022. 179: p. 109616.https://doi.org/10.1016/j.tws.2022.109616 

191. Lam, D.C.C., F. Yang, A.C.M. Chong, J. Wang, and P. Tong, Experiments and 

theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 

2003. 51(8): p. 1477-1508.https://doi.org/10.1016/S0022-5096(03)00053-X 

https://doi.org/10.1016/j.apm.2021.05.029
https://doi.org/10.1016/j.apm.2018.11.004
https://doi.org/10.1016/j.tws.2020.107268
https://doi.org/10.1016/j.tws.2022.109616
https://doi.org/10.1016/S0022-5096(03)00053-X


256 

 

192. Nguyen, N.-D., T.-K. Nguyen, T.P. Vo, and L.B. Nguyen, Bending, buckling and 

free vibration behaviors of thin-walled functionally graded sandwich and 

composite channel-section beams. Mechanics Based Design of Structures and 

Machines, 2020: p. 1-29.10.1080/15397734.2020.1859385 

193. Nguyen, T.-T., N.-I. Kim, and J. Lee, Free vibration of thin-walled functionally 

graded open-section beams. Composites Part B: Engineering, 2016. 95: p. 105-116 

194. Kim, N.-I. and J. Lee, Flexural-torsional analysis of functionally graded sandwich 

I-beams considering shear effects. Composites Part B: Engineering, 2017. 108: p. 

436-450.https://doi.org/10.1016/j.compositesb.2016.09.092 

195. Nguyen, N.-D., T.P. Vo, and T.-K. Nguyen, An improved shear deformable theory 

for bending and buckling response of thin-walled FG sandwich I-beams resting on 

the elastic foundation. Composite Structures, 2020. 254: p. 

112823.https://doi.org/10.1016/j.compstruct.2020.112823 

196. Choi, S. and Y.Y. Kim, Higher-order Vlasov torsion theory for thin-walled box 

beams. International Journal of Mechanical Sciences, 2021. 195: p. 

106231.https://doi.org/10.1016/j.ijmecsci.2020.106231 

197. Ziane, N., S.A. Meftah, H.A. Belhadj, A. Tounsi, and E.A.A. Bedia, Free vibration 

analysis of thin and thick-walled FGM box beams. International Journal of 

Mechanical Sciences, 2013. 66: p. 273-

282.https://doi.org/10.1016/j.ijmecsci.2012.12.001 

198. Chen, D., J. Yang, and S. Kitipornchai, Free and forced vibrations of shear 

deformable functionally graded porous beams. International Journal of Mechanical 

Sciences, 2016. 108-109: p. 14-22.https://doi.org/10.1016/j.ijmecsci.2016.01.025 

199. Keleshteri, M.M. and J. Jelovica, Nonlinear vibration analysis of bidirectional 

porous beams. Engineering with Computers, 2022. 38(6): p. 5033-

5049.10.1007/s00366-021-01553-x 

200. Tang, H., L. Li, and Y. Hu, Buckling analysis of two-directionally porous beam. 

Aerospace Science and Technology, 2018. 78: p. 471-

479.https://doi.org/10.1016/j.ast.2018.04.045 

https://doi.org/10.1016/j.compositesb.2016.09.092
https://doi.org/10.1016/j.compstruct.2020.112823
https://doi.org/10.1016/j.ijmecsci.2020.106231
https://doi.org/10.1016/j.ijmecsci.2012.12.001
https://doi.org/10.1016/j.ijmecsci.2016.01.025
https://doi.org/10.1016/j.ast.2018.04.045


257 

 

201. Nguyen, N.-D., T.-N. Nguyen, T.-K. Nguyen, and T.P. Vo, A new two-variable 

shear deformation theory for bending, free vibration and buckling analysis of 

functionally graded porous beams. Composite Structures, 2022. 282: p. 115095 

202. Nguyen, N.-D., T.-N. Nguyen, T.-K. Nguyen, and T.P. Vo. A Legendre-Ritz 

solution for bending, buckling and free vibration behaviours of porous beams 

resting on the elastic foundation. in Structures. 2023. Elsevier. 

203. Ziane, N., S.A. Meftah, G. Ruta, and A. Tounsi, Thermal effects on the instabilities 

of porous FGM box beams. Engineering Structures, 2017. 134: p. 150-

158.https://doi.org/10.1016/j.engstruct.2016.12.039 

204. Farsadi, T., Variable thickness thin-walled rotating blades made of functionally 

graded porous materials. Proceedings of the Institution of Mechanical Engineers, 

Part C: Journal of Mechanical Engineering Science, 2022. 236(14): p. 7674-

7689.10.1177/09544062221080654 

205. Lanc, D., T.P. Vo, G. Turkalj, and J. Lee, Buckling analysis of thin-walled 

functionally graded sandwich box beams. Thin-Walled Structures, 2015. 86: p. 148-

156.https://doi.org/10.1016/j.tws.2014.10.006 

 

https://doi.org/10.1016/j.engstruct.2016.12.039
https://doi.org/10.1016/j.tws.2014.10.006

